akana

by Perforce

Lifecycle Manager Integrated
SOLA Developer User’s Guide
Version 6.4.2

Support for Management
WS-Security architectural console &

Standards-based standards dashboard

security Global dictionary, SLA, monitoring,

enforcement &
management WSDL first logging & audit controls

High
performance Web 2.0
WS-Policy SOAP and development

Standards-based
policy REST environment
enforcement & API englne

management

Change Orchestration Regist
ry
& release & microflows UDDI, WSRR
management

Version control,
backups & migration

Revised: August 2017

Copyright © 2020 by Perforce, Inc.

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Contents

ABOUT SOLA DEVELOPERccuuiiiintiiiiinniiiieeniiiinsieiisessssisnssesissssosisnsssstsnsssstsnssssssnssssssnssssssnssssssnsssssansssssanssssssnsssssnne 1
SOLA DEVELOPER BASICS.....cccuiiiiiteiiiitnniiiienniiisnssesisnssosisnsosisnssesssnsssstsnssssssnssssssnssssssnssssssnssssssnsssssansssssansssssanssssanne 2
THE SOLA DEVELOPER WINDOW.....uutteeeiuteeeeaureresausteessuretesassseeesassseessasenesasssesesanssesssnsesessnnsesesanssesssnsesessnssesesaseesssnsenessns 2
LOGGING IN AND USER PROPERTIESeteeeurereraurteeesteeesasureresauseeessnaeesssusesessnsseessanseesssnsesesanssesssasssesssssesesassseessaseessssesesans 4
THE SOLA DIRECTORY PANEL. . .utttteeutteeeiutteesatteeesaisteeesuteeesasuseeesssseesaasesesasseeesanseeessasesesasseeesanseesssnsenesansneeesansnessansenesanns 5
RYO NN D] [=Tor (o] VA (oo] s KPP PP PPPPPPPPPPTPPPRE 6
SOLA Dil@CtOIY Filt@IS.....cueeeeeeeeieeeeeet ettt ettt ettt ettt et e ettt e st e ettt e bt e et e enseesbseenaeeeans 7
SOLA Dir€CEOIY MENUS ...ttt ettt e ettt e st e e ettt e st e s sttt e s eaaneeesaasneessanneeenas 8
WWORKING WITH TABS .uuttteeetteeeeauteeeesutteesasuseeesauseesessseeesssssesesasseesssnsssesasssssssnsssesssssssesassssssssssnseesssenesansseesssssensesssseesnnns 19
SOLA DEVELOPER TOOLBAR.......cuuussisssnes 20
QUUICK SEARCH FIELD .uttteeeeittee e sttt e ettt e e ettt e sttt e s sabe e e s ettt e e satbeeeessbeeesaasbeeesabbeeeeasbeeesaabeeeesabeeeeennbeeesnseeesaasbeeeennseeesnnees 20
BUTTON BAR .. tteetitteee ettt e ettt e sttt e ettt e s ettt e sbb e e e su bt e e s e abbeeesasb e e e e aabeeesaasbeeesasseeesaabeeeeeasbeeesnbeeessabbeeeenbaeesaaseaeesanneeenn 21
USING SOLA DEVELOPER - POLICY MANAGEMENTccoiiiiiiiiiiiiiiiiiiiiiininisnssnnnns 22
ASSIGNING AND DEPLOYING A POLICY ..eiuitieeeetieteeiieeeestteeessuteeesstseesessteeesssseeessussasessseeesansseeesassaesesssseessnsseesssseesssnsseesanns 22
USING SOLA DEVELOPER - COMIMAREAcccciiiiiiiinnieiiiiinisnstetiiisssssssssessnas 28
CREATING AN INBOUND WEB SERVICE FROM A COMMAREA PROGRAM — BOTTOM UP......uviiiiiiiieiiiiee et cseee e svee e e 29
Step 1 — Mainframe Preparations............o.c.eeeeueeeeueeeseeeiiie et eite et et stte ettt site ettt e sateestteesaaeeateesteenaseesaneenanes 30

Step 2 — Asset Setup in LifeCyCle MANGGEToeeeeueeeeeeieeeesiieeeeceeeeteee e et ita e e et eeeetasaesasaaesstsaaassssssaesssees 33

Step 3 —Importing @ COMMOAIEQA PrOGITMccueveeeeeeeeeieiiiiiiiiiseseseseeieessstssseststssssssstssssststsrstsrstsrsrsssrsrsrerersrarernn 38

Step 4 — Creating Methods in @ COMMQAIEA PrOGIAIMuuevieeeeeeciiiieeeeeeeesecitteeaeeesesssssessaesesesisssansssssessinnns 43
CREATING AN OUTBOUND WEB SERVICEvteuuteeureerireesueeesireesueeesuteesuteesuseesuseesaseesuseesaseesnseesasessnseesaseesnseesasesenseesssessnseesnes 63
Step 1 — MaAiNframe PrePArGtiONc.uueeecueeeeeiieeeeetieeeeeieeessttteeestttasesataesaasteaassteassasseessasseaassasseaessstsessassees 64

StEP 2 = IMPOItING tRE WSDL ..ottt e ettt eeee ettt e e et a e e et e e s aastaaesasteaesanstaasanssaaseastenesnnstsassssees 65

The Generated INLErface COPYDOOKueeeeuieeeeeeeeeeee et eetee s eee e e et e e e e atee e s ettt e e s atteesasaeassassesessnsseaennsees 69
VOIIQEIONcooeieieeee ettt ettt et et e ettt e ettt e e sttt e e e att e e et a e e ettt e e e ate e e s sbeeeeabeeeenabaeeenasnes 75
Using SOLA to INVOKE OULDOUNT REQUESLSccceeeeeeieieiee ettt eeetettte e e e e e sttt et e e e e e st taaeaaaeseasntsaseaaaaenas 75
Invoking an outbound SEIVICE frOM CICS..........ccueeeeeeeeeeeeeeee et ee et ettta e e st e e e e taaaeessaaesetsaseessssaeesssnaans 75
Invoking an outbound service from Batch, IMS, DB2 StOred ProC, E1C...........ccueeeevueeeeiiieeesiieeeeiiveeeesiivaeesisenan, 76
Using WS-Security With OUEDOUNG FEQUESESeeeeeeueieeeeiiieeeceeeessie e e ettt e eettee e sstttaesatteesessteessasseaessasesesssssees 76
ANALYZER REFERENCEuuuueeiiiiiiiiiuneeeiiiisiisissstesisissssssssssessssssssssssssesssssssssssssssssssssssssssssesssssssssssnssssssssssssssannsens 84
Y Yo7 d=T g TV e I = o T S 84
J=To To o) Ve T 1o BN Yol g =1 01 Lo B I (=2 =X OO U RUU 85

TEEE IEEMN IMIBIIUS ...ttt ettt ettt e e e e e ettt e e e e e et s b e e e e e e e e sussneeaeeeeeaassseneaaeeanaas 89
ANGIYZEE PIOPEITIES oottt e e e ettt e e e e e ettt a e e e e e e et e e aaaesaaastseaaaaeeasssstsansaaseesssssssnaaaaeaaaas 95
USING SOLA DEVELOPER — CALLABLE APIS AND CONTAINERSccccoitttiiiieniiiieniiiieneiiiieniiesisnsisssmsss 100
CALLABLE APIS ..ttt ettt ettt ettt ettt ettt ettt e stt e e bt e s bt e e bt e e sh b e e at e e sst e e bt e e sab e e bt e e sh b e e nateesa b e e eab e e sabeeeabeesabeenabeesabeenabeesabeenaneenas 100
NS Y Lo 1Ta} e T =0 =1 o [1 o SRS 101

Step 2 —Importing @ CAllABIE PrOGIGMoooeuueeeeeeeeeeee ettt e e sttt a e et e e sttt e e e atteaesnteaessssaaaesasssaeninsees 102
CHANNELS AND CONTAINERS. ...ttt euvteeutteeteeeteeeseeesueessseeesssessseeesssesssesesssesssseesssesssseesssesssseesssessseesssesssseesnsesssseesnsesssseesns 104
Step 1 — MQiNframe PrePaOrQtiONoocccuueeeeeiueeeeieeeeeeiieeeeeiee e et iteeeesteeeeesaaaeessaaaeatsasesssssasesasssaeasssesensasees 104

Step 2 —Importing @ CAANNEI/CONTAINGYcc.eeeeeeeeeeecreeeireeeitieeeeeeseeeeeeestsseetesestssessssessssessssessssessssessssesssees 105
SPECIfYING YOUIr CONTAINET INGIMESeeeeeeeieeeeeeeeeeee e et e e ettee e et ttee e e et e e e et e e e s ttaaaeats e s eeetssaessasssaeassssesssseas 106

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

USING SOLA DEVELOPER — IIMISciiiiiiiiiiiiiiiiiiiiiiiiiiinininssnnes 108
CREATING A WEB SERVICE FROM AN IIMS PROGRAM — BOTTOM UP....cciiiiiiiiiiiieniiieeesiiteeeeiiee st eesibeee s et e s eessbeee e e 108
Step 1 — Mainframe Preparationco.ceooceeeueeeiueesieeeee et et st e ettt et et e st e esee st e e saeeeabneesseeeaes 108

S5tep 2 —IMPOrting the PrOGIOM..........ccc.eovueeeueeiieeeee ettt sttt ettt et et e et e e e e sateeabneenaeeeans 109

Step 3 — Creating Methods in AN IIMS PrOGramM...........co.c.eeeueeeiieeeieieieeeiee ettt ettt e steeessee e 114
USING SOLA DEVELOPER — BIVIS 3270cccoiiiiiiiiiiiiinninninnnnsisssnns 117
How SOLA CREATES WEB SERVICES FROM BIMS 3270 TRANSACTIONS ..cceuvveeeerurereraureeesinreesasnneeesansreeesanseeessnsesesssnseeessnnees 117
CREATING A WEB SERVICE FROM A SIMPLE BIMIS3270 USE CASEuvveeeiiieeeeiteeesiieeeesibeeesenreeesnseeessubeeesssseeessnneeessnsenesanns 118
Step 1 — MQiNframe PrePaAIQLiONeeeecuueeeeeiieeeesieeeeseieeeeeteaeesitteeestataessssetasssasasasssaessnssssssssssasssssesessssees 118

Step 2 — Importing and ANGlYZing the USE COSESueeeecuueeeeeiiieeiieeeeaseeeeeiieaeesitteaeastteaesessaeesisasasssssassnsees 119
BMS3270 ANAIYZEI REFEIEINCE ...ttt ettt ettt ettt e saae et e sne et e sneenans 130
BUTEON BT ..ottt ettt ettt raaaes 132
WOrking With the GraPRICS VIEW........cc.eeeiueeeieeiieeeieeeeeeeest ettt ettt sttt ettt sateesveeenaee e 133
WOIKING WiIth TRE FIEIAS VIEW.........eveeeeieeeeeeee et e et e ettt e e ettt e e ettt e e et a e e e teaeeaatsaeeessssasesssasaeatsesensses 146
ENVIFONMENT SETUP ..ottt ettt et et et et et et et et et et et et eeetesesatesaeasesesssesansaens 148
USING SOLA DEVELOPER — STORED PROCEDUREScccooiiiiiiiiiiiiiiiiiiiiiiiinnnnsnssissssssssssssssssssssssssssssssssssssnnns 150
How SOLA CREATES WEB SERVICES FROM STORED PROCEDURESuuvvtieruieeeeeiureresnireeesireeesnuieeessnseeesanneeessnseeesssnseeessnnees 150
CREATING A WEB SERVICE FROM A STORED PROCEDURE ...veeeeuvvetessureeeessrreesssseeeesssseeesssseessssessssssessssssseesssssesssssssesssssenssnnns 150
Step 1 — Mainframe Preparationco.ceeeceeesueeesieesieeeieeeiee et st e ite st e st e st e et e st e esstestseesaeeesseeenseeeans 151

Step 2 — Verify Stored ProCedUIE SYNTOXc.eoeueieueeriueeeieeeeeeste ettt ettt et e st e st et aesaeesineenseeeaes 152

Step 3 —Stored Procedure REGUSEIALIONc.coocueeeueerieieiiieieeeiee ettt ettt ettt s esaeeeieeenaee e 153
USING SOLA DEVELOPER — AD-HOC SQLcoootiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinsssnes 160
How SOLA CREATES WEB SERVICES FROM AD-HOC SQL ..ceiiiiiiiitieete ettt ee e e e sttt e e e e sttt e e e e e senbeeeeeeesesnnreneeeaesenan 160
CREATING A WEB SERVICE FROM AD-HOC SQLeteiieiiieiiiiitete ettt e ettt e e e s e sttt e e e s e sebeeee e e e e e s nnnreeeeeeesennnnreeeeas 161
Step 1 — MaiNframe PrEPAIGLIONeeeecuueeeeeiieeeeeieeesstieeeesteaeseee e e sttt e esesteeesssseaesaasteassasteasssssanassssssssssssees 161

S5tep 2 — AQNOC SQL REGUSTIALIONeeeeeeeeeeeeeeeeee e e et e e et e e e e sttt e e st a e s stteesaasteasssteasssssanasssssesnnnees 162
USING SOLA DEVELOPER — CUSTOM PROGRAMS.......ccoiiisiisississssssssssssesessssssssssssssssssnns 164
How SOLA CREATES WEB SERVICES FROM CUSTOM PROGRAMScceeiiiiiumririieetiiiiiirttetesesemiretesesssenreneseessessmrnnneeeesesas 164
CREATING A WEB SERVICE FROM A CUSTOM PROGRAMuutiiiieieiaiiiiitteeeeeesaiiettteeesesasieeeteeesesannereeeeesesaannnreeeeesssannnnrenenes 165
Step 1 — Mainframe Preparation/Coding CUSTOM PrOGIGMc.cccvueeeeeeiveeieeesveeseeesvsesssesissessssesisssssssenns 165

SLEP 2 — TESLING tNE PrOGIGM.........evveeeeeeeeeeeee ettt e e e e ettt e e e e e ettt a e e e e eae st e aaaaeaessssssssaaaseessnsssnesasananas 167

Step 3 —IMPOrt CUSTOM PrOGIQIM........cceeeeeeeeeeeieeeieeeeeeeeeeeeeeeeeeeeeeteeeeeteteteeeeeeeeeeeeeteeseaestssesssssetesessesreeseseersearararees 169
TEST HARNESS ... s s s s s s s s s s 172
QUUICK TESTER ettt euteeeseiteeesisteessuseeesemre e e samne e e s aab et e s ease e e e sass e e e s an b e e e s ane e e e s ana e e e s amb e e e s aanneeesaseeeeeanreeesennneesnnneesannenesann 173
TEEE VW ...ttt ettt et e et s e e ettt e et e e st e e e a b et e e et e e et e e e et e e e ant e e e neeeenbreeennne 174

(T [=3 PP UP U PPPPR RPN 175
FOIM VW ..ottt ettt e e ettt e e e ettt e e+ e ettt e e e e e s s bsbaeeaeeesaanussseeeaeeeaaaannnes 175
TESEING the METLNOU.eeeeeeeeeeee ettt e ettt e e e e e ettt s e e e e s aa st e s e aaeeessastsasaaaseessstsssaaasaeaaas 176

RAW TESTER . ctttteiittttte e e e e ettt e e e e e ettt et e e e e e s e aaa bttt e e e e e e aue bttt e e e e e e aaaabe et e e e e e e s anbe e et e eeeesaans bbb e eeeesaannbebeeeeesesansnnneeeeaean 177
MONITORING AND LOGGING.....ccottiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiisiimissmisssesiimmmemiemeieeimmisieimsisemsssseesesssesssssesssssssssssnns 178
TRANSACTION LOGS. ... tteeutteeeeiteeeeiiteeestete e ettt e s esee e e sane e e e snr et e samseeeesanee e e e s be e e s nseeeesanseeeeaabeeesannseeesannneesanseeesennneesannns 178
ERROR LOGS «..uuvteeeitteeeeiteeeeeitteesiete e e sttt e s e ittt e s e e e s sase e e s eanse e e sams e e e e saseeeseanre e e s msneeesaneeeeenbeeesennneeesnneeeesaseeesennreeesnnns 183
DATASET BROWSINGciiiiiiiiiiiiiiiiininiiinnsiisiiiisississnes 187
ORCHESTRATION ...coiiiiiiiiieteieteneeieeeeeeeeeeseeeeessmmeemmsessnns 188
ADMINISTRATIONcuuutuuuiinennnnnisisss 189

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

ADMIN IMIENU L. uttetteesite e sttt este e sttt e sateesateessteesabeesaseesabeessseesabeesaseesabeesnseesabeeeastesabaesaseesabeesnsaeenbaesnbeeebeeesaseesseesasaenseeas 190
1L e [] PSPPI 192
PrOPEITY EQIEOL ...ttt ettt ettt ettt ettt ettt ettt et et e ettt e s ase ettt e sane et e s aneenanes 194
Yo Lo [U - TS SPPSRNE 197
DiCHIONAIY CONTIOIS.......eiaiiieei ettt ettt ettt ettt ettt ettt ettt et e e eat e e s aae et e saneeaseesaneenanes 198
LOGS && TIUCES ..ottt ettt ettt s ettt ettt e e st e s et e s ettt e st e s e sttt e s s atneesainnees 203
L0V L e Bl o T=T 1 o T ORI 204
Create ENVIFONMENT ...ttt ettt e e e et e e e ettt e e e e e st n e e e e eennnnneeeens 206
INSTQIATION SECUITLY oottt e e ettt e ettt e e et e e e ettt e e et e e ettt s e e aatsaaeesssaaesssssasantsanansnsessennsees 208
[=Ty ol (=0 1Y Lo I o T =T (SRS 209

AACCESS CONTROLS ...ettteeeeeeuiutttteeessaaiuusteteeeessaausbateeeeeseaaasbeeeeaeeaesaasbeteeeeesesaasbesaeaeeeesaasnseaeeasesasnsbeaaeeessesanssnaeaeesesaansen 210
USEE ACCESS LiST ..ottt ettt ettt e e ettt e e e sttt e e e e e s e sttt e e e e e saaastbesaaesesaassseneaaseanas 211
USEI ACTIVITY LOG ettt ettt sttt e ettt e sttt e st e e st esssneeesanseeesstseasnanns 212
WY =14 Lo T2 1D KPS 215

APPENDICES......cuuuetttiiiiiiiissneeetiisisisssssssesssnssessssssssssssssesssssssssssnssesssssssssssnnsesssssssssssnnnans 216

APPENDIX A: SCHEMA AND COPYBOOK GENERATIONvteuteeeureesureeesueessreeanseesseeesseesssessnseesnsesensessnsesenssesssesesssessssssssessnsees 216
Datatype Mapping and COpybOok GENEration RUIES..............cccuueeeceveeeeeiieeesiieeeecieeeesteaesiaaaeesraeasessseaeeases 216
Other RestriCtioNS—INUMEIIC FACELScuueeeecuieeeesiieeeeiee e ettt e ettt e s eteeessttea e s sttt e ssstaessasseaesssssessssssnesssnsenasas 221
(0] T=T 00T (X3 7 [} &SRR 221
(=T 1=d o [l =X 1 o 1 o] PSR 221

APPENDIX B: REFRESHING TEMPLATES IN THE SOLA STC ...tiiiuiieeiieciteesieeetee et e esteeeteeesteeeteeessaeetaeessaeesasessaesnsaeesssasseeas 222
Manually RefreSRING G TEMPIGLEocccueeeeeeeieeeeceie e e ee e e et e e et a e ettt e e e et se e e e staeaesssaaesstsasasassssesssees 222
Refreshing a Template Using the Web Service INTEIfOUCEcueeeceuveeeecciieeeiiieeeecieeeeeeeeesceeaeesvaaaeestssaeeaseas 222

APPENDIX C: OVERRIDING IMS CONNECT PARAMETERS ON THE SOAP:HEADER......eeeitteeteeetresteeenireenteeensnessseeesssesnsssenseesnseens 224

APPENDIX D: SAMPLE CUSTOM PROGRAM.cuveeiuteeateesteeaseessesasseesssesasseessesasssesssesassessssssassessssesesssssssesssssessssesssessnsees 226

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

About SOLA Developer

SOLA Developer features a rich graphical interface fully integrated with Lifecycle Manager
enabling you to rapidly deploy and govern services and their supporting assets within the
lifecycle.

The SOLA Developer is a browser based Integrated Development Environment that you can
use to create, manage, secure and test services.

The SOLA Developer can be deployed in any standard J2EE container (Tomcat, WebSphere
and Weblogic are recommended) and accessed using an internet browser (Microsoft Internet
Explorer version 7 and above is recommended).

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

SOLA Developer Basics

SOLA Developer is a powerful and easy to use web browser-based development tool with all of
the features and functionality of a windows application without the messy install, stringent
hardware requirements or resource hogging. Before you begin to learn how to create and
govern web services using SOLA Developer, please take a few minutes to become familiar with
the development tool and its basic functions.

The SOLA Developer Window

The SOLA Developer window is divided into several parts, illustrated in the figure below.

» ~ Corrent User: DS2224
Developer " 102 In, Lo9 Oct
‘{' SOLA Quick Search Button Bar
["- Q- Y 5048 Tet _‘\U ot Seach ,‘\ Erw Sewrch q Browne Dtaset _'. Aome Mo & Acoess Cortrol u u a
SOLA | 00 Fie | Datmets | Y% pome User - (0152224) "H8
Emmaments{ TEST) * PROGRAN * - Names Ve
31 Diracteey =) |
3 U_S0LA Finacet Workspace . / comliey
a[d Qa0 Properties Panel _
sl wcon creamdTmestanp 20130547084 1
3|4 qacazp qeaklser
314 QA3 descrphon
sldoxcaarp e
s{doca
sifoor e 21306470744 1
sifiQamae ol
afJommcac epess 9123101010
214QAN031P e Dotsthy
3fA0Atocan =
3w sowa projeat 00 HHE0RGA
PocpNn SOV
Welcome to the : il
SOLA Development Studio st o
=1 lsUpdas
- Register
) loatDs
SOLA Directory Panel
» Create 3 Project mapok SOLvamn
> Go to Administration Console okpclipe User

" | of]

Some of the panels in SOLA Developer can be minimized by using the minimize buttons ('*).
When working on lower resolution displays, minimizing panels can clear up work space.

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

The following illustration shows how much workspace can be cleared up by minimizing all side
panels.

N7 ™ Current User: DI52224

SOLA™ Developer Loa In, Loo Gt
Q- V'S0AP Test |l Monitr Search | Ay, Error Search | (@] Browse Dataset | 3 Adrmin Menu | § Access Contols | [5] N]

» || Home %

@,

[

Welcome to the
SOLA Development Studio

- Register
- Create a Project

= Go to Administration Console

=

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Logging In and User Properties
Most of the functionality of SOLA Developer is restricted to authorized users.

Current User:
Log In, Log Cut

If you attempt to access a restricted function, you will be automatically

prompted to log in. Alternatively, you can log in at any time using the Log In
link on the top right of the SOLA Developer screen.

Whether you elect to log in manually or are prompted to do so after attempting to access a
restricted feature, you will be presented with a log in prompt.

Enter your TSO username and password and
either press the Enter key or click the SignOn
button. After you have logged in
successfully, your username will be displayed
above the Log In / Log Out links on the top

right of the SOLA Developer window.

Clicking on your name will display your user-
level properties in the Properties panel.

SOLA is highly customizable and so the properties
displayed here may not be what you see on your screen.
Check with a SOLA Administrator if you have questions

User Sign0n
UserName: dbvenka
PassWord: R
SignCn] [Cancel]
User - { DBVENKA) = =
Name = Value
atternateld ke

createdTimestamp 2008-12-02-09.2. .

createllser DBEVENKA

description

division s0la

effective 2008-12-10-15.2... 3
email venkat.pillayi@so...
environiD

expires 5595-12-31-01.0...
firsthm “Wenkat

grouplD 2008-12-02-09.2...

(8] 2008-12-02-09.2...
lasthm Pillaw

lastUpdated

loadls SOLAEXT.TEST.L...
majorRole 7

about specific properties and their values.

Users can change the values of their user properties by
clicking on a value or an empty field in the Value column.
The value being edited can be either a text field or a drop
down menu.

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

The SOLA Directory Panel

The SOLA Directory is a central UDDI repository that allows for quick and easy discovery, reuse
and collaboration. This directory, and all SOLA projects in it, is located in a central location on

the SOLA server (mainframe).

soLA || voot || Fle || Dataset %/#

Environments{ TEST} * PROGRAM

= ' Directory -
=& .common

7 .zandbox-tt-r6110

2 .PFG_CCM-716341

= amexissue

=l testofauth

7 x4mlTest

2l xd4MDanes

= AccountMaintenance

2 ACORD

(5 = R = i - IR AR R
R Ry R R By B

sota || voor || Fle || Dataset %/ #

Environments{ TEST } * PROGRAM

= I Files
=& fsystem
=] /Assembler.bit
=] /debugagin -

The SOLA Directory contains four tabs; SOLA, UDDI, File
and Dataset.

SOLA Tab: this tab is the default tab and displays the
SOLA UDDI directory.

UDDI Tab: this tab is used to view and interact with third
party UDDI directories. By default, SOLA is configured to
access the UDDI directory of SOA Software’s Service
Manager. The UDDI tab can, however, be configured to
access the UDDI directory of any UDDI V3 compatible
product.

File Tab: this tab can be used to browse
system files, such as Assembler.txt and
debugging.xml. You can edit a file by right
clicking it and selected Edit from the menu.
The file will then appear in the workspace.

Home

Dataset Tab: this tab is used to browse the

=] /Dictionary Edit

logged in user’'s mainframe datasets. If you are
not logged on when you click this tab, you will

=] /Dictionary02.xmil
=] /Dictionary03.xml
=] /endpoints.xml
=] findex.html

=] /indexpage.htmil
=] /lobcard.txt

=] /promotelC L.t
=] /uddiclient.cml

clicking on the + icon next to it.

be presented with a login prompt.

The SOLA Directory functions in a manner very
similar to that of Windows Explorer. Projects
are represented by folder icons (see legend
below) and contain programs, which in turn
contain methods. If a directory item such as a
project or a program has members (like files in
a folder) then that item can be expanded by

To refresh the SOLA Directory click the refresh button (1#)).

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

SOLA Directory Icons

Each program type is represented by a distinct icon. The legend below shows a list of directory
items and their associated icons.

Directory root

Project

Commarea program (CA)

IMS Program (IM)

Containers program (CN)

Callable API program (CL)

Outbound web svc call program (WC)
BMS3270 — “Green Screen” pgm (BM)
Adhoc SQL program (SQ)

Custom program (CU)

POoDBDOR@®®AE &

Stored Procedure program (SP)

-
)
LY

Orchestrated program (BP)

As the service development process proceeds in SOLA and milestones transition from one state
to another the Directory Icon color will indicate the state of each Service and communicate this
to Lifecycle Manager. This helps users to easily identify the services/operations in various states
in the development lifecycle as indicated in the following illustration:

Service Status Transitions

SOLA"' Developer SOLA"‘ Developer SOLA"' Developer SOLA" Developer

Q- =+ Q- oy Q- o Q- e |

SOLA | UDDI | Fie | Datasets | /2| 1| sotA | uoor | Fle | Datasets | (€I® SOLA | UDDl | Fle | Datasets | “/®|8 sota | uoor | Fle | Datasets | «I'#
Environments(TEST) ¥ PROGRAM ¥ Environments(TEST) ¥ PROGRAM ¥ Environments(TEST) ¥ PROGRAM ¥ Environments{ TEST) ¥ PROGRAM ¥
3.1 Directory || 3! Directory B d I Directory |1 31 Directory
2[5 .common 3[3).common =[] .common 3[3].common

@[+ CAL4STR @[+ CA04STR @4 caodsTR @i CcA04sTR

@ [JNAMESRCH @[NAMESRCH @ [JNAMESRCH 9L JNAMESRCH

3 [@rcomsMot @ [rRcomaMo1 @ @rcomeMo1 @ EIrRcOMBMOL

A} 4RCOMCAD4 @/~ RCOMCAD4 | 4RCOMCAO4 @ 4RCOMCAO4

@HRcomIMoL @ [1/RCOMIMOL @ ARCOMIMOL sffRCOMIMOL

@ Jrcomwcor @ JRcoMWCoOL afJrcomweor @k Jrcomweor

3| 4RUTLCAO4 3~ RUTLCAD4 L4 RUTLCAO4 #4RuTLCAO4

@ [JsoLaspos @[] soLaspo4 @[soLaspos . #[soLaspo4

s
/ 6

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

SOLA Directory Filters

The contents of the directory can be filtered by environment and program or service.

==

Environment names may vary due to SOLA’s customizable _ -
SOLA UDDL File Dataset =

nature, though SOLA is preconfigured with three

environments; TEST, STAGE and PROD. (e TETI PROGRAM T
05) TEST =
Select the desired environment from the Environments 10) STAGE | 1o
menu. Only programs or services belonging to that 15) QARel 16341
environment will be displayed in the tree. For example, if 25) PROD
you select the TEST environment, only projects that 30) FROD1
contain programs or services in the TEST environment will = ([x4MUlanes
. appear in the =& AccountMaintenance
soLA || uoot || Fle | Dataset “/#||| H SOLA Directory .
tree.

Environments(TEST) * | PROGRAM = |
= I Directory PROGRAM Within an Environment you are able to view the

& (@ .common SERVICE contents of the Directory in either of two modes by

#05 .sandbox-tt-r selecting one of the following:

Program: displays a list of Projects containing legacy programs and methods. It is in this mode
where most development will take place and you will have access to the Program WSDL for all
methods/operations developed as part of the Program, and access to each method/operation
WSDL associated with each Program. See Figure 1 below. Notice ™~ and == mode.

Service: displays a list of Projects containing classes referred to here as services, and all of
the operations or methods associated with the particular service(s). Itis in Service mode that
you will have access to the Service WSDL for all operations in that particular Service, and
access to the Operation WSDL associated with each operation/method for each service.
Service mode consolidates operations across all programs and gives the SOLA developer a
choice of viewing the complete Service WSDL.

Figure 1.

SOLA X v Nit® P SOUA X - w* acat $ P

Evirswments{ TEST) » FROCRAM ~
4 £ Dwectory -
2 0N LM_SOLA_FinAcet
48 AQACADY

(=]
Show Method Schem

(=] cw Me -

(=]

(=

Vi Method Weal

Qrem

Mack a8 WORKING

U
-“qQ
a

SOA voce . Ot moet e Pecene

Erwwesventel TESY) = SDRVCE ~ Crvenaemnts(TEST) © STRVICE

13

§: 3

co0Q000O0Q

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

SOLA Directory Menus

Right clicking on an item in the directory tree will display a pop-up menu. Many common
operations performed in SOLA Developer are initiated using the directory tree menus.
Depending on which Directory mode you have selected, PROGRAM or SERVICE, operations
will be different. We will begin by reviewing the Menus as a developer would while in
PROGRAM mode.

Project Menu

A Project is created and defined in Lifecycle Manager and is viewed in the Directory Tree in
SOLA. All Services/Operations are stored in SOLA within the specific project chosen during
Asset creation in Lifecycle Manager.

soua | uoor | Fe | Detmsets | % %|| pome Filter by Project: Enables the User to view
all Program and Method objects within a

Eswironments{ TEST) = PROGRAM * -
: specific Project while also having the ability to

3 I Directary . .
335 AaronLHPublishGroup view the lifecycle development state of each
o T LM_SOLA_Finsoct program.
JEHQacal Filber by Project All Pregrams in all states
5"!3?': Show User Access Programs in INITIAL state Show User Access: Will display the type of
Cl G ad
sidgaca Add User Access Programs in STARTED state access that has been added for a User.
A QACAs Import Frogram b Prosgrams in WORKING state
= = QACATTF 1 e P
a B aachop gramE = e

Add User Access: authorizes a user to work on the project. Several levels of authorization are
available. With the exception of ProjectAdmin and Programmer, each level of authorization
does not grant any access rights of the previous levels. If you

Add User % want to add multiple authorizations, they must be done one at a
time. ProjectAdmin grants all authorizations below it, while

 ProjectAdmin Programmer grants only Import, Analyze and Quick test, which
 Programmer can also be added separately.
r Import
ﬁ Analyze ProjectAdmin: grants full access to the project, which includes
QuickTest . .
 Promote the ability to delete the project and add or remove users.
' Demote
:: f::::‘te’ Programmer: grants programmer full access to Import,
¢ Update Analyze and, but does not have
 Delete authority to Promote, Demote, Insert,
ok | [cancal | Update or Delete.
Import: allows the programmer or user to Import
programs.
Analyze: allows the programmer or user to create
methods.

QuickTest: allows the programmer or user to test
methods using the SOLA test harness.

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Promote: allows the user to promote (move to a higher ranked environment, e.g. promote from
STAGE to PROD) programs in the project.

Demote: allows the user to demote (move to a lower ranked environment, e.g. demote from
STAGE to TEST) programs in the project.

Recover: No longer available

Insert: allows the user to insert new properties using a custom schema via the admin console.
Update: allows the user to update properties for the project and its programs and methods.
Delete: allows the user access to be set to delete programs in the project but the delete action
must actually occur in Lifecycle Manager where projects and assets are maintained.

Import Program: displays the import panel 3 # Directary

used to import external web services (WSDL) 8|55 AxronLMPubishGroup

where mainframe programs are consumers of 3[ELM_SOLA Finect

the service (create outbound legacy programs S Filter by Praject

and/or copybooks). All service definitions i 3w User Access

where the mainframe is the service provider i Add User Access

(program in > WSDL out) are captured as 3] importProgram b | uthound(Manframe Consumer)
Assets from Lifecycle Manager. Refer to the 3 S I

table of contents to get information about the
plug-in/program type you are interested in.

Program Menu

In Lifecycle Manager the creation of an asset begins with the setup of the Service and
information pertaining to its Operations. In SOLA we refer to the Service as the Program or
Plugin, and we refer to the Operations as Methods. In this section we will review the SOLA
Program Menu followed by review of the Method Menu.

The creation of assets in Lifecycle
Manager is the gateway to creating
web services from every plug-
in/program type where the mainframe
is the service provider. After an Asset

Environments{ TEST } * PROGRAM ~
= _'I_I_I)irectﬂrt,.r
= |03 LM_SOLA_FinAcct

=/ QAIM13P is created in Lifecycle Manager and
i QAIM13M1 Activate Program development of the Service is ready to
begin the developer must first activate

the program. To do this they will begin
by locating the program in the project they have access to in the directory tree, and right clicking
to select ‘Activate Program’.

In this example the program is defined as an IMS type with the Program - (QAIM13P) SIETE
icon HE . Activating the program will change the icon color to Name = Value
" and the state of the program will be changed to STARTED mimporti =

ImLibrary Nm QA-S0OLA
ImSeniceld 1.0_1387309922346...

ImStatus STARTED

as seen in the Properties Panel to the right of the Workspace:

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Once the program has been activated the next step would be to Import it. You can do this by
right clicking on the program and click on Import Program.

Environments{ TEST) * PROGRAM ~

= ' Directory
o @]AaanMPublishGr‘oup
= [(3]LM_SOLA_FinAcct
| - qQacaozp
£F QACAD2M1 Import Program

10

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

=2 Directory
ﬂ@ﬁ.arunLMPuhlishGrDup
=I[EILM_SOLA_FinAcct

The Program Menu options will vary. There can
be up to seven menu options depending on
which Project you have been granted access to

3fdoacaaze by the SOLA Administrator and the program

_ % QACAD Filter by Program type you are working with.
ﬂBQACAIMP Show Program Struct
j%gigii;i View Program Wisdl Each menu option is described as follows:
8(JQACA3LP| policy Management Filter by Program: Enables the User to view
BlHQACASZR L orstion) the Program and Method objects associated
B Qacno1p . with the program, within a specific Project, while
ﬂQ?AW““ Mark as WORKING also having the ability to view the lifecycle

development state of the program.

[Directory /LM_SOLA_FinAcct/QACADZP |— |0/ X Show Program Structure: displays the COBOL

QACA02C-RECORD . structure of the program (its interface). For IMS
- B 0ACA02C -RECORD programs with multiple structu.res, this option_ shows all
= Bl QACAD2C-TNPUTS of the program’s structures using tabs to navigate from
= Bl QACA02C-SEARCH-CRITERIA one to the other. See the sample COBOL program
B qacrozc-1-RIC structure of a commarea (CA) copybook in the
B oacr02c-1-COUNTRY illustration on the right:
EQACADEC-I-INDUSTR‘F
= [QAcA02C-OUTPUT IMS multiple structure has multiple tabs identifying

l o Bl QACAD2C-RESPONSE-AREA
[E oAcA02C-DFHCODE
B oaca02c-DSNCODE
E QACAD2C-MESSAGE WSC-INPUT-SEG | Clientinfo1 || wsc-outel| =
= B wsc-mpuT-sEG ok
j.lnput-Request \J
B nput-LL
B nput-zz
B8 input-Trans

each structure:

[Directory [SolaDemo/ CASEIMD3 -] ¢

View Program WSDL: defines the actual contract(s) the WEB service exposes containing the
service(s) as one WSDL for all services. All method/operation level wsdl’s will be concatenated
in the service wsdl. In the following sample namespace definitions you can see that QACA32P
is the Program and within the wsdl are three services defined as QACA32T1, QACA32T2 and
QACA32T3, and if you were to view the entire wsdl you would see all Request/Responses for
each service.

<?xml version="1.0" encoding="utf-8" 2>
- <definitions targetNamespace="http://QACA3I2P.x4ml.soa.com/CA/QACAD2P"
xmins:tns="http:/ fQACA32P.x4ml.soa.com/CA/QACAD2P"
xmins:QACA32T1="http:/ /QACA32M1.QACA32P.s0la.s0a.com”
xmins:QACA32T2="http:/ /QACA32M2.QACA32P.s0la.s0a.com”
xmins:QACA32T3="http:/ /QACA32M3.QACA32P.sola.s0a.com" xmins:http="|

Policy Management: Enables the management and deployment of policies from within SOLA
Developer. Clicking on Policy Management will display a Policy Manager panel containing three

11

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

panes; Containers, Programs and Policies. Policy Management functionality is restricted and
must be granted by the SOLA Administrator. For more information about SOLA Developer —
Policy Management, see page 17.

Environments(TEST) ~ PROGRAM ¥ Program Migration: Once a program has
2 Directory completed development and has been
(53] AaronLMPUblishGroup analyzed, finalized and tested, and the
S[63 LM_soLA_Fincct user has completed the ‘Mark as
3KAQacaozp ISREADY’ state change, it can be
& QACAI Filter by Program migrated into another environment for the

#[+JQacaoar

a8 crcn I e e next phase of the lifecycle, i.e. QA
ﬂb.iQAcAzgp View Program Wsdl Testing, etc.

ﬂF‘BQACA:‘}lF Policy Management

ﬂthACAE}zF Program Migration 3 Promote

& Bl QAcno1F Promote Program: promotes the
affoawcay Markas WORKE Pemote program to the next environment in the

environment hierarchy (along with its
policies, alerts, etc.) and triggers a promotion JCL (if one exists, if not, you can create one using
the File Editor). For more information about environments and the environment hierarchy, see
page 206.

Demote Program: demotes the program to the previous environment in the environment
hierarchy (along with its policies, alerts, etc.) and triggers a demotion JCL (if one exists, if not,
you can create one using the File Editor). For more information about environments and the
environment hierarchy, see page 206.

Mark as WORKING: When a service in ISREADY’ status and needs to be reworked then the
developer has to use this option to bring the service back to ‘WORKING’. See the following
illustrations that examine the transition of Service Status icon changes as the asset moves thru
the lifecycle in SOLA Developer:

SOLA™ Developer SOLA™ Developer SOLA™ Developer SOLA" Developer

Q- =+ Q- -+ Q- = Q- A
sotA || upot || Fie | Datasets | ¥/®|| | sota | uoor || Fe | Datasets | €2 sotA | uoor || Fle | Datasets | [%/#|F soua | uoor | Fe | Datasets | €12
Environments{ TEST) ¥ PROGRAM ™ Environments(TEST) ¥ PROGRAM * Environments(TEST) * PROGRAM * Environments(TEST) ¥ PROGRAM
=1 Directary 4| 2 Directory - 21" Directory + | @I Directory B

jn.COI'FIITIDI"I j@.CUITIITIDﬂ j-CDITIITIDI"I j@.common

@[|candsTR =l CAD4STR |4 cavdsTR @[+ CA04STR

@ [JNAMESRCH @l |NAMESRCH @ JNAMESRCH HE JNAMESRCH
@ @rcomemo1 @ rcomemol @[rcomamol @ BrcomBmo1
@[+ RCOMCADS @l - RCOMCADS @4 RCOMCACS @l rcomcang
= (HrcoMML @[1/RCOMIMOL | [RCOMIMOL @ [RC omIMO1
= Jrcomwcol |l JRCoOMWCDL | JrRcoMwCol sk JrcomMwent
@[RUTLCAC4 =) RUTLCAD4 | RUTLCAG4 @[+[RUTLCAD4
s([soLasro Bl TS @[soLaspo4 | #[MsoLaspoa

\ S
T -

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

While in the INITIAL state icons for all program types are grey in color; it is during this time that
the Asset has been setup in Lifecycle Manager and is awaiting the next state to begin. The

Developer will login to SOLA Developer, switch into #%##* mode, and right click on the
program (located in the project they have previously been granted access to) and click on the
‘Activate Program’ option. This will cause a state change to occur from INITIAL to STARTED
for the Program and icon colors will change to a light shade of blue, green and grey.

The developer will then right click on the Program name and Import the program. When the
import is completed the method status will be INITIAL. The Program menu at this point has
fewer options. The first three menu options have previously been described above. The
remaining two are described as follows:

Re-Import Program: is only done in

. FROGRAM ™ mode when changes need to be
3 I Directory made to the programs import menu options or
3|3/ LM_SOLA_FinAcct to the method(s) / operation(s) if a method has
34 qacaop previously been finalized.

& QacA2M1 Fker by Program For the example where a method had

Show Program Struct previously been finalized and the user needs to
i Re-Import, the program must be in WORKING
View Program Wl state. You will select the program and change
the state from ISREADY to ‘Mark as
WORKING'.

Environments(TEST) ¥ PROGRAM *

Re-Import Program

Mark as ISREADY

The property ImStatus for this program and all
of its methods will now be in the WORKING
state. In WORKING state you will either re-import the program, or re-analyze one or more of its
methods, Quick Test it, Finalize and update the state of the Program once again to ‘Mark as
ISREADY’ when development has been completed.

When development of the method is ready to begin, right click on the method to ‘activate
method’ which will cause the method to be transitioned to STARTED, and the program to be
transitioned to WORKING (icon colors are intensified to darker shades of blue, green and grey)
state where it will be until it is finalized. Once finalized both the Program and Method are in
WORKING state until it is decided no other work is necessary, and at this time they can be
moved to the ISREADY state. Icons at this state are a bright green in color indicating
completion of Asset development.

Should the developer realize a change is needed to the Service; the state can be transitioned
back to WORKING by right clicking on the Program and clicking “Mark as WORKING”. The
program and its service(s) are all then in WORKING state. The developer can once again
continue making modifications to the elements and/or attributes of the Service and analyze, test,
finalize and transition again to the ISREADY state. Lifecycle Manager and SOLA are both
completely aware of the state of each Asset as it moves thru each milestone.

13

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Figure 1 and Figure 2 flowcharts on the following pages further describe how the development
cycle flow is handled by SOLA when Importing/Analyzing and Re-Importing/Re-Analyzing a
Program/Service and Method(s)/Operation(s):

Figure 1.
Program Workflow
Re-Import—e
Mark Methods
R=W
Mark as
Ready
Mark Methods
W—=>R
Mark as
Wu::rl-cing_."
b
T
W= WORKING

R SRELDY

14

Lifecycle Manager Integrated

‘ I" SOLA Developer 6.4.2 User’s Guide

Figure 2.

Method Workflow

Re-Analyze =

Mark as
Wiorki ng+

.

W = WORKING
R = ISREADY

15

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Method Menu

Environments{ TEST) * PROGRAM ~*

The Method Menu options will =)' Directory
vary during different stages of the # (23] AaronLMPublishGroup
development lifecycle. When a =[5 LM_SOLA_FinAcct
method has just been activated == qacaozp
and is in the process of being % QACAD2M1
analyzed the method menu can # [~ qacaoapr1 Show Method Schema
be displayed by right clicking on [=Qaca22p View Method Wsdl
i ACAZIP
the method as we see in the di=Q el TR [
following illustration: sl Qacazip
= k= Qacazzp Re-Analyze Meth
[l Qacno1p Mark as ISREAD
w el N AT D

Show Method Schema: displays
the input and output portions of

the method’s schema (as it was =]
arranged during analysis). [Directory/SWEProject/OUTNAIEX /SWhNameSearchi
Schema Inputs Schema Output

. . = £ nam:SearchResponse =
the method’s WSDL in a separate £ WS-RETURN-MSG

. 2 WS-SQL-CODE |
WlndOW & WS-CICS-RETURN-CODE

: C'\.'Dss—tf;il,:L—cNTR
Quick Test: opens the quick o Z Crartinre |
. & LK-CLNT-MNM

tester panel, which allows you to & L-PROR-ID ;
test the method by sending a & Lic rrome-num .

request to the legacy program.
For more information on testing,
see page 187.

Re-Analyze Method: repeats the analysis process for the method, this time with all fields pre-
populated with their settings from the last analysis. This allows you to make changes to the
method by re-analyzing it with different settings, or to view the settings from the previous
analysis.

Mark as ISREADY: When Methods are tested and are ready to be promoted to the next
environment then you mark them as Ready with this option. ‘Mark as ISREADY’ is also a
program level option that will appear in the Program Menu when the program is in ‘WORKING’
state.” Icons at this state are a bright green in color under both the program and method,
indicating completion of Asset development.

16

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

When a change is necessary to the program or method after it has been completed and is in
ISREADY state, the Method Menu options will change when you right click on the method. You
must change the program to WORKING to continue any further development.

SOLA | UDDI || File | Datasets «

z
3

Environments{ TEST) * PROGRAM ~

= ' Directory
ﬂ@haanMPublisthup
=03 LM_SOLA_FinAcct
Ik ~qacaozp
& QACADZM1

41l ~|oacao4rt
[+ qacazop
@+ qacazap
@l +gacazip
@k +qacazzp

Show Method Schema
View Method Wsdl
Quick Test Hamess

Mark as WORKING

B

Mark as WORKING: is only done in

PROGRAM ™ mode when changes need
to be made to the method/operation
and a re-import or re-analysis is
needed for the program and
method(s).

You will select the program and
change the state from ISREADY to
‘Mark as WORKING’. The program
and method icons will no longer
include a green underscore.

The program and all of its methods
will now be in the WORKING state
where you will either re-import the

program, or re-analyze one or more of its methods, test it, finalize and update the state of the
Program to ‘Mark as ISREADY’ when development has been completed .

17

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

File Tab Menu

cora | uonr | File | pataeet <@ Edit: allows you to edit the selected file in the workspace.

Environments{ TEST) ~
=2 Files
=D& /system
=] /Azzembler.txt

= /de
= /Di Edit é
=] /Dictionary011 (1)l

=] /Dictionary011 (2).xml
[=]/Dictionary011l.xml

=] /Dictionary02.xml

=] /Dictionary03.xml

=] /fendpaints.xml

= /indexpage.html =

»

m

18

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Working with Tabs

The SOLA Developer workspace is tab based; which means that it can contain several active
panels, each of which is represented by a tab. The illustration below shows six active tabs in
the workspace.

Corment Uper: DIS22 24

-
L[] SOLA‘.DBHMP!I L I, Lisa Ot
Q- S0P Tt | A Mot Swarch | Eror Sewrh | g Browns Dutasat [rgrresre & Koo Coriron [H u
SOLN | UDOH | Fle | Cotmsets | *U'®) Home | Andyss | SOAP Tester'® | MomitorSearch %| EmoeSeach ® | Browss Dataset 2| Admn & Mithed - { GACAOZMI) NE
Emimnments TEST) * PROGRAM * TOR EndPoint: |91 PUBLICTEIR(1445) = Hama « Valse
31, Diractory satbate: AL O Start Tne: wHw v aich B
] ﬁ!hr\:nLHFubkhl&muu —
3§ L4_S0UA Pt Endlate: MOL0S 3 EndTiew nEE v ereslaTimpstany
3= QACANR Program Mams Method Name (e
ACENEM1 desoriplion CousinRepot
Ba Progeam Type | & Tpes = Resguest 1P Addr: Workspace
3 QACADPL wleche 200010597320
i acarw TOR System I0: BOF, System 10:
i eedPaial HTTP INHHFRAVE
2= QACATIR Teans I0: Resull Type DML Vi
e — == el OMIHUDEN 3
3 gacane = - - s LRI
i qachoLp o I IINE
2 qapr 3
sfjaawcac i 0
34 naooap BiCEalag N
Fh=Qancat; lislipdated 20N-010HERE
BIZ] LS04 Praject stipdiiedUser DUSIZM
&[0 Qas0La
. ImEtate WORKING -—
8 QiTestiee s
ks SOLAENT QALOAD
melozhin QACAIIN
objeciTipe Meraz
pecyD
pesgeanil) ARG 5|

£

All six can be displayed at once. You can switch between active tabs at any time. This tab
based functionality provides several useful benefits, such as the ability to stop working on
something, and come back to it later, without having to start from scratch, and the ability to
troubleshoot (error search, etc.) without having to abandon what you are working on.

Home SOAP Tester *

Binding EndPoint: 00PUBLIC TEOP{1445) =]
ADD USERNAME TOKEN ENCRYPT BODY FORMAT XML

To close a tab, click on the X button in the tab’s top right corner.

AL

19

e

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

SOLA Developer Toolbar

The SOLA Developer toolbar consists of the quick search field and the toolbar buttons.

.’(' SOLA-W Quick Search

T — V500 e) Mt s
SOLA Q-
soLA || uoor «|#

| Environments({T) = |

L3

= Directory
=& Accounts
= [+ soLaconv
F convTemp
=[J)soLasro7
ik test
=& NewPraoject
I+ soLacaos

m

it nameSearch2
G V& PFGroup
= [soLacnos
¥ PfoContainer

SOLASEOS

WP I Pl ¥

Button Bar

[G et ' owne Dt | (@ A e ‘ s O § |

Quick Search Field

To use the quick search field, type a complete or partial
name of the project, program or method you are looking
for or perhaps a wildcard character ‘%’ after the program
or method, then hit enter. Every item in the SOLA
Directory that matches your entry will be displayed. If the
matching item is a project or program, that item will be
displayed with all child items visible. If the matching item
is one or more methods, then only matching methods will
be visible in the tree.

To clear the search results and display the full directory
tree, click the refresh button (/).

20

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Button Bar

The button bar provides shortcuts and access to some of SOLA’s administrative and testing
functions.

" SOAP Test Click this button to access the SOAP tester panel, used to test raw SOAP
requests. See page 177 for details on how to use the SOAP tester panel.

Click this button to access the Monitor Search panel, used to search
through all logged SOLA transactions. See page 178 for details on how
to use the transaction search panel.

“1.. Manitor Search

Wi Eror Search Click this button to access the Error Search panel, used to search through
—— - all logged errors. See page 183 for details on how to use the error log.
Click this button to access the Browse Dataset panel, used to view
mainframe datasets. See page 187 for details on how to use the Browse
Dataset panel.

-
,_JL Browse Dataset

{2 Admin Menu Click this button to access the SOLA Developer Administration Panel.
This panel contains various administration functions related to system
files, schemas, dictionary and monitoring. The Admin Panel is detailed
on page 190.

iR, Access Controls Click this button to access the SOLA Developer User Controls panel.
This administration panel contains various functions related to user
access. The User Controls panel is detailed on page 208.

& Click this button to display information ‘About’ SOLA such as version and
date of the most recent PTF update that has been applied.

Click this button for access to SOLA User Guides.

™~ Click this button to display information ‘About’ Lifecycle Manager such as
Release and Version, and to validate the User has successful access and
will be communicating successfully between the correct version of SOLA
and LM.

21

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - Policy Management
Assigning and Deploying a Policy

The SOLA Administrator must define Policy Management authority to a Project Administrator.
This is described in the Resource Manager Users Guide. A SOLA Administrator serves a dual
role as SOLA administrator and Project Administrator; both can assign new user’s access to a
Project. A user that creates a project is automatically designated a Project Administrator for that
project. A Project Administrator has access to project, program and method-level administration
features, but cannot see policies on projects they do not have access to.

The Project Administrator can assign a policy to a resource or group of resources at the
program/method level and deploy them into target Containers within an Environment. This
assignment is accomplished by first clicking on the program within the project you will be
assigning the policy to.

Note: The Project Administrator doesn’t have default access to administer policies. This is a
special access given by SOLA Administrator to Project Administrator.

g
7

SOLA UDDI || File | Datasets “

Environments{ TEST) * PROGRAM *
=iy Directory
+ |33 AaronLMPublishGroup
4|3 LM_SOLA_FinAcct
= |33 LM_SOLA_FinAcct2

=k ~lqacazzp
£+ QACA22M1 Filter by Program
ﬂ[‘jQACAE4P Show Program Struct
+ /@ QACL24P
¥ qacno7p
ﬂEQMMBp Policy Management
ﬂQQAWCEBlC Program I'“Iigr.Enti{:n:'l\:’1 3
|33 LM_SoLA_Project
4|39 Qa-soLa
4|0 QaTestMe

View Program Wsdl

Mark as WORKING

22

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

After you select Policy Management the Policy Manager pop-up panel will be displayed in the
workspace. This panel can be used to manage policy at the Program or Method level.

|

sota | wor | Fe | patmset (42

I 1L r ; =
1+M‘n’vmm \fSOAPTrs' 114, Monitor Search ‘._{ Error Search _J{‘SIUVMD:V'H‘:L\' ¢ Admin Menu ﬂmmtcmu\x

Home Program - (AMQPCB60) » H|F
Environments(TEST) ™ Name & Valie
4z PolicyTestCases [Policy Manager([TEST/SolaDemo/AHQPC860) -ax crmebiane £
{12 QATEST-V6.1.5
0 QATEST-VB 16T Containers Programs{ HSTR) Polcies(15TR) desslin TestEnum
7 RailRoad 3 Directory 3\ Directory 3(# Directory - Conmsre ASAPSIILPARIS
9 RegressionIDEUISuite 2 TEsT S TEST 3@ sub copyDs
82 RegressionRunTimeSuite o (& TEST-SWB 2{ SolaDemo endP-signl-encO-sign0-encl-Tok copyLbrary
112/ 5E8 TORE jGAMQPCEEU EncryptBodyInput
12 SIX Demo 2 (& TEST-0003 44 ASDF SignBodyInput createlser
Bl@s0a TORC EncryptBodyOutput descripion Test enumeratio
812 50LAS1_XCF_S0LASD 9@ TesT-0004 SignBodyOutput eifective 209074142
9(@ s0LAIDE cIcA (@ swbtestq ”
112 S0LAPTF endP-signl-encQ-sign0-encl-uTok
(3 SWBsI1Praject EncryptBodylnput endfut
8 SWBProjectTemplate SignBodyInput environD 2009-03-04-06.0...
112 SWB_BMS_Usecases EncryptBodyOutput errorContainer
8@ ServiceTemplate SignBodyOutput
308 Solabemo 3 AucitIN-OUT-Hethod e FEREIIL.
- ACCOUNT Auditinput D 2000-01-08-235...
£ checkStatus AuditOutput imported0n
ﬂ@AGEDRGEl & Audit-IN-OUT-Pragram —
Al anqeeeso Auditinput
{5 ASDF AudtOutout msllzz
ﬂE]AMWEESQL 3|2 AuditPolicy inputContainer
a[ecussTon Auditinput ttame -
asmstesT AuditOutout
jobNumber
afJensr [AuditheqResp .
apcaezmest J f— | L|J e COBOL
afjcasewcso sstpdated

The SOLA Developer — Policy Manager Panel contains three panes; Containers, Programs and
Palicies.

Policy Manager({ [TEST/QATEST-V6.1.5/QACADLP) = |3
Containers Programs(MSTR) TORE '*!/|| TORC '*%/(| CECA '* Policies(MSTR)
=" Directory =" Directory = Directory -
2B TEST =2 & TEST 2/ swb
=& TEST-SWB =& QATEST-V6.1.5 endP-zignl-encO-zign0O-encl-uTok
TORE :IBQACAUIP EncryptBodyInput
=& TEST-0003 # QACADLM1 SignBodyInput
TORC EncryptBodyQutput
=|& TEST-0004 SignBodyOutput
CICA | swbtestg

endP-signl-encO-sign0-encl-uTok

Containers: For ease of reference: HContainerGroups Containers

This tab represents the actual CICS TOR regions on the mainframe that SOLA will need to
interact with. The Container Groups and Containers are configured by the SOLA Admin using
Resource Manager. Within the Containers Panel is a tree of Container Groups and SOLA

Containers within each region represented by container icons (2 and).

Whenever policies are assigned to a program or method, they are not in effect until they are
deployed to a Container Group.

23

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

The Directory tree in this example begins with the Contamers

Environment TEST, followed by three Container Groups 3, Directory

= EZ TEST

defined as TEST-SWB, TEST-0003 and TEST-0004. Each 5Bl TEST-SWE
container group in this example has one Container each TORE
TORE, TORC and CICA. Containers will store Programs or =& TEST-0003
Methods within Projects (defined with this icon #). A Project TORC
can be defined by the SOLA Administrator or Project 48 TET':TI;JEM

Administrator.
An example of a Container named TORC and its contents:

Policy Manager({ /TEST/QATEST-V6.1.5/QACAO1LF)

Containers Programs{ M5TR) | TORC '* .
| S0, Directory 5, Directory ‘{b Note the new TAB that is opened
o8 TesT S8 TEST in the Programs(MSTR) panel.
=@ TEST-5WBE =& QATEST-V6.1.5
TORE =4 qacaolp
= | TEST-0003 i QACADIML
TORC

= | TEST-0004
CICA

Programs or Methods: Are stored within each Project “* and in a Container(s)-=. A
program or method can be moved to the Containers panel to have its policies deployed in a
Container group. All Containers within a Container Group are defined to the same Runtime

database {M5TR) \When you deploy a program or method to a Container Group it is effectively
deployed to all Containers on the Master database.

First you must close out of all opened Container TABS | "¢ * in the Programs(MSTR) panel

by clicking the * on each Container TAB, and then drag the program or method to a container
group; by doing so the program or method will be deployed and along with its policy(s) activated
to every container in that container’s group. See the following example:

Poliy Manager([TEST/QATEST-VE.LS/QACADIP) -a% Program QACAO1P has
——) D) 3 been deployed to Container
! 3 7 Directory j I Durectory endP-signl-encO-signO-encl-uTok -
o @est i R Group TEST-0003, and all
) (3 TesT-swe 3 QATEST-V6.1.5 SignBodylnput | Policies in Audit-IN-OUT-
TORE Q 114 QACA0IP EncryptBodyOutput
J@resroony ¥ L — PrOgran:j have been
TORC - - "Hethod assigned to program
) & TEST-0004 Audtinput g p g ..
CICA AuditOutpat QACAO].P The pO|ICIeS
-’“‘":"::‘;”:"’W""' now apply not only to the
NisdtOutpot program and/or method, but
ol . also to every Container and
EncryptbodyOutout Container Group within the
o Runtime database.
uddinput
AudtOutpat
4 &3 AvditRequestOnly :J
q |

24

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Policies: SOLA supports two types of policies, the default policy and the program/method-
specific policy. If a program/method-specific policy exists, it will always override the default
policy. The default policy, which can be enabled or disabled, comes into effect when a method
does not have its own policy (and the default policy is enabled).

Using Developer’s drag and drop capabilities enables a Policy to be applied at the program level
or method level. The policy dropped onto a Program will be assigned to the program and all of
its methods as in the example below, the policy group Audit-IN-OUT-Program has been
assigned to program QACAOQ1P and all of its methods. Once deployed, the program will use
this policy group, overriding the container default policy, except where the default policy defines
a requirement set by the assigned policy.

 Policy Manager([TEST/QATEST-VG.LS/QACAOLP) -0l X
Contawees Programs(MSTR) Pobces(MSTR)

3 I Dwrectory 3 I Dweectory endP-signl -encO-signO-encl-uTok _:J
3 bdTesr 3 bdresy N Encrypt8odylrput
s 3 TesT-swe 3 (8 QATEST-V6.L SA4F SignBodylnput
TORE 214 QACADIP EncryptBodyOutput
2 83 TEST-0003 © QACAOIM O 13 Audt-IN-OUT-Program ‘)J!W'
TORC i -Method
4 &3 TEST-0004 Audalnpat
CICA AudtOutput
3 82 Auda-IN-OUT-Program
Auvdtinput
AuvdtOutput
3 &3 AvdtOutput
endP-encO
EncryptodyOutput
3 3 AvdtPolcy
Auvdtinput
AudtOutpat

4 &3 AvdaRequestOnly -
« | »

The policy dropped onto a Method will be assigned to the method only as in the example below.
Once deployed, the method will use this policy group, overriding the container default policy,
except where the default policy defines a requirement set by the assigned policy.

Policy Manager(/TEST/QATEST-VE.LS/QACADLP) -0 X
Contamers Programs{ MSTR) Policies(MSTR)
as Directory 3 I Directory S»qr'B'odyO.;Lp.ul. :j
3 b TesT 3 K TEST 3 swhtestq
4 (3 TEST-5WB 3 QATEST-V6.1.5 endP-signl-encO-signO-enci-uTok
TORE i 4 QACADIP EncryptBodylnput
33 TEST-0003 a Q“;fg_‘"l SignBodylnput
TORC YN Output
‘ e L IN-
31 TEST-0004 &-} W &3 Audt-IN out Met)tod tout
CICA 313 Audit-IN-OUT-Method
Audtinput
AudtOutput

3 &3 Audit-IN-OUT-Program
Audtinput
AudrOutpat

A dialog box will appear confirming the Policy attachment, Click OK to continue.

®

Policies have been successfully attached

25

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

When a Project Administrator has access to projects, programs and methods located in another
container group in the Directory tree they will CLICK on the container group and it will appear as
a new Icon in the Programs(MSTR) panel.

In this example, the project administrator needs to view the current policies assigned to program
QACAO2P. To do this you would first select the program in the SOLA environment and right
CLICK on Policy Management in the drop down menu.

s0LA uDoI Fie

Environments{ TEST) ~

2 SWE_BMS_Usecases

= (7 ServiceTemplate
=& SolaDemo
i k-4 ACCOUNT

Dataset */#} || Home

=l

Next select the Container the program is in and notice a new
TAB ' "™ " has been opened in the Programs(MSTR) panel.

i [AGEORGE1 X X i
Sidanqrcaca Foe—— The selected program QACAO2P is highlighted.
= =) amweBsQL Show Program History
ﬂgECNﬁng’ View Service Wsdl
H BMSTEST
@ EJensFL Re-Import Program Poli (X
:GCAZZTEST Analyze New Method blE "TEITQATE[mu}qﬁuw }
jgiﬁiiﬁ“ Policy Management Containers = jgrams{ M5TR) | TORE '*
mEdcicsws Promote Program {b = .
ﬁgCGNVMPH Demote Program =3 '-r_l Directory = '-r_l Directory
BEJCRYPTO Delete Program
&k CUSTPROF = B3 TEST = Ed TEST
=& TEST-5WE =7 QATEST-V6.1.5
TORE =f-Qacaozp
=3 TEST-0003 i QACADZM1
TORC
= TEST-0004
CICA

By double-clicking on QACAO02P a new TAB will appear in the Policies(MSTR) with the name of
the container the program is located in and the current Policy assigned to QACAO02P which in
this case is policy group Audit-IN-OUT-Method.

4 pgrams{ M5TR) | TORE '* Polides{ M5TR) || QACAD2P{ TORE) '*
= ' Directory = '\ Directory
= ES TEST =/ Audit-IN-OUT-Me_fid
=& QATEST-V¥6.1.5 Auditinput
=+ Qacaozp AuditOutput
£+ QACAD2ZMI

26

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

In this example, the project administrator is viewing their projects in container group CICA, and
they want to assign policy group Audit-IN-OUT-Program to program QACAOQ02P.

Policy Manager(JTEST [QATEST-V6.1.5/QACAD2P)

Containers 4| Programs(MsTR) || aca ®/|| Torc ®/| |4 | Polides{ MSTR)
= ' Directory =2 Directory endP-signl-encO-signO-encl-uTok
JEJTEST = EFTEST EncryptBodyInput

=& TEST-5WB =& QATEST-V6.1.5 SignBodyInput
[/1ToRE =f=qacaozr EncryptBodyOutput

=/ TEST-0003 £ QACAD2ZM1 SignBodyQutput
[TorC =& Audit-IN-OUT-Method

= |[3 TEST-0004 Auditlnput
[flcica AuditQutput

= Audit-IN-OUT-Program
AuditInput
AuditOutput

=@ AuditDutput
endP-encO
EncryptBodyQutput

They will have to CLICK on the Programs(MSTR) tab to assign the policy to the program by
dragging and dropping the
policy group onto the
program.

' Policy Manager /TEST/QATEST-V6.L.5/QACAG2P)}
o‘L Programs{ MSTR) CICA *
4 [Directory

JEjresy
i 3 &3 swhtestq

J12 QATEST-VE.1.S ndP 1-encD- o t-uTok
214 QACADZP e sipnl-encO-sgn0-encl-uTol %

EncryptBodyinpat
© QacaozM O pr—ean \Bodylnput Paolicies have been successfully attached
werely ptBody Output

SignBodyOutpat

3 &3 Auda-IN-OUT-Method
Auditinput
AudtOutput

= &3 Auda-IN-OUT-Program
Audlnpat
AuditOutput

24 &3 AudaOutpat
endP-encO
EncryptBodyOutpat

TORC %4 Policies{ MSTR)
ENLEY B CUyUuipuL
SignBodyOutput

Contamners
d I Directory
4 Bvesy
L3 TEST-SWB
TORE
483 TEST-0003
TORC
23 TEST-0004
cica

Confirm the policy has been attached by Clicking OK to continue.

Then deploy the program by dragging and dropping it onto the target container group:

Policy Manager([TEST/QATEST-VE.LS/QACAD2P)

Containers +| Programs{MSTR) CICA " TORC "=+
2 I Directory 4 I Directory
3 B Tesy 4 biresy
313 TEsST-5WB 31 QATEST-VE.1.5 -
TORE JL4QACA02P Program [Method has been successfully deployed
283 TEST-0003 © QacaozMi
TORC
=] & ~0004
L
% CA

Wi QACAO2P

Confirm the policy has been attached by Clicking OK to continue.

27

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - Commarea

SOLA can create web services in which the mainframe acts as a server (inbound), and as a
client (outbound).

® |nbound (mainframe as server):

Bottom-up: start with a Commarea program and create a WSDL, metadata
template, test harness and UDDI entry by analyzing the program’s interface.

Meet-in-the-Middle: start with a WSDL and a copybook, and create a metadata
template, test harness and UDDI entry by merging the WSDL and copybook. This
function is currently under development with documentation update to follow.

Top-down (WSDL-First): start with a WSDL and create a COBOL or PL/I copybook.
This function is currently under development with documentation update to follow.

B Qutbound (mainframe as client):

Top-down (WSDL-First): start with a WSDL and create a COBOL or PL/l copybook
that will be used as the interface between SOLA and an outbound web service.

Note: SOLA uses the terms ‘Class’ to refer to a web service and ‘Method’ to refer to a web
service operation.

28

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Creating an Inbound Web Service from a Commarea Program
— Bottom Up

This section will describe the steps necessary to create a web service from a COBOL or PL/I
commarea program using “bottom up” methodology. Bottom up means you will be starting with
either a compile listing or a copybook and using SOLA Developer to import the program and
create methods from the program’s various functions. The end result will be a WSDL, metadata
template, test harness and a UDDI entry.

Creating a web service from a commarea program is a two-step process:

1. Import the program and create a Class/Service
2. Analyze the Class to create Methods/Operations

The Import procedure is a single step operation that consumes the program (or copybook) and
documents it in the SOLA Directory as a Class. No other artifacts are produced.

The Analysis procedure takes a Class and creates a Method (web service operation). It also
creates four artifacts:

Run Time metadata (called a Template)
Test Harness

WSDL

SOLA Directory entries for the method

PR

You can import a commarea program from the following sources:

B Compile Listing: the preferred import method. Importing from a saved compile listing
allows SOLA to determine information about the program being imported, such as field
types (input, output, etc.), usage and more.

B Job Name and Number: if the compile listing is in the JES output queue, you can
import the program using the job name and number. This gives the same benefits as
importing a saved compile listing. In order to import from a job name and number, your
sysout files must be routed to your installation-defined held output queue.

B Copybook: although programs can be imported from copy books, SOLA will not be able
to automatically configure the program as it can with the other two methods. This
method, although effective, doesn’t allow SOLA to determine the inputs and outputs for
the program; you will see later how to build the schema input/output.

B Multiple Datasets: you can also import from more than one copybook (all copybooks
are concatenated into a single WSDL).

29

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 1 — Mainframe Preparations

Depending on your CICS installation, you may need to create a PPT entry for the Run Time
metadata and a PPT entry to dispatch DPL requests for your program from the SOLA Web
Owning region to your Application Owning region.

Compiler Options

The imported program will need to be compiled with the MAP compiler option. Here is an
example of some Compiler options that can be used to compile a program for use with SOLA:

IKJ56250I JOB DBSOLAA (JOB16902) SUBMITTED
*kk

The SOLA Import process only needs the Compile listing, there is no need to link-edit the
program to create a new load module.

Once the program has been compiled, it can be imported either directly from the JES output
gueue or from a dataset that the compiler output is saved in.

Alternatively, you can Import a COBOL copybook. This method, although effective, doesn’t
allow SOLA to determine the inputs and outputs for the program.

Note: If you Import a compile listing and you use Intertest for debugging, then you shouldn’t use

the Intertest CUTPRINT option because this option can eliminate parts of the compile listing that
are used by SOLA’s Import process.

30

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

7

Environment Setup

Before you are able to use a web service created with SOLA, you will need to perform some
setup operations for the SOLA Run-time.

To understand why this is necessary, it may help to understand the SOLA Run-Time
architecture. SOLA is built using MRO (Multiple Region Operation). In an MRO environment,
there are a minimum of two CICS regions that are involved in performing work — a Terminal
Owning Region (TOR) and an Application Owning Region (AOR). Because SOLA uses the
CICS Web Support features we refer to the TOR as a WOR (Web Owning Region).

7

SOLA™

MRO (or Multiple Region Operation) is the term used to describe a set of
inter-linked CICS regions. Each region usually performs a different function,
and requests pertaining to those functions are routed to the appropriate
region.

TECH TIP

In MRO, the Endpoint SOAP URL points to the WOR. The WOR accepts work and forwards it
to the appropriate AOR. Commarea programs are run in an AOR. The following is a diagram of
the architecture for commarea programs.

--Namespace -
MQ Queue xmins="http://<namespace uri>/CA/TGADP047/TR#D0O01"
Pr][_:-gr.;m emplate
Soap yp Name
Response -
- ==
A”-’-/
« Common Driver
® Progam €———)p) WS Security
Soap Request Legacy Program
via MQ
Soa A
Response
A (= < Data Format
Soap Request = % Converter
LA
Soap I CICs Document /
Response
Soap SOLAPlug-infor BPL COMMAREA
Response COMMAREA
Programs
Client Requestor Soap
Request 4(,’
arsed aq%
DOM Y
T
XML Parser ree | Template | RCT
I CICS / System Components SOLA Provider Code
** [P Port can be shared across multiple
CICS Regions running in a single LPAR
Legacy Program Metadata c i
(Generated by SOLA) I [egacyHmgram MVS TCP/IP Support

SOA Enabling Commarea Programs with SOLA
31

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

The conversion of SOAP messages into and out of a commarea is done in the WOR. To
perform the conversion, SOLA references the template in the WOR and links to the legacy
program in the AOR (this is known as a DPL, or Distributed Program Link).

Before you can execute the new web service, you will need to set up some CICS table entries.
In the WOR you need PPT entries, one for the template and one for the legacy program,
specifying it as remote. In the AOR you need one PCT entry to accept the link from the WOR.

The table below lists sample entries based on a program named CONVERT and its template,
named CONVDO0O1. The program CONVERT, which you will be using for the examples in this
section, is a sample program that is shipped with SOLA and can be found in the SAMPLIB
library.

WOR AOR

DEFINE PROGRAM (CONVDO0O01) DEFINE TRANSACTION (CON#)
GROUP (SOLAGRP) GROUP (SOLAGRP)
LANG (ASSEMBLER) PROGRAM (DFHMIRS)

STATUS (ENABLED)

DEFINE PROGRAM (CONVERT)
GROUP (SOLAGRP)
LANG (LE)
REMOTESYSTEM (aorx)
TRANID (CON#)

The final required setup step is to issue a new copy command in the WOR region for the legacy
program’s template.

32

Lifecycle Manager Integrated

‘ ﬁ SOLA Developer 6.4.2 User’s Guide

Step 2 — Asset Setup in Lifecycle Manager

Before the web service development process begins in SOLA, a corresponding service asset is
created and submitted by a person assigned to that role in Lifecycle Manager. Note that the
Lifecycle Manager user needs Asset Capture Engineer (ACE) permissions in the Lifecycle
Manager library in order to create new assets within that library.

Once login has been completed:

LIFECYCLE
k ¥ MANAGER

2 Login to Lifecycle Manager™

Library: |QA-SOLA =l
User Name: |Ekmuse
Password: |....

[Login [et

The ACE will have three steps to complete:

Create the Edit the Submit the

Service Service Service
Asset Asset Asset

A web service in SOLA can consist of several mainframe ‘plugin’ or program types and will be
described in the following sections in much more detail.

Commarea program
IMS Program
Containers program

RE®I

Callable APl program

33

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

After logging into Lifecycle Manager, the first step will be to click on the Create Asset menu
option in the left panel of the page. Immediately following, the Create Asset dialog will allow you
to begin entering information about the new service asset. Web service assets typically have a
type of “Service” in Lifecycle Manager, but the asset type is configurable. In this example, an
Asset Type of “Service” is used. After selecting the asset type, a default capture template is
applied. The capture template determines the asset information that is required and optional in
the new asset.

Also select a required Owning Group and optionally select a Project Context. The Owning
Group in Lifecycle Manager corresponds to the Project name that your program is inserted into
within the SOLA Directory Tree. The Owning Group and Project Context highlighted below
LM_SOLA_FinAcct is also the project name in the SOLA Directory Tree where your
Program/Service will be stored.

LIFECYCLE
[MAMNAGER™

IF Asset b
| FEEDBACK | DISCUSSION | SUPPORT CENTER | DOWNLOADS [R5 Create Asset X
Assot
Home _“_: Asset Type Service ~7
Consumption @ Assets in Pre
Active Project: Workspace [Change] Overwicw Capture Template Complete Service Spedification - Initial A
Acthe Asset: None [Change] Locked Assats Ring
Asset Cont
Name QACAD2P
= Actions. | P —— Required

[Edit) — Version 1
| = [Edit] B o Required
Custom Searches - ursiress
[Edit] Description CountryReport

Cstifcation
Production i P—
Active Group: LM_SOLA_FinAcct [Change] [Edit) Diatinition T

[Edit] Lifecy che 52
Assets In Progress (2 lecked) -
Create Asset [Edit] Operatian o
Import Assets [Edif] Artifacts -

[

Overview

Gevernancs B . Owning Group LM_SOLA_FinAcct [Change]
My Requests [Edtit] Foequismeer Project Context LM_SOLA_FinAcct [Change]
Pending Requests Bty SOLA Seni
F Assat Tree d = [Edit] SIS Create | Cancel |

Viewabde M
[Eit]

The ACE will click Create on the Create Asset dialog and the Edit Asset page will allow further
asset attributes to be entered. These are identified as follows:

Business Domain
Operation

Primary Contact

SOLA Program Name
SOLA Program Type
Requirements Information

34

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

After this additional required data has been entered the Asset is submitted by clicking the
SUBMIT option on the menu bar as follows:

LIFECYCLE
k MANAGER™

FEEDBACK | DISCUSSION | SUPPORT CENTER | DOWNLOADS

Home > Assets In Progress >

Consumption & Edit Asset: QACAD2P (1)
Active Project Workspace [Change] &) [Submif] + [Save] [Validate] [Unlock] [Delete] [Create Like] [Email] [Show Relationship Tree]
Active Asset None [Change] -
I— Attributes ()
f Name Value
Operation QACADZM2
[Custom Searches = Primary Contact (#equir=d) DJS
Production SOLA Program Name QACAD2P
Active Group: LM_SOLA_HnAcct [Change] SOLA Program Type CA
Assets In Progress (2 locked) SOLA Status INITIAL
Create Asset Supplier (Required) Internal
Import Assets Target Namespace
Governance I Artifacts (9 tems) £
My Requests Design Information
Pending Requests Message Definition
» A t Tree N [Packed Service
Requirements Information (e quired) ReportByCountry

SOLA Service (Required) URL: soa/fsolafs enice

SOLAWSDL (Required) URL: soafsolafvsdl

Test Information
Relationships &) 7

Once the asset is submitted, an “Assets in Progress” page is shown. Once the asset is
published in Lifecycle Manager, which may or may not require approval depending on your
configuration, the SOLA Service is added to the SOLA Directory Tree. The SOLA URL is now
active and has been made available in Lifecycle Manager and will change in color to blue as
highlighted below.

35

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

The asset creation process has been completed and development of the Program and Methods
can now begin in SOLA by clicking on the SOLA Service URL.

,i? Asmet i Progress: QACADZP_Service (1)

‘iewable Message Definition

808 AwE dhdewentes s age Definition

Ammaet Typa: Servico
Descript on: Countryfeport
[
Churasrw b
| Asmet Context
Classi mers
M@ Wl e
Busines s Domain Fimiaumiciaxl Al:tﬂlll'lﬂl'lﬂ | HD‘DDI‘HI‘IF
i Cartification Lawsl Mone
i Dafinition Type Compleie
Litecycla Status Requiremants Com plate
Oparation LTl
i Artilacts
£ Fanmae Wl
¢ | Regquiremants informaton CountryReport
g SOLA Sendce w00 s olalserebc e
SOLAWSDL 500 s oladw sdl
4
E

ey ||

x|

|z

Note: By clicking the Assets In Progress option on the left panel, the Assets In Progress page

will be displayed.

LIFECYCLE
kB W MANAGER

FEEDBACK | DISCUSSION | SUPPORTCE

Heame

Consumption

At Propect. Wodkipace [Changs]

ictiew szt Mone [Chamge]

[o [Seann|

| custom Seanches

Production

=]

Actiew Group: LM-50LAGE FinA... fChango)

Assets in Progress (1 locked)

Impart Assets
Governance
My Requests
Pending Requests

F Asset Tree

T~

0 Assets In Progress

lockid Assets | Rpcontly EWed Assets | AN AmCH i Frogress

Ationg Ao, Harre ety | Edit Awalplabty Actat Chirgy

Asait Tyge

[Edi] O OaCAS 1) Lecioed by Elizaboth Mr Unssbmited changes Serack

36

Lifecycle Manager Integrated

‘ ﬁ SOLA Developer 6.4.2 User’s Guide

Under the “Recently Edited Assets” tab, clicking on the name link for the new service will also

open the “Assets in Progress” snapshot window for the asset allowing you access to the SOLA
Service URL:

@ Assets in Progress

Locked Assets Recently Edited Assets All Assets in Progress

Actions Asset Name(version | Edit Availabality Actre Changes Asset Type
[Edit) | & aacasip(1) | Locked by Elizabeth Kr... Unsubmitted changes Senace
LIFECYCLE L
‘ MAMAGER™

.'J‘ At I Peress:; QAIEIF (1]

bt Ty Savee
Description:

FEEQRASY | DOCUSSON | JURPORTCENTIR | Ddwnagals

m2mg

Corbampron 2 Assets in Progres
Bt Progect Workagucs [hasge] e B
Bt kst Mo [Change] o ety Moy 1d
Asel Comteat =
1 s | Bty L [— o) | Lot Soma skl
Fs 2 - Fagremst Comgoty S0 LI
e = e =] |
Fnen Coman Firgrenl Aosmrtg | Bmpmting =
Production Lntication Leal Pon
Bcty oo L 50U Pl [b T
Ry i Brogriia [1 locked]
oo S qurymerta (ampete
Erate ki = =
gt Bseats e -
GrAHTUR = =
by Racrarist —— RESFOATTEST
SA Saracy aca Swlaerise
I hset Tres B SOUATEDL P
Wirnaiie Maridagn et Ao Mot Miri i Dofntn
A -
Btompbey Bt Type Ayt by

37

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Step 3 - Importing a Commarea Program

It is possible for whoever creates the Asset in Lifecycle Manager to also be the person
responsible for developing the SOLA Service. Access to SOLA can be gained in two ways;
using the SOLA URL provided to you by your institution or by accessing the Asset in Lifecycle

Manager and clicking on the SOLA link (highlighted below in yellow).

LIFECYCLE
k MANAGER™

FEEDBACK | DISCUSSION | SUPPORT CENTER | DOWNLOADS [

Asset Type: Service
Home > Description: CountryReport
Consumption @ Assets in Pri

Overview

Active Project: Workspace [Change]
Active Asset: None [Change]

I m Actions

Locked Assets Rec
Asset Context

| Classifiers
Edit
[Edig Name
Edit . .
| custom Searches = [Eiig Business Domain
[Edit] Certification Level
Production : -
Edit Definition Ty
Active Group: LM_SOLA_FinAcct [Change] [Edid elniion 1ype
[Edit] Lifecycle Status
Assets In Progress (2 locked))
Create Asset [Edif] Operation
Import Assets [Edit] Artifacts
Governance [Edit] Name
My Requests [Edit] Requirements Information
Pending Requests ;
g Req [Edit] SOLA Senice
) Asset Tree ’ [Edit] SOLA WSDL
Viewable Message Definition
[Edit]

The first way to access SOLA is
link from Lifecycle Manager as
highlighted in yellow above. You
in the Directory tree after login,
the dropdown and change to
you can begin to activate the
working on from its status of INITIAL to STARTED.

Environments{ TEST) * SERVICE

3 Directory {{b
=3 LM_soLA_FinAcct
= %) QACAD2P_Service
% QACAD2M1

3% Asset in Progress: QACAO2P_Service (1)

e [YRS
-

Value
Financial Accounting | Reporting =
None
Complete
Requirements Complete
QACAN2M1 =

Value
CountryReport
soa://solalservice
soa://sola/wsdl

soa:/fwsdhiewer/Message Definition

using the SOLA Service
seen in the example

will be in SERVICE mode
and will need to click on
PROGRAM mode where
program you will be

The second way to access SOLA is using the URL. After
login you will be brought directly into PROGRAM mode
where you will begin the development of the service by first
activating the program from its status of INITIAL to
STARTED. You can find the status in the Properties Panel
to the right of your workspace. It will be identified in the list
of properties as ‘ImStatus’.

Environments{ TEST) * PROGRAM ~

a.r |Directory {h
=3 LM_SOLA_FinAcct

5[~|qacaozp
i QACA0ZM1

38

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Environments{ TEST) * PROGRAM ~

= I' | Directory
2|3 LM_SOLA_FinAcct
Select the program you wish to activate and =} +QAcAD2P
right-click it. From the pop-up menu, select £ QACAD2M1 Activate Program
Activate Program.

= | Directory
|£3] AaronLMPublishGroup

Note: If the SOLA Program Name and SOLA Program

3 [E5] LM_SOLA_FinAcct Type were not entered during Asset setup in Lifecycle
& [B] LM_SoLa_Finacct2 Manager the SOLA Program Name will appear in the SOLA
[55] LM_SOoLA_Project Directory tree with a question mark (?) in the icon and
3 B qa-SoLa program name and you will be prompted upon Activating
I’ﬂﬂqm“‘”“ the program to enter this information:
=2 7 |?PPRREeR
¥ createUsar

& = DR S 1
& 7 DRTest

The property status identified as ‘imStatus’ in the properties panel will change to STARTED.

Program - { QACAD2P) »|Bll&
MName « Value
ImimportlJri d
ImLibraryMNm QA-SOLA
ImSeniceld 1.0_1387471702590...
ImStatus STARTED

Environments{ TEST) * PROGRAM ~

Select the program you wish to import to and right-click it. (1, Directory
From the pop-up menu, select Import Program. ‘3088 LM_S0LA_Finacct

S| - |QAcaozp
£ QACAOZM1 ‘ Import Program ‘

A,

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel is pre-defined by the creation of the Asset in Lifecycle Manager and
can be setup there to import any program type that SOLA supports. In this case we are
importing a Commarea — Bottom Up Producer.

39

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Home Import '*
Importing Commarea - Bottom Up Producer EJ

Project:
Program Name:

Override Name: | QACAD2P

Language: | COBOL v
Enumerations: | Include v
Environment: TEST v

Program Description: | TestwWithMNewUser
Structure Name: QACA0D2C-RECORD
Class Name:

Dataset/Listing Name: SOLAEXT.QA.COBCOPY#(QACA02C)

IMPORT RESET
Browse Datasets and Listings

Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS

Enter a dataset prefix: |D152224

4 [1DIsS2224

The Import panel consists of a series of fields used to provide information about the source
program and the destination SOLA program that will be created.

Fields outlined in red are required. The red outline disappears when the field is populated.

B Project: this field is pre-populated and contains the name of the project into which the
program is being imported. Although it cannot be changed during import, you can drag
the program into a different project after it has been imported.

B Program Name: the name of the SOLA program that you will create. This name does
not have to match the name of the source program, but if it does not, then the Override
Name must do so. The program name is limited to eight characters, whether it matches
the target program name or not.

® Override Name: The name of a target program to execute. Use this field when the
target name differs from the program name (for example, when using the Program Name
field for versioning).

B [anguage: the language the source program is written in. Choices are COBOL, PL/I or
Natural.

B Enumerations: allows user to choose to Include or Exclude enumerations (viz. 88 level
items in COBOL) in the Imported program.

B Environment: the created program’s environment. The environment is a custom
property in SOLA and available environments will depend on your particular installation.
Some examples of environments are “Test”, “QA” and “Production”.

40

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

B Program Description: a brief free-form description of the program.

® Structure Name: the 01 level COBOL structure that describes the interface that your
program exposes. This is typically named “DFHCOMMAREA”, though the name may
vary. If you are unsure of what the structure is called in the program you are importing,
you can use the Browse Dataset feature described on page 187, or look at the program
in TSO.

® Class Name: when you expose a program as a web service, its operations will be
exposed as methods. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program.

B Dataset / Listing Name: the input source. As mentioned previously, SOLA can import
a commarea program from a compile listing (either saved or from the JES output queue)
or from one or more copybooks. A compile listing is preferred because it allows SOLA to
attempt to categorize the interface fields, saving you work during analysis.

At the bottom of the Import panel is the Browse Dataset and Listings panel. This panel allows
you to pick the input source from a list without having to manually enter it into the
Dataset/Listing Name field.

Browse Datasets and Listings -
Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS

Enter a dataset prefix: |DBVENKA

29 DBVENKA
DEVENKA.BIND.COMPARE
DEVENKA.B0S524

7 DEVENKA.DB2.1CL

7 DBVENKA.DDIR

7 DBVENKA.DDIR.D

7 DEVENKA.DDIR.I
DEVENKA.DITPROF
DEVENKA.DOMO501.LOADLIB.XMI

DBEVENKA.DOMOS01.5AMPLIB. XMI
MBVERML A FS BTA

(Ea E R E AR =
) R

To use this panel, select from one of the three available source types by clicking on the
appropriate button tab.

Select Source DATASET JOB NAME L}NUMBER MULTIPLE DATASETS

The Dataset option includes both saved compile listings and copybooks. You can change your
default dataset prefix by entering a new value in the Enter a dataset prefix: field. Your default
dataset prefix is a user-level custom property that can be set in your user properties (page 4).

=5 DEVENKA Once you have located the dataset or listing you want to
DEVENKA.BIND. COMPARE import from, double click the dataset/ listing name to
DEVENKA.BOS populate the Dataset/Listing Name field with your selection.
Az DB‘-.-‘ENKA.DBJ%L

4@ DBVENKA.DDIR
41

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

If you select Multiple Datasets, you will not be presented with a directory tree. Instead, you will
be given five blank fields that you can use to specify up to five copybooks.

IMPORT RESET

Browse Multiple Datasets and Listings -
Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS
Additional copybooks: |Enter an additional copybook to import
Optionally enter a futher copybook nam
Optionally enter a futher copybook names
Optionally enter a futher copybook names
Optionally enter a futher copybook names

When you have filled in all required fields and are ready to import, click the IMPORT button.

Upon successful import, a confirmation message will be displayed. The property status
identified as ‘ImStatus’ in the properties panel
Import Succeeded #/ | will change from STARTED to WORKING.

The import request of program SOLACA11 Program - (QACA02P) ZHENS

into project SolaDemo succeeded. Name ~ Value
e =

inputContainer

lastUpdated 2013-12-23-12.30.5...
lastUpdatedUser DJS2224

listDs. SOLAEXT.QALISTI

ImimportUri

ImLibraryMNm QA-SOLA
ImSeniceld 1.0_1387471702590...
ImStatus WORKING

When importing commarea programs, the analysis of methods/operations is a separate step
from the importing of the program. The following section will detail the analysis of a commarea
method.

42

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Step 4 — Creating Methods in a Commarea Program

Once a Commarea program has been imported, you can create methods by isolating individual
functions within a program. Creating a method is known as Analysis. A Commarea program
can support a complicated set of requests and responses, while a method is typically a subset
of that functionality, sometimes even a single request/response operation. Therefore, a
program with complex functionality may require the creation of several methods to expose the
full range of its capabilities as web services.

For example, let’s take a simple program that converts either temperature (from Fahrenheit to
Celsius) or length (from inches to centimeters). When the program is executed, it expects the
user to provide a function code for temperature conversion or length conversion.

Depending on the function code, the program assumes the input provided is a temperature or a
length, and will perform the necessary conversion. When creating methods from this program,

you would typically create two separate methods, one to convert Fahrenheit to Celsius and the

other to convert inches to centimeters.

When creating methods, keep in mind which environment you are currently working in.
Typically, only test environments allow for the creation of methods, though this is configurable.

Activating a Method

To analyze a method you must first activate it. Begin by
locating the method that was named when the Asset
was created in Lifecycle Manager in the Directory tree Name ~ Value

Method - (QACAD2M1) SIENE

under the SOLA Project. D 2013121910495 4|
initChar
Environments{ TEST) * PROGRAM ~* initCharFlag
o7, Directory lastUpdated 2013121911502
3[E3 Lm_soLa_FinAcct lastUpdatedUser ~ UQAT
SHQacao2p ImStatus INTIAL
& gacaozmM1

Activate Method

Click Activate Method which will change the method’s status from INITIAL to STARTED. Only
a program’s status is communicated to Lifecycle Manager; the method status is not.

An ‘Operation Activated’ panel will open where you will be required to enter a Template name.

43

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

solA | ool | Fle | Datasets “/®||| Home Method - (QACA02M1) »|(E]&
Environments(TEST) * PROGRAM 21| Name « Value
=, Directory ascii
3[@IL_SOLA FinAcet createlimestamp 2013421911502 .
J4oacaozp Operation Activation(/ TEST/LM_SOLA_FinAcct/QACAD2P_Service/ QACAD2M1) X U ol
£ qacaozm1 createlser
Template Name: [ENTER TEMPLATE desciipton
effectie 2013121910495
Target Ns: hitp:/QACA (GAD2P_Senvice sola soa.com/)
endPaint
SOAP Aetion: enioniD 06013
expires 9999-12-31-01.01.0
D 2013421840495
initCharFlag
W | h lasiUpdated 2013-42494150.2...
gicome to t € — | lastUpdatedUser ~ UQA1
SOLA Development Studio imStas N

loadDs
P Register methodhim QACAT2MI

- Create a Project

= objectType Method
| ;|J policylD

Template Name: the name of the template (run-time metadata) to be
created for this method. The template name must be unique

and must conform to Partitioned Data Set (PDS) member naming
conventions. The template tells SOLA how to convert a SOAP
Request into a legacy commarea, and how to convert the legacy
commarea into a SOAP response. A template will be assembled

by SOLA into an Assembler Data Only Load Module.

Target Ns: the URI of the defined operation (method).
SOAP Action: for now this field is blocked and is under development

as a future feature.

Enter the Template Name and click (o]

Operation Activation(/TEST/LM_SOLA_FinAcct/QACAD2P_Service/ QACAD2M1) .

Template Name: | (QACA02TI
Target Ns: http//QACAO02ZM1.QACAOZP_Service sola.soa.com/

S0AP Action:

[Ok J [Cancel J

44

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

After clicking L% | inthe X
Operation Acthvation panel you will receive Operation successfully activated(QACA02M1)

another panel indicating the Operation
was successfully activated. Click

o |

oK

PreAnalysis of the Method

Now that you have activated the method, to analyze it you can now right click on the method in
the Directory Tree and Click Analyze Method.

Environments{ TEST J) * PROGRAM ~
=iy Directory
= |3 LM_SOLA_FinAcct
= =|QACADZP
QACAD2M1

Analyze Method

The PreAnalysis panel consists of a series of fields used to configure the method. Fields
outlined in red are required. The red outline disappears when the field is populated.

PreAnalysis

Method Name:

Description: | |

Template Name:

Encoding: EBCDIC = |

EndPoint: [01 PUBLIC TEOP(1445) =]
Schema Type: Im

Target Namespace: http://QACADZML.QAC,

Template Dataset: | |

Load Dataset:

ANALYZE

45

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

PreAnalysis
Method Name:

Description: FinanceReptBy Country

Template Name:

Encoding: I EECDIC = |

EndPoint: |01 PUBLIC TEOP{ 1445 } ;|

Schema Type: Im

Target Namespace: http://QACAD2M1.QAC,

Template Dataset: SOLAEXT.QAASMTEBLO

Load Dataset: SOLAEXT.QA.LOADLIB
ANALYZE

B Method Name: the name of the method being created. The method name will be used
in the WSDL as the operation name, and will also appear in UDDI searches.

B Description: a brief description of the method.

B Template Name: the name of the template (run-time metadata) that will be created for
this method. The template name must be unique and must conform to Partitioned Data
Set (PDS) member naming conventions. The template tells SOLA how to convert a
SOAP request into a legacy commarea, and how to convert the legacy commarea into a
SOAP response. A template will be assembled by SOLA into an Assembler Data Only
Load Module.

B Encoding: the data format that SOLA will deliver to your program when executing the
method. Options are EBCDIC (default) or ASCII. This option is provided for programs
that were originally coded to accept ASCII data, and which internally convert the ASCII
data to EBCDIC and vice versa.

B End Point: the location of the SOLA SOAP server. Options will vary based on your
installation.

®m Schema Type: when you analyze a method one of the artifacts that you're creating is
WSDL. The WSDL will contain a schema, which is a description of the input and output
messages used by this web service. SOLA supports two different schema types, a less
descriptive version and a very descriptive version (terse and verbose). This menu
allows you to choose between the two. Options are “Data Type Only” (terse schema)
and “All Attributes” (verbose schema).

B Target Namespace: the URI of the defined operation (method).
46

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

B Template Dataset & Load Dataset: these fields are used to tell SOLA where you want
the template source and the assembled/link-edited template to be stored. The source of
the template will be stored as a member in the Partitioned Data Set (PDS) named in the
Template Dataset field. The SOLA Analyzer will automatically assemble and link-edit
the template into the Load Library specified in the Load Dataset field.

PreAnalysis

Fill in the required fields in the PreAnalysis

Method Name:

panel, and then click the = ANALYZE S I —
button. Template Name:
Encoding: IEBCDIC;I
A . . EndPoint: IUIPUBLIC'IBUP(1445} =|
This will open another tab in the workspace Schema Type: e
named Analysis which will display the T e https//QACADZMI.QAC,
Commarea Analyzer. Template Dataset: SOLAEXT.QA.ASMTELO
Load Dataset: SOLAEXT.QA.LOADLIB
ANALYZE
PreAnalysis Analysis '*
I.
r\:l. :l Prefix: APPLY DICTIONARY FINALLZE
DFHCOMMAREA Schema Inputs Header
= [l CFHCOMMAREA -~ | =2 € nameSearch -
Bl vws-RETURN-CODE € Ws-BOSS-ID
Bl ws-RETURN-MSG = & WS-SEARCH-TYPE
B vws-PROGRAM-VERSION | SEARCHBYNAME =
Bl vws-sqL-coDE | SEARCHBYSSN
Bl vws-clcsS-RETURN-CODE | € WS-SEARCH-VALUE
B vws-soss-1D 3 € Ws-ACCESS-METHOD
= il WS-SEARCH-TYPE & WS FETrH_rNTR S
E SEARCHEYMNAME Schema OGutputs Header
ESEARCHBYSSN = £ nameSearchResponse -
B ws-SEARCH-VALUE = £ DFHCOMMAREA,
:I“WS—ACCESS—METHDD £ WS-RETURN-CODE =
B rcaccess £ WS-RETURN-MSG
EMNGMNTACCESS 8 wWs-5QL-CoDE
E rirMmwIDEACCESS & wWsS-CICS-RETURMN-CODE
Bl Hostsvsid & HostSysid
Wl ws-ToTAl -CNTR i VAT T T A T i

Using the Commarea Analyzer

When you analyze a commarea method, what you are doing is creating a template (the runtime
metadata), a test harness, directory entries and WSDL, which describes the interface to the
program; the input and output fields. A web service is a way for a service consumer to call the
legacy program; the consumer gives SOLA one or more inputs, which SOLA passes to the
legacy program and receives a response, which it then passes to the consumer. What happens
inside the legacy program is not relevant to SOLA or the consumer; either a correct response
will be generated, or it will not. Therefore, even if a legacy program changes, as long as its
interface remains the same, the web service does not need to change.

47

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

When analyzing a commarea program to create a method, you have to do the following:

Isolate the functionality you want to use in your web service

Determine what input the program needs to carry out that functionality

Determine what output the program generates that will be relevant to that functionality
Add those inputs and outputs to the schema tree and configure them

The Legacy Tree

The legacy tree (located on the left in bottom-up analysis) represents the legacy data structure;
the commarea. The schema tree (located on the right in bottom-up analysis) represents the
WSDL that you are going to create. If you compare the Analyzer’s legacy tree to the program’s
commarea you will see that they are a very close match.

= [WS-CONVERT-LINKAGE 01 WS-CONVERT-LINKLGE.
= [l in-TvRE 05 IN-TYPE PIC X(01).
[B TEMPERATURE-CONVERT 88 TEMPERATURE-CCNVERT VALUE 'T'.
B LeNGTH-CONVERT g8 LENGTH-CONVERT VALUE 'L'.
= B LENGTH-AREA 05 LENGTH-LRERL.
[rn-FEET 10 IN-FEET PIC 59(04) COMP-4.
I tv-TNCHES 10 IN-INCHES PIC 59(04) COMP-4.
B OUT-CENTIMETERS 10 OUT-CENTIMETERS PIC 59(11)V33 COMP-3.
= B TEMPERATURE-AREA 05 TEMPERATURE-AREL REDEFINES LENGTH-AREA.
[1v-FaHRENHETT 10 IN-FAHRENHEIT PIC 59(04) COMP-4.
Bl ouT-ceLsius 10 OUT-CELSIUS PIC 59(11)V99 COMP-3.

Items displayed in the legacy tree are called Citems, and each Citem is represented by an icon.
The following icons can appear in a legacy tree:

1] Input

0] Output

[B] Input/Output (both)

E Excluded

= 88 Level (enumeration)

In the legacy tree shown above, the fields are identified as being 88 levels, input, output or both.
This is because this program was imported from a compile listing. When you import a compile
listing SOLA evaluates the procedural code of the program (COBOL only) to determine which
fields in the commarea are input, which are output, which are both input and output and which
are excluded. This can save the user a lot of time, particularly when the commarea contains a
lot of fields. If the program was imported from a copybook most of the items in the legacy tree
would be represented with an X icon (excluded) and it would be up to you to determine which
field is what.

The icons represent the nature of the variable in the original commarea, not necessarily their
value in the WSDL. Dragging an item into either the input or output portion of the schema tree
will override the original variable type. Be careful when doing so, however, as you may render
the web service inoperable. Regardless of how you arrange the WSDL, the legacy program still
requires certain inputs and provides specific outputs.

48

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

When analyzing a bottom-up method (starting with copybook or compile listing), the legacy tree
cannot be changed. If you were doing one of the other analysis types (top-down, meet-in-the-
middle, etc.), then the opposite might be true.

Each item on both the legacy and schema trees is represented by a unique identifier. You can
view the identifier by looking at an item’s ID property in the property panel (properties are
described later in this section).

The Schema Tree

The schema tree represents the structure of a WSDL, either one you are creating (in bottom-up
analysis) or one you are working from (other analysis types). The tree is divided into two
sections, Schema Inputs and Schema Outputs.

Schema Inputs If you import from a compile listing, SOLA will
€ test attempt to populate these sections with the
appropriate items from the legacy tree. However,
if you import from a copybook, these sections will
Input Container pontain_only upper level tree items (shown in the
illustration on the left).
These items represent XML tags that will be
present in the WSDL, and the inputs and outputs
that the web service will use belong under (are
Schema Outputs child elements of) these items.
£ testResponse
All items displayed in the Schema tree are called
Sitems, and each Sitem is represented by an
icon. The following icons appear in the schema

QOutput Container tree:
€ Element, input
e Element, output
SItem - (temperature- b= =] i i
—) = Attribute, input
Name Value L3 Attribute, output
sctiy ™ - R | Restriction (enumeration)
createdTimestamp 2009-01-07-17.5... _
cteSnstivelD 2009-01-07-17.5... DefaUIt
customExit E
dataType sing The Properties Panel
dataTypeFQ hitp:Mwerwer . wd.o...
dependiD
description The properties panel is used extensively during analysis. Each
editCheckCode item on both the legacy and schema trees is represented by a
snvironiD 200812.0115.1.. unique identifier. You can view the identifier by looking at an
excludelfiul item’s ID property here. It contains a host of properties for each
fromiD item (variable) in the analyzer, both in the legacy tree and the
D schema tree.

¢ 49

lastlpdated

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

The panel serves two purposes, obtaining information and configuring tree items. You can use
the panel to get such information as the value of an enumeration item or the minoccurs /
maxoccurs value of an array item. Clicking on a Citem on the commarea side (left) of the
workspace will display it in the property panel, while clicking on a Sitem on the Schema (right)
side will also display it in the property panel.

Many of the properties can be changed, thereby allowing some fairly detailed configuration of
tree items. The individual properties are detailed in the Commarea Analyzer Reference section
on page 94.

Some of the property fields are text boxes, others are menus. The nature of any particular item
will be apparent when you click on it. If the item is a text box, a blinking cursor will appear and
you will be able to make changes (unless that particular value cannot be changed). If the item
is a menu, clicking on the item will reveal the menu with valid values for the item.

If you make changes to a property and want to save them, click the E! button. To reset all
changes, click the = button.

50

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Analyzing the Method

To analyze a bottom-up inbound method, all you have to do is drag the input items you want
from the legacy tree to the schema tree input container, then drag the output items you want
from the legacy tree to the schema tree output container. Or, if you imported a compile listing,
the input and output trees should already be populated. In that case, all you'll need to do is
validate the schemas to be sure that they are correct.

The more you know about COBOL or PL/I programs, the easier it is to perform an analysis. If
you understand the program that was imported, and you know what you want the web service to
do, analyzing a method is a very simple process, regardless of how complex the program may
be.

Let’s take a look at a simple analysis.

PreAnalysis Analysis '®

Prefix: APPLY DICTIONARY FINALIZE

dfhcommarea Schema Inputs | Header

jﬂdfhcummarea € convertTemp

= Elin-type
Etemperature-cnnvert
Elength-cunvert

;lnlength-area
Ein-feet
Ein-inches
Eaut-centimetres

=] Etemperatu re-area Schema Outputs | Header

B8 in-fahrenheit € convertTempResponse
B cut-celsius

This sample program (Convert) is part of the SOLA installation, and can be found in the
SAMPLIB library that was shipped with SOLA. In this example, the program was imported from
a copybook so SOLA couldn'’t identify the legacy tree items as input or output, so most of the
items are represented by the X (excluded) icon. Since 88 levels are clearly identified in the
code, these have been picked up by SOLA and are represented by the appropriate icon.

The program converts either length or temperature units from one system of measurement to
another. It can convert feet or inches to centimeters or it can convert Fahrenheit to Celsius.
The user specifies an input type (variable in-type), and the appropriate input, and the program
returns the converted value.

51

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Looking at the copybook (see page 46), you can see that the input variable in-type has two 88
levels, which are represented in the legacy tree. Clicking on each in turn, you can see that their
values are shown in the Properties panel as being T and L.

[TEMPERATURE-CONVERT value T

B LENGTH-CONVERT value L

This indicates that in-type can have one of two values, T for temperature or L for length. The
copybook also indicates that the temperature area redefines the length area, which means that
you can only have one or the other, and the value of in-type determines which of those it is.

Redefines are common in legacy programs as they save memory, but they do limit us in terms
of what kind of methods we can create. Had the temperature and length areas not been
redefines, we could have created a single method that accepted in-type, IN-FEET, IN-INCHES
and in-fahrenheit and performed the conversion based on in-type, returning OUT-
CENTIMETERS and out-celsius. However, as those variable groups redefine each other, and
only one can exist at any one time, this type of web service is impractical. In either case, it is
more efficient to create two methods from this program, one to convert length, and one to
convert temperature.

In this example, we are going to choose temperature. To convert temperature, the program will
require two inputs; variable in-type with a fixed value of T, and in-fahrenheit. The program will
then provide an output, out-celsius. We will need to configure our schema tree to reflect this.

First, drag in-type from the legacy tree and deposit it in your input area under the convertTemp

node. This is like dragging a file from one folder into another. The destination folder, or in our
case schema tree item, is “ConvertTemp” in the input container panel (Schema Inputs).

52

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

PreAnalysis Analysis *

Prefix: APPLY DICTIONARY FINALIZE
dfhcommarea Schema Inputs | Header
= Bl dfhcommarea €, copertTemp.
= Elin-type HE
: In-type
Htemperature-cnnvert E e
ﬂlength-:nnver‘t
= Hlength-area
H in-feet
H in-inches
H out-centimetres
= Htempe rature-area Schema Outputs Header
Hin-fahrenheit € convertTempResponse
Huut-celsius

If you hold down the CTRL key when you click and drag, you will be presented with a menu of
options.

Schema Inputs || Header The first choice, Append Legacy ltem, is the
P — default drag and drop operation (what happens
- ppend Legacy Item when you drag and drop without using the

\Ii"? CTRL key). The options not used in this
Append Default Item example are described in the Commarea
Associate Legacy Item Analyzer Reference section on page 94.

DependingOn Legacy Item To continue with the example, either do not use

Redefine Legacy Item the CTRL key or select Append Legacy Iltem

. from the menu. The result will be the same.
sch Cancel Operation

E convertTempResponse , .
Once you’'ve moved in-type to the schema tree,

the tree will look like this:

53

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

PreAnalysis Analysis '*

Prefix: APPLY DICTIONARY FINALIZE
dfhcommarea Schema Inputs Header
;lﬂdfhc:n:nmrnarea = € convertTemp
;lﬂin-tvpe = € in-type
Htemperature-cnnvert _Jternperature-u:nnvert
Elength-cnnver‘t _Jlength-cnnvert
:lﬂlength-area
Hin-feet
Ein-inches

E out-centimetres
= Etemperature-area
Hln-fahrenhmt E convertTempResponse

Hnut-celsius

Schema Outputs | Header

Note that if you click on in-type in the legacy tree and look in the properties panel for its 10 type,
it will be X (for excluded). However, once you drag in-type into the input section of the schema
tree, it’s 10 type (in the schema tree only) will be set to | (for input).

in-type has two enumerations/restrictions in the schema tree, which were derived from 88 levels
in the COBOL data structure. This means it has two possible values, T or L. Since you have to
pass a set value to the program, you should eliminate one of those values. To do so,

use the Enumeration panel. You can use this panel to not only delete existing enumerations,
but to add additional enumerations, change the values of existing enumerations and provide a
description for each enumeration. This description will appear in the WSDL and may assist the
distributed programmer in incorporating your WSDL into the front end user interface.

To use the Enumeration panel, right-click in-type
and select Define Enumeration from the pop-
up menu. The enumeration panel contains all
the existing enumerations of the item you
clicked on. If there are no enumerations, the
panel will be blank.

Enumeration for IN-TYPE
Enumeration Value Enumeration Description
T

i

CELF

You can create new enumerations by clicking
the E* icon and delete existing enumerations by
clicking the W icon next to the enumeration you wish to delete. To delete the L enumeration,
click on its associated M icon. This will remove the tree item LENGTH-CONVERT, leaving us
with only one possible value for in-type, “T".

54

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Deleting one of the enumerations will still require the web service consumer to send the value
“T” for variable in-type, and while doing it this way is a good way to introduce you to how SOLA
Developer handles enumerations, it is not a very efficient way to create this web service.

The general rule of default values vs. enumerations is as follows:

® Enumerations: restrict possible values but still require a value to be passed by the web
service consumer. Most WSDL consumption tools will restrict that input so that the
consumer can only enter a value that is present in the enumeration. There is no set limit
for how many enumerations an item can have.

= Default Values: an item can have only one default value, and the web service will not
require that the consumer pass this value, instead SOLA will pass this value to the
legacy program.

The most efficient way to create this web service is to exclude in-type from the schema; there is
no reason for the web service consumer, who will be accessing a program that converts only
temperature to pass the conversion type. However, the legacy program, which converts both
temperature and length, will still require a value to be passed for in-type. To accommodate both
the consumer and the legacy program, you will need to assign a default value for in-type. Once
a default value is assigned, the web service consumer will not see in-type in the schema, but
SOLA will automatically pass the default value

to the program.
Schema Inputs

There are two ways to assign a default value. € =

The first, used before the item is transferred to Append Legacy Item

the schema tree, is to use the CTRL key when Append Default Item \Ib
dragging and dropping. From the menu that

pops up, chose Append Default Item. Associate Legacy Item

DependingOn Legacy Item
If the item is already in the schema tree, right
click on the item, and select Node Operations,
followed by Current Node -> Default. Cancel Operation

Redefine Legacy Item

= Ef

-

Edit Schema Name
Display Table View
Define Enumeration
Apply Dictionary
Remowve Association
Customn Exit

Transformation ¥

EditCheck b

Node Operations 3 Append Child Node

Insert Node Before
Delete This Node
Attrs -> Elems
Elems -> Attrs

Current Node -> Attr

{b Current Node -> Default

This will convert the selected node into a default node (a node with a set value that will not be
present in the schema).

55

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

A default node cannot have enumerations, so if you placed it in the schema tree without using
the CTRL key and then convert it to a default node, the enumerations will disappear.

Schema Inputs

= € convertTemp
in-type

In either case, you will need to set the default node’s default value in the properties panel.
Select the default node, then find the “value” field in the properties panel. Click anywhere in the
empty value column for that field and enter a value of “T”.

Home Analysis % SItem - (in-type) »||B| &
Prefnalysis || Analysis * Name -« Walue
-~
Prefix: APPLY DICTIOMARY FINALIZE nedeType e
MSalias
Sch I 1 Header
e ema Inputs eader objectType Shem
S =N
= B dfhcommarea =% U"_'VE"JETE”"F' pattern
;luin—type in-type
precizion 1
Etemperature-convert
Hlength—convert processingCode
= Bl lenath-area programil 2008-01-07-17.5...
in-fest
u!n .EE reflD
B in-inches
Eout—centimetres rowhum nonnz
= Htemperature—area Schema Outputs || Header scale i
[in-fahrenheit £ convertTempResponse schemalim in-type
B out-celsius
specialCond
stopArraylfNull i
tolD
transformCode
value T| -

Click the 'E! button to save your changes. The default value for in-type has now been set and
you are ready to proceed with the rest of the analysis.

The next step is to drag the temperature conversion input, in-fahrenheit, to the input section.
Drag it into the input container under the convertTemp node, just as you dragged in-type. All
inputs go under ConvertTemp (or that same item with a different name in different programs),
just as all output items go under convertTempResponse. Do not drag in-fahrenheit to in-type
(so that it becomes a child of in-type), because that will indicate that in-type is a group and in-
fahrenheit is a member of that group.

The schema tree will now look like this:

56

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Prefnalysis Analysis #

Prefix: APPLY DICTIOMARY FINALIZE
dfhcommarea Schema Inputs | Header
jndfhcummarea = € convertTemp
S Elin-type in-type
Etemperature-cunvert € in-fahrenheit

Elength-cunvert
jnlength-area
Hin-ﬂaet
Hin-inches
Huut-centimetres
jntemperature-area
Hin-fahrenheit € convertTempResponse

Hu:uut-u:elsius.

Schema Outputs | Header

If you click on in-fahrenheit on the schema tree and look in the Properties panel, you will notice
that it’s 1O type is also set to | (for input), just as in-type’s was, as it was also dragged into the
input section. The second thing to notice is that the value of in-fahrenheit is empty. This is
because this input variable is not meant to have a fixed value like in-type is. By leaving the
input value empty, the WSDL will indicate that the program expects this value to be provided by
the web service consumer, and that the value can be anything (unrestricted).

Now that we are finished working with the input section of our web service, it’s time to configure
the output section. In our simple web service, there is only one output variable, out-celsius.
Drag out-celsius from the legacy tree to the output section of the schema tree, under
ConvertTempResponse.

57

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

The schema tree should look like this:

PreAnalysis Analysis '®

Prefix:

dfhcommarea

= Edfh:nmmarea

:Iﬂin-t',rpe
Etemperature-cunver‘t
Elength-cnnuert

;lulength-area
Ein-feet
Hin-inches
Enut-centimetres

= Htemperature-area
Hin-fahrenheit
Hnut-celsius

APPLY DICTIONARY FINALIZE

Schema Inputs Header

= E,_ convertTemp
in-type
€ in-fahrenheit

Schema Outputs Header

= E comnvertTempResponse
€ out-celsius

Technically, our web service is finished. However, there is one more thing we can do to it in
order to make our WSDL a bit more user friendly. SOLA Developer is equipped with a powerful
global dictionary, and the principal function of the dictionary is to translate cryptic COBOL or
PL/I names into human readable names. You can, of course, do this manually for each

individual field.

Double click on a field name to display a

cursor (just like changing a file or folder name
in Windows), then enter the item’s new name.

It's much easier, however, using the SOLA

= E ConvertTemp
€ IN-TYPE
€ INFahrenehei

dictionary, which allows you to click one button and change every name in the schema tree.

Click the = APPLY DICTIONARY
more user-friendly names.

button to translate all COBOL names in this web service to

58

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

PreAnalysis Analysis #

Prefix: APPLY @CTIONJ’%RT‘ FINALIZE
dfhcommarea Schema Inputs | Header
;ludfhc:n:nmrnarea = € convertTemp
:IHiI'I-t'ﬂJE InType
Htemperature-cnnvert € InFahrenheit
ﬂlength-cnnver‘t
:lulength-area
Hin-feet
Hin-in:hes
Huut-centimetres
j!temperature-area Schema Outputs | Header
Hin-fahrenheit = £ convertTempResponse
B cut-celsius € outCelsius

Now our web service is fully configured, the field names have been translated and we’re ready
to conclude the analysis.

% | Click = FINALZE " {5 complete
Provider Analysis Completed Successfully the analysis. You will be
presented with a confirmation
dialog.

oK

After clicking OK You will select the program and change the status from WORKING to
ISREADY. To do this you will right click on the Program in the Directory tree and choose ‘Mark
as ISREADY’ as seen in the Figure below.

Note: The method status can also be changed by right clicking on the method in the Directory
tree and choosing ‘Mark as ISREADY’, but keep in mind the Program will also still have to be
marked as ISREADY.

59

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Environments(TEST) * PROGRAM ~ The Lifecycle Manager Asset status for the program
3, Directory and all of its methods is automatically updated and will
[B3ILM_SOLA_Finacct now be in the ISREADY state, the program and method
Sl Qacaozp icon colors have been changed to include a green
% qacaozmy | Filter by Program underscore, and a message panel will appear indicating
Show Program Struct the Service was successfully updated.
View Program Wsd|
Re-Import Program Environments{ TEST) * PROGRAM *
Mark as ISREADY
{b = ' Directory

2|3 LM_SOLA_FinAcct
= ~|QACAD2P
i QACADZM1

Click OK in the ‘Service status successfully updated’ message panel:

Servine s aecesshuly updatel] QAVCNIE_ Serviee |

[= |

v,

The Service WSDL is now accessible both in Lifecycle Manager and in SOLA (see below).

60

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Accessing the Service WSDL

The Service WSDL is accessible in Lifecycle Manager by clicking on the hyperlink as seen
below in Figure 1.

Figure 1.

LIFECYCLE
| MANAGER™
,i} Asset in Progress: QACADZP_Service (1) - By @l (x]|
FEEDBACK | DISCUSSION | SUPPORT CENTER | DOWNLOADS [
Asset Type: Service
Home - Description: CountryReport
Consumption @ Assets in Pr .
Active Project: Workspace [Change] Overview el
Active Asset: None [Change] Locked Assets || Rec
Asset Context -1
. - Actions — =
>
Edit
[Edit] Mame Value
[Edit] ;)) ; : : =
[Custom searches =1 Business Domain Financial Accounting | Reporting
[Edit] Centification Level Mone
Production 5 .
Edit
Active Group: LM_SOLA_FinAcct [Change] [Eait Definition Type Complete
[Edit] Lifecycle Status Requirements Complete
Assets In Progress (2 locked)
Create Asset [Edig Operation QACADZM1 =l
Import Assets [Edif] Artifacts =
Governance [Edit] Name Value
My Requests [Edit] Requirements Information Country Report
Pending Requests [Edit] SOLA Senice soa:lisolalservice
) Asset Tree 3 (= [Edig SOLA WSDL soazlisolaiwsdl
Viewable Message Definition soa:/fwsdhi Dy
[Edit]

The Program and Method WSDL is accessible in SOLA while in PROGRAM mode as seen in
Figure 2 below.

Figure 2.

Environments(TEST) ¥ PROGRAM ¥ Environments{ TEST) * PROGRAM *
=1y | Directory
£ @]Aar‘onLMPublishGr‘oup
= [(3] LM_SOLA_FinAcct

=)' Directory
| AaronLMPublishGroup
|3 LM_SOLA_FinAcct

o[~loacaozp
% QACAD2M1 Filter by Program _—J*_"* QACAO2ZP
=l -Jqacaosrt Show Program Struct % qacaozM1
- ACA04P1 Show Method Schema
ﬂdQAmzzp View Program Wsdl _ﬂt;Q
> "j QACA23P - - t; QACA22P View Method wsdl
fJP'-"QACAE}lP Policy Management _ﬂﬁ-{QACAZBP
| ={qacazzp Program Migration b o *q QACA31P Quick Test Hamess
3l oacnore Mark as WORKING =+ aacazzp Mark as WORKING
1 {QAIM13P N PR

61

Lifecycle Manager Integrated
‘ r' SOLA Developer 6.4.2 User’s Guide

The Service and Operation WSDL'’s are accessible in SOLA while in SERVICE mode as seen in
Figure 3 below.

Figure 3.
Environments{ TEST) * SERVICE * Environments{ TEST) * SERVICE *
= ! Directory o[, Directory
4 @AaanMPublishGr’oup 4|03 AaronLMPublishGroup
2|3 LM_SOLA_FinAcct 3|33 LM_SOLA_FinAcct
3% CLASS_QACA31P # % cLAsS_QACA3P
%k qatocaol %8 0AL0CA0L
% QACAZP_Service 3% Qaca02p_Service
% gacao2M1 Filter by Service £ QACAO2M1
2% QacA04Ct View Service Wsdl #%810ACA04CL View Operation Wsdl
£ ACA22P
JEQ Mark as WORKING 3 80aca2ze Mark as WORKING
458 Qaca23p s %0aca27p

A sample of the Operation WSDL while in SERVICE mode:

0" encading
snace- mun numzpjewm x4mizaa. onm;wumzv i "] rmn ,r.ruﬁcmapjemoe x4mi 503, com/ CA/ QACADZP" amims QACATZT 1~ Titta: uum:m u.«:m:?jqrvlm s0l2_503. com”
g xemi - Soap,/ T =="http:/ /schemas. kmisoap. org/ wsdl/ mime /= <min wevrve. W3.000/ 2001/ XMLSChema”

220
ety

<5 1/ http/
et e xnas. e ol

Targsthiamesoacemhttp:/ QACADZM L. m\:wzpjervm 5013503 COM" xmins:DACAITTL-"hitn: / /QACAOZM L QACADZP_Service. 50l 503, CoM™ xming:xsd="htto: / /www. w3.0m, 2001/ XMLSchama®
w.w3.0r/ 2001 /XMLSche: “qualified”
M1

«maxLangth
<rastrictionz

These instructions have only given you a bare overview of the functions and capabilities of the
commarea analyzer. At the end of this chapter there’s a reference guide that will help you to
understand some of the more advanced features. Classroom training is also available from
SOA Software.

62

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Creating an Outbound Web Service

SOLA is capable of bi-directional integration, meaning that the mainframe can be a server to a
distributed client (as with all web services discussed previously), or the mainframe can be a
client to a distributed server. This type of web service, where the legacy program is a client
instead of a server, is called an “outbound” web service. Setup for this type of service cannot be
done in Lifecycle Manager, but instead is accomplished directly in SOLA using the SOLA URL
provided to you by your institution. This icon is present and indicates the SOLA URL was
accurate.

N

SOLA™ Developer

[Q- W SOAP Test | Monitor Search | “i{ Error Search | [Browse Dataset | {3F Admin Menu | R Access Controts | [| [E
SOLA | UDDI | File | Datasets «/#/| Home

Like inbound top-down, you start with a WSDL and end up with a copybook. You will typically
have to write a legacy program using that copybook, and invoke a SOLA program that will
handle the outbound web service call and retrieve responses through the interface copybook.

Click 2210 and you will be presented with the User SignOn dialog box:

Y - Current User:
U171 SOLA™ Developer Loan, Loa ut
@ " SOAP Test \, Monitor Search | i, Enor Search | [g] Browse Dataset {3 Admin Menu ﬁ Aecess Contros | [E Iz |

solA | uoot | File | Datesets “/'®/| Home Project - (LM_SOLA_FinAcct2) » 8@
Environments TEST) * PROGRAM * Name « Valug

o ! Directory cellPhone Z

] @ AaronLMPublishGroup
(3| LM_SOLA_FinAcct
3(@Lm_SoLA_FinAcct2

capyLibrary

createdTimestamp

@l 4oacazp createTimestamp ~ 2014-01-09-16.00.2
@l Joacazer createUser QA1
o E'QACLMP description
ﬂENACNWP User SignOn X division
HMHQamm13p
jGQAWCnZHC UserName: effective 2014-01-09-15.00.0.
1 qacazamt PassWord: email
ﬂ@ LM_SOLA Project exclude_level88 N
jﬁg;igxe expires 9999-12:31-01.01.0
firsthm
Welcome to the S
SOLA DEVE|Opment Studio D 201401.05-16.000
lastim
P Register lastUpdated 2014-01-09-16.002
= Create a Project lastUpdatedUser ~ UQA1
» Go to Administration Console ImGroupUm 11:54 ORGGROUP
MintegratedMode Y
loadDs e
objectType Project
projecthm LM_SOLA _FinAcct?
taghame LM SOLA Findcct2 =

Once you have completed SOLA login continue with the steps below to build the Outbound Web
Service.

63

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 1 — Mainframe Preparation

The only mainframe preparation required while creating an outbound web service is for you to
provide SOLA with the names of three PDS files:

1. Copybook Dataset: A PDS to store the generated COPYBOOK.

2. Template Dataset: A PDS to store the generated metadata.

3. Load Dataset: A PDS to store the assembled and link-edited template (this
dataset should be in your CICS region’s DFHRPL
concatenation).

After the analysis, you will need to write a program that incorporates that copybook and put it in
a library that allows the SOLA runtime to call it.

64

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Step 2 — Importing the WSDL

Outbound analysis is similar to that of inbound top-down program (see page 60).

To get to the outbound import panel, select the project you wish to import to and right-click it.
From the pop-up menu, select Import Program.

After you select Import Program, the Import panel will be displayed under a tab in the

«||2

SOLA upDI || File Datasets Home

Environments(TEST) ¥ PROGRAM ~
=1l | Directory
e @AarunLMPublisthup
#[[3] LM_SOLA_FinAcct
[0 LM_SOLA_FinAcct2
ﬁ}-T-{QACAZZP Filter by Project 3

sl oacazep Show User Access

ﬂ:!QACLMP Add User Access

[l Qacno7p »
® i oammi3p Import Program outbound{ Mainframe Consumer)

4 [[%] LM_SOLA_Project
|3 QA-soLA
4[5 QaTestMe

Welcome to the
SOLA Development Studio

workspace. Click on the Outbound (Mainframe Consumer) option.

The Import panel will change to display the WSDL import panel, as shown below. Enter the
location of your WSDL file and click the Upload button. If the WSDL refers to included schemas
you will need to zip them all together in an uncompressed zip file, and in that case you would
enter the information in the “Upload Zip file from...” field.

Home Import '*

Importing Outbound - Top DownI.Cnnsumer_Q_ﬂr.h.eummlrt Types *

@& WSDL Imported From PC C WSDL Imported From URL
3;2{!08?30’ WSDL file from local lW:\QA_testcases\Soap Browse... I
UPLOAD
Upload ZIP file from local drives | Browse... |
UPLOAD

ZIP files must be uncompressed and must contain a WSDL file of the same name as the ZIP file.

65

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

SOLA will read the WSDL file to determine its validity, and will then prompt you for the PDS and
member name for the copybook that will be generated.

Home Import '*

Importing Outbound - Top Down Consumer G Other Import Types

C WSDL Imported From PC @& WSDL Imported From URL

Import WSDL From: |ﬁ|e:HOACA31SVC.wsdI
SOLA Project Name: [LM_SOLA FinAcct2 Copybook Name: jaawcasic

Service Description: [TestOutbound

Copybook DataSet: [SOLAEXT.QACOBCOPY#

IMPORT RETURN

Enter the information requested and press the Import button to Import the WSDL.
Note: The Copybook Name is limited to 8 characters.

At this point SOLA will determine the operations that the WSDL describes, and will present the
PreAnalysis screen:

Home Import %'\ Analysis '*

PreAnalysis
Method Name: Im
Description: Test Outbound
Template Name: QAWC231T
EndPoint: |01 PUBLIC T6OP(1445) ~ |
Target Namespace: http://CLASS _QACA31P
Template Dataset: SOLAEXT.QA.ASMTBLO
Load Dataset: SOLAEXT.QA.LOADLIB
Copybook/Program Member: IQAWCENC
Copybook/Program Dataset: |SOMEXT.OA.COBCOF"

Analysis Type: I Consumer - |
Language: l COBOL = |

ANALYZE

Choose the Operation (called Method by SOLA) and then enter the following non-case
sensitive data:

66

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Template Name: The PDS member where SOLA will store the metadata source.
Template Dataset. The PDS where SOLA will store the metadata source.
Load Dataset: The PDS where SOLA will store the runtime metadata.

When creating an outbound method Analysis Type must be set to “Consumer”.

Once the information has been entered press the ANALYZE pytton to go to the Analysis
screen.

In the example below we’re analyzing the nameSearch operation of the WSDL. This operation
accepts two inputs and returns an array of data. The inputs are BossID and SearchValue and
the output is return information and a bounded array of 300 Clients. The Analysis screen shows
the input and output schemas on the left side of the screen and the equivalent mainframe
structure on the right side.

Home || Import '*'|| Analysis '*

PreAnalysis | Analysis *

Prefix:[| "WAPPLY-DICTIONARY FINALIZE

Schema Inputs Header WSC-XMLPC103-AREA
=2 g nameSearch j.WSC—XMLPClOB—AREA
€ BossID = [[llinput-Request
€ searchvalue j.nameSearch
[l BossiD
.SearchValue
j.Output— Response
:I.nameSearchResponse
;l.thcommarea
.ReturnCode
Blreturnmsg
.Sequel{:ode
[Bl cicsReturnCode
Schema Outputs Header)
.Host5y5|d
= E nameSearchResponse ~ .TotaICounter
= & Dfhcommarea [Bl Fetchcounter
+« ReturnCode ﬁ.client[nfo
~ ReturnMsg Bl clientName
« SequelCode Bl Producerip
L CICSReturnCode -ClientNumber
£ HostSysid Bl PhoneNumber

+« TotalCounter
« FetchCounter
= £ ClientInfo
€ ClientName 3

67

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Clicking the PINALLZE S 1tton will create a mainframe copybook in the language you chose, a
template (runtime metadata), directory (UDDI) entries and a test harness.

Sometimes the WSDL you’re using isn’'t complete, and may only have the basic minimum
information on the fields within it. For example, a field may be defined as a string datatype, but
the WSDL doesn’t say how long the field is. This is acceptable on distributed platforms, which
use null terminated strings, but it isn’t enough to build a mainframe copybook.

If no information is available in the WSDL, then by default SOLA will generate the legacy
copybook as follows:

B String datatypes will be generated as PIC X(01).
® Unbounded arrays will be generated as OCCURS 9.

® All other datatypes will be generated according to their standard specifications, such as
date, long, etc.

If the WSDL you're using lacks information then you’ll have to tell SOLA about the fields, and
you can do that by choosing “Display Table View” for the Legacy structure, as follows:

WSC-XMLPC103-AREA . .
Right click on the Legacy Structure and choose

= B WSC-XMLP(o~ -
E-[nput— R Edit Legacy Name Display Table View” from the pop-up menu.
Sjfllnamed Display Table View This will display the fields in the Legacy structure
5o in a columnar format.
1 Apply Dictionary
‘SEE Matching Report
<@ output-F atching Kepo
:I.nameSearchResponse
:I-thcommarea
-Return(:ode

SOLA will display a floating pop-up window where you'll be able to adjust the field metadata that
will be generated into the legacy copybook.

Schema Inputs Header WSC-XMLPC103-AREA

|| =I € nameSearch =l wscoxmi pc1nz-AREA
TableView - 3%

XPath: fWSC-XMLPC103-AREA

Rowld Column Name Precision Scale lle} Data Type Edit Check Code = Transfor
1 WSC-XMLPC103-AREA B b
2 Input-Request 0 0 I X
3 nameSearch 256 |
4 BossID 8 0 |
5 SearchValue 25 0 |
6 Output-Response 0 0 o} X
7 nameSearchResponse 256 (o]
] Dfhcommarea 256 o] .
< >
- d = g —ieRnis
— ReturnMsg @ ClientName

Overtype the “Precision” field to modify the length of a character field. Modify the number of
occurs by overtyping the Occurs field.

68

Lifecycle Manager Integrated
‘ r‘ SOLA Developer 6.4.2 User’s Guide

The Generated Interface Copybook

WARNING: Do not modify the generated copybook. Any modification can result in
unpredictable behavior. If you need to make changes, do so by re-analyzing the method and
make the necessary changes using the SOLA Analyzer.

WARNING: When including the copybook in your COBOL program DO NOT use the SYNC
option as this will force full word alignment and possibly cause the address of copybook
variables to no longer match the displacements recorded in the template metadata.

The copybook that SOLA generates has three sections, a protocol section, an input section and
an output section. Because the copybook is generated you shouldn’t modify it when overriding
parameters, instead move the new values in your program prior to the call to SOLA. In the
example above the protocol section of the COBOL copybook would look as follows:

* 01 WSC-XMLPC103-LINKAGE.
02 WSC-INPUT-DATA.

03 WSC-ENVIRONMENT PIC X(01l) VALUE 'O'.
88 CICSINTERFACE VALUE 'O' 'C'.
88 CICSCONTAINER VALUE 'C'.
88 BATCHINTERFACE VALUE 'B'.
03 WSC-METHOD-NAME PIC X (35)
VALUE 'TestLargeComplexData'.
03 WSC-TEMPLATE-NAME PIC X (08)
VALUE 'QWCTO0601'.
03 WSC-TRANSPORT-PROT PIC X(01) VALUE 'H'.
88 HTTPPROTOCOL VALUE 'H'.
88 MQPROTOCOL VALUE 'M'.
03 WSC-ENDPOINT-DATA.
04 WSC-SSL-IND PIC X(01) VALUE 'N'.
88 USE-SSL VALUE 'Y'.
88 AT-TLS VALUE 'A'.
88 NO-SSL VALUE 'N'.
04 WSC-NODE-1 PIC 9(03) VALUE 000.
04 WSC-NODE-2 PIC 9(03) VALUE 000.
04 WSC-NODE-3 PIC 9(03) VALUE 000.
04 WSC-NODE-4 PIC 9(03) VALUE 000.
04 WSC-PORT PIC 9(05) VALUE 80.
04 WSC-FQDN PIC X (128)
VALUE 'inside.test.principal.com'.
04 WSC-FILE-PATH PIC X (128)
VALUE '/SolaOutboundTesting/services/SolaOutboundTestingSer
- 'vice'
04 WSC-PROXY PIC X (122) VALUE SPACE.
04 WSC-PROXY-PORT PIC 9(05) VALUE O.
03 WSC-MQ-MANAGER-DATA REDEFINES WSC-ENDPOINT-DATA.
04 WSC-CONVERS-TYPE PIC X (01).
88 DATAGRAM VALUE 'D'.
88 REQUESTREPLY VALUE 'R'.
88 REPLYTO VALUE 'T'.
04 WSC-MANAGER-NAME PIC X (4).
04 WSC-QUEUE-NAME PIC X (4
04 WSC-REPLY-TO-QUEUE PIC X (4 .
04 FILLER PIC X(129

69

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

04 WSC-MSG-EXPIRY PIC 9(9).
04 WSC-MSG-PRIORITY PIC 9(9).
04 WSC-DATAGRAM-SYNCPOINT-CTL.
06 WSC-SYNCPOINT-CTL-FLG PIC 9.
88 MQSYNC-APPL-CONTROLLED VALUE 1.
06 WSC-MQCONN-HANDLE PIC S9(9) BINARY.
04 WSC-MQGET-DATA-CONVERSION PIC 9.
88 MQGET-CONVERT-DATA VALUE 1.
02 WSC-OUTPUT-DATA.
03 WSC-RETURN-CD PIC S9(04) BINARY VALUE +0.
88 NORMAL-COMPLETION VALUE +00.
88 ARRAY-OVERFLOW VALUE +01.
88 DATA-TRUNCATED VALUE +02.
88 OVERFLOW-AND-TRUNC VALUE +03.
88 INVALID-CALL VALUE -01.
88 PROCESS-ERROR VALUE -02.
88 SERVICE-FAILURE VALUE -03.
88 SOAP-FAULT VALUE -04.
88 CONNECTION-FAILURE VALUE -05.
88 DOM-ERROR VALUE -06.
88 VALIDATION-FAILURE VALUE -07.
88 PROGRAM-ABEND VALUE -99.
03 WSC-RETURN-MSG PIC X (100) VALUE SPACE.
02 WSC-INVOKE-TRACE PIC X(001) VALUE 'N'.
02 WSC-WARNING-FLAG PIC X (01) VALUE 'I'.

88 REPORT-WARNINGS VALUE 'R'.
88 IGNORE-WARNINGS VALUE 'I'.
02 WSC-VALIDATE-SCHEMA PIC X (01) VALUE ' '.
88 VALIDATE-REQ-SCHEMA VALUE 'I' 'B'.
88 VALIDATE-RESP-SCHEMA VALUE 'O' 'B'.
88 VALIDATE-ALL-SCHEMA VALUE 'B'.

02 WSC-FUTURE-USE PIC X (002) VALUE SPACE.

02 WSC-TIMEOUT-SECONDS PIC S9(05) COMP-3 VALUE +0.

02 WSC-TIMEOUT-MICROSEC PIC S9(05) COMP-3 VALUE +0.

02 WSC-CONNECTION-CLOSE PIC X (01) VALUE 'N'.
88 CLOSE-CONNECTION VALUE 'Y'.
88 REUSE-CONNECTION VALUE 'N'.

02 WSC-TCPIP-JOBNAME PIC X (008) VALUE SPACE.

02 FILLER PIC X (081) VALUE SPACE.

02 WSC-INTERNAL-USAGE PIC X (118) VALUE SPACE.

02 WSC-METHOD-AREA PIC X (101500) .

02 WSC-SOAP-Fault REDEFINES WSC-METHOD-AREA.

10 WSC-Fault-Code PIC X (50).

10 WSC-Fault-String.
15 WSC-Fault-Str-Len PIC S59(04) BINARY.
15 WSC-Fault-Str-Text PIC X (500).

02 Input-Request REDEFINES WSC-METHOD-AREA.
03 TestlLargeComplexData.
04 LargeComplexDataln.
05 person
OCCURS 500 TIMES.

06 firstName PIC X (25).
06 middileName PIC X (25).
06 lastName PIC X (25).
06 privacyId PIC S9(09) COMP.

70

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

xAAFx*xxx The following comment refer to variable below
xxxxxxxx date format e.g - 2002-10-10+05:00
06 dateOfBirth PIC X(1l6).
06 phoneNumber PIC X (12)
OCCURS 9 TIMES.
02 Output-Response
REDEFINES Input-Request.
03 TestLargeComplexDataResponse.
04 LargeComplexDataOut.
05 person
OCCURS 500 TIMES.

06 firstName PIC X (25).
06 middileName PIC X (25).
06 lastName PIC X (25).
06 privacyId PIC S9(09) COMP.

*xxxxxxx The following comment refer to variable below
*xkAkFx*xxx date format e.g - 2002-10-10+05:00
06 dateOfBirth PIC X(le).
06 phoneNumber PIC X (12)
OCCURS 9 TIMES.

The major fields in the protocol section are described below:

WSC-ENVIRONMENT : Set this to ‘O’ for CICS programs, ‘C’ for containers, and ‘B’ for all
other programs (IMS, Batch, DB2 Stored Procedure, etc). The default is ‘O’.

WSC-METHOD-NAME: The web service operation name, extracted from the WSDL. Do not
modify this field.

WSC-TEMPLATE-NAME: The name of the runtime metadata template. Do not modify this
field.

WSC-TRANSPORT-PROT: Set this field to ‘H’ for http transport or M for MQ transport. The
default is ‘H.

WSC-SSL-IND: Set this field to ‘Y’ to use SSL security, ‘A’ for AT-TLS or ‘N’ for none. The
default is ‘N’. When the field is set to Y’ then your outbound invocation will use native SOLA
SSL support. This supports SSL 3.0 protocol and accepts server certificate having either 1024
or 2048-bit RSA keys. When the field is set to ‘A’ then your outbound invocation will exploit zOS
TCPIP enabled AT-TLS (Application Transparent TLS).

Note: Contact your local zOS support to configure AT-TLS policy. AT-TLS supports SSL3.0
and TLS1.0 protocol.

http Data: The next few fields are only relevant to http transport.

WSC-NODE-1 thru WSC-NODE-4: Use these four fields to specify the 4 nodes of the IP
address that your web service’s binding endpoint. Leave these fields as zero if you want SOLA
to use DNS to resolve your FQDN.

WSC-PORT: Use this field to specify the port number. By default this field is extracted from the
port number of the soap:address location attribute.

"

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

WSC-FQDN: Use this field to specify the FQDN for your web service’s binding endpoint. By
default this field is extracted from the soap:address location attribute.

WSC-FILE-PATH: This field is extracted from the filepath of the soap:address location attribute.

WSC-PROXY: If your service is accessed through a proxy server then enter the FQDN of the
proxy in this field.

WSC-PROXY-PORT: Specify the port number of the proxy in this field.
MQ Data: The next few fields are only relevant to MQ transport

WSC-CONVERS-TYPE: Specify the MQ conversation type in this field. ‘D’ for Datagram, ‘R’ for
RequestReply or ‘T’ for ReplyTo.

WSC-MANAGER-NAME: The name of the MQ Queue Manager to connect to.
WSC-QUEUE-NAME: The name of the queue that SOLA should write to.
WSC-REPLY-TO-QUEUE: The name of the reply queue

WSC-MSG-EXPIRY: This represents the time (in milliseconds) that a message placed on a
gueue is allowed to persist before being removed by the queue manager. The default is to have
the message persist indefinitely.

WSC-MSG-PRIORITY: The priority to be assigned to the message.

WSC-SYNCPOINT-CTL-FLG: The fields WSC-SYNCPOINT-CTL-FLG and WSC-MQHCONN-
HANDLE go together. If the client wants to control sync/rollback operations when using
outbound over MQ messaging protocol, then he must set WSC-SYNCPOINT-CTL-FLG. If this
flag is set then he must also provide WSC-MQHCONN-HANDLE during the call which
represents a particular MQ manager that SOLA will use during the outbound processing.

WSC-MQCONN-HANDLE: This represents a connection handle (automatically returned to the
application after a request for a connection), that is, the connection to a particular queue
manager. Normally when SOLA returns to an application during outbound calls, any MQ
message processing has already automatically been "synced on return”. If however the
application wants to control sync/rollback operations itself, then the application must pass in a
particular connection handle which SOLA will use during all outbound processing of MQ
messages.

Please note if MQ is used: CSD Definition and XML9 definition for TRANCLASS is shipped with
the default DFHTCLOO and must be customized at setup.

WSC-MQGET-DATA-CONVERSION: This tells SOLA whether to perform any data conversion
on messages that are being retrieved on behalf of the application. The conversion of the
message will be in accordance to the encoding used when the message was originally placed
on the queue.

WSC-RETURN-CD: The return code issued by SOLA. Values are:
72

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

NORMAL-COMPLETION VALUE +00
ARRAY-OVERFLOW VALUE +01
DATA-TRUNCATED VALUE +02
OVERFLOW-AND-TRUNC VALUE +03
INVALID-CALL VALUE -01
PROCESS-ERROR VALUE -02
SERVICE-FAILURE VALUE -03
SOAP-FAULT VALUE -04
CONNECTION-FAILURE VALUE -05
DOM-ERROR VALUE -06
VALIDATION-FAILURE VALUE -07
PROGRAM-ABEND VALUE -99

WSC-RETURN-MSG: The error message issued by SOLA if WSC-RETURN-CODE is negative.

WSC-INVOKE-TRACE: Set this field to ‘Y’ to turn on a detailed trace. Use for debugging
purposes only, as the volume of trace data can be large.

WSC-WARNING-FLAG: Set this field to ‘R’ to report validation failures, or ‘I’ to ignore validation
failures. See the Validation section on page 75 for details.

WSC-VALIDATE-SCHEMA: Set this field to ‘I’ to validate requests, ‘O’ to validate responses or
‘B’ to validate both. See the Validation section on page 75 for details.

WSC-TIMEOUT-SECONDS and WSC-TIMEOUT-MICROSEC: How long SOLA should wait for
a response from the remote web service before timing out.

WSC-CONNECTION-CLOSE: Whether SOLA should close the TCPIP connection when the
service has completed. Specify ‘Y’ to close the connection or ‘N’ to leave the connection open
for high-volume batch applications.

WSC-TCPIP-JOBNAME: The name of the TCPIP stack that SOLA should connect to. If this
field is blank then SOLA will connect to “TCPIP’.

SOAP Faults

If a soap fault is returned by the remote service then WSC-RETURN-CD will contain -04 and the
following fields will be populated with the text of the soap fault. The fault area redefines the
soap input area.

WSC-Fault-Code: A Code that represents the fault
WSC-Fault-String: A string containing the text of the soap fault.

73

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

SOAP Request Area

This area will contain the fields that the remote service requires you to provide. In the example
of the nameSearch service, the fields are:

02 Input-Request REDEFINES WSC-METHOD-AREA.
03 nameSearch.
04 BossID PIC X(8).
04 SearchValue PIC X (25).

SOAP Response Area

This area will contain the fields that the remote service returns. In the example of the
nameSearch service, the fields are:

02 Output-Response
REDEFINES Input-Request.
03 nameSearchResponse.
04 Dfhcommarea.

05 ReturnCode PIC S9(04) COMP.
05 ReturnMsg PIC X (100).

05 SequelCode PIC S9(04) COMP.
05 CICSReturnCode PIC X(4).

05 HostSysid PIC X (4).

05 TotalCounter PIC S9(04) COMP.
05 FetchCounter PIC S9(04) COMP.

05 ClientInfo
OCCURS 300 TIMES.

06 ClientName PIC X (45).
06 ProducerID PIC X(7).
06 ClientNumber PIC S9(09) COMP.
06 PhoneNumber PIC X (20).

74

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Validation

SOLA has the capability to validate runtime data according to the schema data type. There are
two protocol fields in the copybook that are used for validation: WSC-VALIDATE-SCHEMA and
WSC-WARNING-FLAG.

To enable validation, WSC-VALIDATE-SCHEMA must be set to ‘I’ (to validate requests), ‘O’ (to
validate responses) or ‘B’ (to validate both).

Additionally, you can instruct SOLA to report or to ignore validation failures. Setting WSC-
WARNING-FLAG to ‘R’ will report validation failures, while setting it ‘I’ will ignore them.

WSC-RETURN-CD will return a code of -07 if WSC-WARNING-FLAG is set to ‘R’.

Using SOLA to Invoke Outbound Requests

At runtime, it’s fairly simple to invoke an Outbound web service. All that’s required is to fill in the
input fields in the generated copybook, override any fields in the protocol section, and call the
SOLA Outbound utility module XMLPC103.

Because the values in the protocol section were extracted from your WSDL, you may need to
override them. For example, when you imported the WSDL the soap:address may have
referenced a version of the outbound service that resides on a development server, but in your
test and production systems you would want to use a test or production version of the service.
This can be accomplished using virtual services defined in SOA Software’s Service manager, or
by overriding the FQDN field in the WSC-XMLPC103-LINKAGE copybook.

Invoking an outbound service from CICS

Format 1. Copybook less than 32k

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103'.

EXEC CICS LINK
PROGRAM (WS-XMLPC103)

COMMAREA (WSC-XMLPC103-LINKAGE)
LENGTH (LENGTH OF WSC-XMLPC103-LINKAGE)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC

75

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Format 2. Copybook greater than 32k

First place the SOLA generated copybook in a container called ‘SOLA-CONTAINER’ (the
Channel and Container names are important and must be as shown).

MOVE 'SOLA-CHANNEL' TO WS-SOLA-CHANNEL
MOVE 'SOLA-CONTAINER' TO WS-SOLA-CONTAINER
MOVE LENGTH OF WSC-XMLPC103-LINKAGE TO WS-CONTAINER-LEN

EXEC CICS PUT
CONTAINER (WS-SOLA-CONTAINER)

(
Channel (WS-SOLA-CHANNEL)
From (WSC-XMLPC103-LINKAGE)
FLENGTH (WS-CONTAINER-LEN)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC

Now link to XMLPC103 passing the Channel.

EXEC CICS LINK
PROGRAM (WS-XMLPC103)

Channel (WS-SOLA-CHANNEL)

RESP (WS-RESP)

RESP2 (WS-RESP2)
END-EXEC

Invoking an outbound service from Batch, IMS, DB2 Stored Proc, etc.

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103’.

CALL WS-XMLPC103 USING WSC-XMLPC1l03-LINKAGE

Using WS-Security with Outbound requests

The current version of SOLA doesn’t support WS-Policy for Outbound web services requests.
SOLA will add support for this with the 6.1 release of SOA Software’s Policy Manager,
combined with the 6.1 release of SOLA. Until the 6.1 releases are available SOLA exposes its
internal Policy interface to allow web service requestors to influence the creation of the
wsse:Security header on Outbound requests.

This interface is remarkably simple to use; all that’s required is to provide a second copybook
containing the security credentials. The methods of calling SOLA with the second copybook are
limited to:

e CALL USING WSC-XMLPC103-LINKAGE, WSC-SECURITY-TOKEN for non CICS calls

e EXEC CICS LINK using two containers, the first containing WSC-XMLPC103-LINKAGE
and the second containing the WSC-SECURITY-TOKEN.

76

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

The Security Structure WSC-SECURITY-TOKEN is provided in the SOLA SAMPLIB as member
SECTOKEN. Include this member in your program and populate it before calling XMLPC103.

01 WSC-SECURITY-TOKEN.
05 WSC-Eye-Catcher PIC X (08) VALUE 'SECTOKEN'.
05 WSC-Security-Head-Cnt PIC S9(04) VALUE +0 BINARY.
05 WSC-Security-Info OCCURS 3 TIMES.

Kmmmm must understand is attribute of the security
Ko if you chose to ignore it, fill it with spaces.
K e e ———_—E——_—_—_—_—_—_——E—E——E—_—E——————————
10 WSC-Must-Understand PIC X (01).
88 MustUnderStand-0 VALUE '0'.
88 MustUnderStand-1 VALUE '1'.
88 OmitMustUndrStnd VALUE ' '.
10 Actor PIC X (64).
10 WSC-Add-Timestamp PIC X (01).
88 No-Timestamp VALUE 'N' ' ',
88 Add-Timestamp VALUE 'T'.

10 WSC-Token-Timestamp.

*---- Create must be sent in the following format
*---- example - 2009-11-12T05:13:51.428%
*-——— Fill create with spaces if not provided.
*-——— If spaces, SOLA will use current GMT timestamp
e

15 T-Create-Token-Tm PIC X (26)
K e
K e
*--- Expire may be sent in the format 2009-11-12T05:13:51.428%
*--- Fille it with spaces or low value if not provided
e)

15 T-Expire-Token-Tm PIC X (26).
K e e
*--- Expire may also be given as interval from current time
*--- 1in seconds

15 T-Expire-Interval.
20 T-expire-Seconds PIC S9(09) BINARY.

10 FILLER PIC X (256).
10 WSC-Token-Cnt PIC S9(04) BINARY.
10 WSC-Token-Data OCCURS 3 TIMES.

15 WSC-Token-Type PIC X (01).

88 UserNameToken VALUE 'U'.

88 Custom-Token VALUE 'C'.
S S
Aemmmmm e Provide the user name --------

K e e
15 Username-Token PIC X (256).
g) S
oo If custom token is sent, you need to ----
Kmmmm - pass the entire xml text ---------—--—----

15 Custom-Token-Data REDEFINES
Username-Token.
20 Cust-Token-Len PIC S9(09) COMP.

77

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

20 Cust-Token-Ptr POINTER.

20 FILLER PIC X (248).
K e e e e ———— — o — — — —
Kmmm If password is not sent in the clear text
Hmmmm————— a digest can be passed
K digest password = BASE64 (SHA-1 (Nonce+createt+password))

15 Password-type-ind PIC X (01).
88 Clear-text VALUE 'Cc' ' ',
88 Digest-bo64 VALUE 'B'.

*-If your password is in cleare text or digest format

*-set d-no-action to true (when sending digest, use base64 format)
*-If you want sola to generate digest then

*-Set Generate-digest to true (ICSF must be active)

*-~In this case SOLA will generate digest as follows

*-digest password = BASE64 (SHA-1 (Nonce+create+password))

*-SOLA will generate digst from password after converting to utf8

15 Password-action PIC X(01).
88 d-no-action VALUE 'N' ' ',
88 Generate-digest VALUE 'G'.

15 Password-Token PIC X(128).
K e e e ———_———E—_—_E—_E—_——E—_E—_E——E——E—E——E——E———————
Kmmm e — Below is example of nonce format
A —— If clear-text and no-action
A —— fill nonce with spaces
Kmmmm = must fill password with clear text ebcdic
Amm e —— If digest-b64 and generate-digest
Amm e — Either fill nonce with binary
Kmmmmm - or fill it with space so SOLA will generate
A fill password with clear text (ebcdic)
e —— fill create with value or space for sola to
e —— generate
A —— If digest-b64 and no-action
Kmmmmm - must fill nonce with base64 value
Kmmmmm - must fill password with base64 digest
Kmmmm o ——— must fill create
e —— If clear-text and generate-digest
e —— generate-digest is ignored
K e e

15 Password-Nonce PIC X (128)
K o e e —————_———_—_——_—_——————_——E————_————————
Kmmm - Nonce encoding attribute is for future use
Hom o If encoding type is set to spaces,
Hom o this attribute will not be populated
K e e

15 Nonce-encoding PIC X(1).

88 Dbase64-binary VALUE 'B' ' '.

*---— Create must be sent in the following format

*-——— example - 2009-11-12T05:13:51.428%

*-——— Fill create with spaces if not provided.

*-—-—— If spaces, SOLA will use current GMT timestamp

K e e e
15 Create-Token-Tm PIC X(26).

78

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Hmm The timestamp token will be filled

Hmm If you indicate add-timestamp

Kmmm Timestamp element is added to Security header
Kmmm—— outside username token if present
S
S S S
*--- WS-Addressing for future use only -----------------

K e e e — —_——_—_——_—_—_E—_—_E—_E—_E——_E—E—__E—_E—E—E—_E—_E—E—_E—_E——E—E—E—_E—E—E—E—————

10 WSC-Addressing.
15 Addressing-Container.

20 Add-Value-Len PIC S9(09) COMP.
20 Add-Value-Ptr Pointer.
20 Add-Value-filler PIC X(08).
e g
oo For future only-------—---------—--——-—-————
K e e
05 WSC-RM
10 RM-Container.
15 RM-Value-Len PIC S9(09) COMP.
15 RM-Value-Ptr Pointer.
15 RM-Value-filler PIC X (08).
K e e
A For future only--------------"-"-"-"-"-"—-"——————
e
05 WSC-XML-Encryption.
10 Enc-Container.
15 Enc-Value-Len PIC S9(09) COMP.
15 Enc-Value-Ptr Pointer.
15 Enc-Value-filler PIC X(08).
K e
Koo For future only-------—------—---—--——-—-————
K e e
05 WSC-XML-Signature.
10 Sig-Container.
15 Sig-Value-Len PIC S9(09) COMP.
15 Sig-Value-Ptr Pointer.
15 Sig-Value-filler PIC X (08).
05 Filler PIC X (250).
05 WSC-Http-Head-Cnt PIC S9(04) VALUE +0 BINARY.
K e e
o m oo Repeat the header info based on count-
K e e
05 WSC-HTTP-Header-Info OCCURS 1 TO 15 TIMES
DEPENDING ON WSC-Http-Head-Cnt.
K e e
Hmmm oo Header value can be given---------------
Hmmm oo as text up to 128 bytes ---------—-----
Koo mmmm o or len + pointer in case of batch program
Koo mmmm o or CICS Container name that contains the value
K e e
10 Http-Value-Ind PIC X(1).
88 Value-given VALUE 'v' ' ',
88 Pointer-given VALUE 'P'.
88 Container-given VALUE 'C'.
K e e
Koo Below is an example of name value pair -----
K e e

79

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Kmmmm—— Cookie: $Version=1; UserId=JohnDoe
Fmm - Accept: */*
Kmmm——— If-None-Match: "737060cd8c284d8af7ad3082£2095824d"
K e e e e . — — — — — — ———— — — — — —— — — — — — — — — ——
e —— You can also put custom headers such as------
Koo o custom-header: <some value >
K e e
10 Http-Name-value-pair PIC X (256).
K e e e e ———— — o ——
Hmm e — Fill container name if using CICS Containers
Hmm e —— else use pointer if the value is bigger than 256

10 Http-Nm-value-Long.

15 Http-Nm-Value-Len PIC S9(09) COMP.
15 Http-Nm-Value-Container.
20 Http-Nm-Value-Ptr Pointer.
20 Http-Nm-Value-filler PIC X (12).
*x*x*x*%0)5 WSC-Additional-HTTP-Header PIC S9(04) wvalue zero.
05 Filler PIC X (256).
S
* if additional header needs to be added on http
please uncomment 3 lines below and keep repeating
* them for each additional header
e O
* 05 WSC-NO-OF-HEADERS.
* 10 WSC-Header PIC X (128).
* 10 WSC-Header-value-len PIC S9(04).
* 10 WsC-Header-value PIC X (256).
4
***-- the above WSC-Header-value can be expanded up to 4k
***-- please make sure WSC-HEADER-value-len contains the
***-- corrent length else wrong data will be sent
4
***-- End of security section
KK K e e
K e e
o Encryption and signatures are for future use only
oo Not currently supported -----—--—-—-—-—---

01 WSC-Encryption-Decryption.
05 WSC-Encryption.

*--Future only-------—-—- RSA Key must be defined in ICSF
10 WSC-Enc-ICSFKey PIC X (64).
*--Future only--------- Cert Container or pointer

10 WSC-Enc-Cert-Container.
15 WSC-Enc-Cert-Pointer usage 1is pointer.
15 WSC-Enc-Cert-FIller PIC X (12).

*--Future only-------- can define partial x path to fit
A in 256 bytes
10 WSC-Enc-Element PIC X (256) occurs 3 times.
05 WSC-Decryption.
*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Dec-ICSFKey PIC X (64).

01 WSC-Signature.
05 WSC-Signature-create.
*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Sign-ICSFKey PIC X (64).

80

Lifecycle Manager Integrated

r' SOLA Developer 6.4.2 User’s Guide
*--Future only-------- can define partial x path to fit
A e in 256 bytes
10 WSC-Sign-Element PIC X (256) occurs 3 times.
05 WSC-Sign-Verify.
*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Veri-ICSFKey PIC X (64).

10 WSC-Veri-Cert-Container.
15 WSC-Veri-Cert-Pointer usage is pointer.
15 WSC-Veri-Cert-FIller PIC X (12).

Here’s a brief description of how to use the fields in the SECTOKEN copybook:
WSC-Security-Head-Cnt: Indicates the number of Security Headers to include.

WSC-Must-Understand: A one byte field. Values ‘0’ ‘1’ and ‘ ‘. A blank causes the attribute to
be omitted entirely.

Actor: If value is other than spaces then it will be added as the ‘actor’ attribute to the
wsse:Security element.

WSC-Token-Cnt: Indicates the number of user name tokens (wsse:UsernameToken) to be
added (up to 3).

WSC-Token-Type: ‘C’ for custom (not yet supported) or ‘U’ for Username Token (supported)
Username-Token: The user name token.

Password-type-ind: ‘C’ * “ or ‘B’. This indicates if the password is clear text (‘C’ or blank) or a
base64 digest (‘B’)

Password-action: ‘N’, * “ or ‘G’. ‘N’ or blank indicates that there is no action needed on the
Password. Either you should provide (and wish to use) plain text, or you must provide the
base64 digest yourself. ‘G’ indicates to SOLA that we need to generate the digest using the
provide plain text password.

Password-Token: The clear text password of the base64 digest password.
Password-Nonce: If digest is used this is the value of the Nonce.

Nonce-encoding: For future use. Currently only base64 is supported.

Create-Token-Tm: If using a digest this is the Created time

WSC-Add-Timestamp: ‘T’ if you want SOLA to add a timestamp to your request.

Invoking an Outbound Service from CICS using WS-Security

Please refer to program WCC6032A, which is shipped in the SOLA SAMPLIB, for a sample
program that invokes the WS-Security interface from a CICS program.

81

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

An abbreviated description of the process is as follows:

You must first place the SOLA generated copybook in a container called ‘SOLA-CONTAINER’
(the Channel and Container names are important and must be as shown).

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103’.
MOVE 'SOLA-CHANNEL' TO WS-SOLA-CHANNEL
MOVE 'SOLA-CONTAINER' TO WS-SOLA-CONTAINER

MOVE LENGTH OF WSC-XMLPC103-LINKAGE TO WS-CONTAINER-LEN

EXEC CICS PUT
CONTAINER (WS-SOLA-CONTAINER)

(
Channel (WS-SOLA-CHANNEL)
From (WSC-XMLPC103-LINKAGE)
FLENGTH (WS-CONTAINER-LEN)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC

Then place the security token data structure into a container called ‘SOLA-SECURITY”’ as
shown.

MOVE 'SOLA-CHANNEL' TO WS-SOLA-CHANNEL
MOVE 'SOLA-SECURITY' TO WS-SOLA-CONTAINER
MOVE LENGTH OF WSC-SECURITY-TOKEN TO WS-CONTAINER-LEN

EXEC CICS PUT

CONTAINER (WS-SECUR-CONTAINER)
Channel (WS-SOLA-CHANNEL)
From (WSC-SECURITY-TOKEN)
FLENGTH (WS-CONTAINER-LEN)
RESP (WS-RESP)
RESP2 (WS-RESP2)

END-EXEC

Now link to XMLPC103 passing the Channel.

EXEC CICS LINK
PROGRAM (WS-XMLPC103)

Channel (WS-SOLA-CHANNEL)

RESP (WS-RESP)

RESP2 (WS-RESP2)
END-EXEC

Invoking an Outbound Service from Batch, IMS, DB2 Stored Proc, etc using WS-
Security

Please refer to program WCC6032B, which is shipped in the SOLA SAMPLIB, for a sample
program that invokes the WS-Security interface from a non-CICS program.

An abbreviated description of the process is as follows:

82

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Populate the two copybooks then call the SOLA Outbound utility module XMLPC103. The
example below shows a COBOL version of the call.

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103'.

CALL WS-XMLPC103 USING WSC-XMLPC1l03-LINKAGE
, WSC-SECURITY-TOKEN

83

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Analyzer Reference

This section contains information about the various menu options, properties and alternate
views available in the analyzer. You can use this reference to increase your familiarity with the
analyzer, as well as learn how to perform more complex analysis using the full capabilities of
SOLA Developer.

Analyzer Button Bar

Prefix: APPLY DICTIONARY FINALIZE

Prefix Exclusion Field: this field allows for a prefix or a group of prefixes to be entered for
exclusion from the field names. If more than one prefix is entered, prefixes must be separated
by commas. The prefix field works as a preprocessing step when APPLY DICTIONARY is
clicked. The unwanted prefixes are first stripped off, and the resulting names are then fed into
the dictionary.

APPLY DICTIONARY: this button applies the SOLA dictionary to every item in either the
legacy tree or the schema tree, depending on what type of analysis you are doing (outbound,
inbound, etc.). For more information about the SOLA dictionary, see page 198.

FINALIZE: this button will finalize the analysis, and create the method.

84

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Legacy and Schema Trees

Depending on the type of web service you are creating (bottom up, top down, etc.), which one of
the two tree types (legacy or schema) is the target of your analysis may differ. However, the
drag and drop functionality is identical regardless of analysis type.

Tree Placement

The location of the trees will vary depending on which type of analysis you are doing.

Inbound, bottom up analysis: the legacy tree is on the left, and the schema tree, which is the
target of the analysis (the one you build and/or configure when analyzing), is on the right. This
includes callable and channel/container analysis, which is always inbound bottom-up.

Outbound or inbound top-down analysis: the schema tree is on the left, and the legacy tree,
which is the target of the analysis (the one you build and/or configure when analyzing) is on the
right.

Inbound, meet-in-the-middle analysis: the legacy tree is on the left, and the schema tree is
on the right. Both trees are considered as source trees and so are frozen from any drag and
drop updates. The only user update permitted is the establishing of links between legacy and
schema tree elements.

When dragging items from one tree to another, you drag from the left tree to the right tree.

PreAnalysis || Analysis ® Anciywn *
Prefix: APPLY DICTIONARY FINALIZE
—— DFHCOMMAREA rhoizisizion)
2 € swBNameSearchl =B DFHCOMMAREA -
€ Bossid [BllrsturncCode
= &€ SearchType Bllreturnmsg
L] SEARCHBYNAME B Frogramversion
LI SEARCHBYSSN Bl sqReturnCode
€ searchvalue Blcicsre E
= € AccessMethad Blsos:=1d
LIFIRMWIDEACCESS = [l searchType
[E sEARCHBYNAME

Schema Outputs
B searcHBYSEN

Bl searchvalue
o [l AccessMethod
B rcaccess
[mnGMNTACCESS

= £ sweNamesearch1Response -
= € DFHCOMMAREA

£ ReturnCode
£ ReturnMsg
£ ProgramVersion
£ sqReturnCode
& cicsre
£ TotalCounter i

m

[FIRMWIDEACCESS
Bl Hostsysid
B TotalCounter
RllFetchCounter 2

Outbound & Inbound Top Down All other types
The tree on the left is referred to as the “source tree”, because that’s the structure you will use
to build either a WSDL (inbound bottom-up, callable, container) or a copybook (outbound,
inbound top-down).

The tree on the right is called the “target tree”, because that’s the tree you are building to create
your web setrvice.

85

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Header Tabs

Both the Schema Inputs and Schema Schema Inputs || Header
Outputs section have a Header tab. This
allows you to configure the input and output
SOAP header for the web service you are
creating.

€ Header

Adding elements to the headers works the
same way as adding elements to the input
our output sections of the schema.

Click on the header tab (input or output)
you want to configure, and drag items into
that section.

Drag and Drop Operations

The legacy and schema trees support the following drag and drop operations:

Copy item from one tree to another: you can drag and drop items from the source tree (left)
to the target tree (right). When building a web service, depending on the type of analysis
(inbound, outbound, etc.), you are either building a WSDL or a copybook. Dragging items from
the source tree to the target tree is how that WSDL or copybook is constructed. Detailed
information about how to conduct an analysis begins on page 45. When you drag an item from
the source tree to the target tree, the item remains in the source tree and an equivalent item
ends up in the target tree. The destination item will be linked (associated) with the source item
(see below).

CTRL Copy item from one tree to another:
you can access a special menu of drag and
drop operations by holding down the CTRL = 4 Append Legacy Item
key when you drag an item from one tree to
another.

Schema Inputs Header

Append Default Ttem

As=zociate Legacy Item

m Append Legacy Item: this is the DependingOn Legacy Ttem
default drag and drop operation
and is the same as not using the
CTRL key. Cancel Operation

Redefine Legacy Item

= Append Default Item: this moves
the item from the left tree to the right tree, but sets its node type as “default”. This
means that it will not be in the schema and SOLA will pass a default value to the
legacy program. You will need to set the value using the properties panel.

®m Associate Legacy Iltem: when an item is moved from the source tree (left) to the
target tree (right), it will have an association with its source. That way, you will
always know the source of the item in the tree you are building and/or configuring,

86

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

even if you change its name. However, if you create a new item in the target tree, it
will not have an associated source tree item. You can then use this CTRL-drag
operation to create an association for that item. You can also use this operation to
override an existing association and create a hew one.

= DependingOn Legacy Item: you can use this operation to create an occurs-
depending-on link from an item from the target tree to an array in the source tree.
The target array’s number of occurrences will then be limited to the numerical value
of the linked item. For example, if there is a value in the source tree called
“fetchCounter” with a default value of 100 and you drag fetchCounter on top of an
array in the target tree, that array will be limited to 100 occurrences. This is for
inbound bottom-up analysis only (including callable and channel/container).

= Redefine Legacy Item: this operation is only used when the legacy tree is the
source tree (bottom up and meet-in-the-middle) and creates a different kind of
association. When you use this operation, the legacy item you drag to the schema
tree will be redefined by the legacy item the target schema item is associated with.
You can use this to control memory usage by the legacy program.

®m Cancel Operation: cancels the drag and drop operation.

You can Display relationship between an item in one tree and its counterpart in another
tree: when an item is moved from the source tree (left) to the target tree (right), it will have a
permanent association with its source. That way, you will always know the source of the item in
the tree you are building and/or configuring, even if you change its name.

This relationship is displayed via a highlight. When you click on an item in the target tree, its
corresponding item in the source tree will be highlighted.

87

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

dfhcommarea Schema Inputs | Header
;l.dfhu:u:umrnarea = € convertTemp
=Bl in-type InType
.temperature-:nnver‘t ﬂ InFahrenheit

.Iength-cnnvert
;l.length-area
.in-feet
.in-inches
.Dut-centimetres
;l.ternperature-area

B in-fahrenheit Schema Outputs | Header

out-celsius
. = E convertTempResponse

. e :
These items o sl

are associated

This association is also displayed in a pop-up dialog when you hover over a tree item on either
tree.

Legacy Tree Schema Tree
= . DFHCOMMAREA Linked: /Envelope/Body/commareaTestResponse/ReturnCode *
. ReturnCode t{b € ReturnedRows
.ReturnMsg = € Envelope
. ReturnRowCount E e
S = € Body
=Bl char-Tes = € commareaTestResponse
.Inl:har
o & ReturnCode
I inCharsig =9 & ReturnMsg
"ﬂEmallIl*t-TE:‘-f OutChar

Move item within the same tree: you can move items around in the right tree to change their
position in the WSDL or copybook. Moving items can have effects on functionality.

88

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Tree Item Menus

Right-clicking on an item in either the legacy Schema Inputs | Headsr

tree or the schema tree will display a pop-up

menu. The menus are different, depending =€ convertTa Edit Schema Name
on whether you've clicked on a Legacy tree or = _ _

a Schema tree. The menus contain several € InFahrg Display Table View
options for analyzing the program. Depending Define Enumeration

on which tree you chose and what type of

analysis you are doing (inbound bottom-up,
inbound top-down or outbound), you will see Remove Association
different items in the menu.

Apply Dictionary

Custom Exit

The complete list, for both the legacy and the CERE IR 4
. Schema Outpu
schema trees, is presented here. EditCheck b
= € convertTe _
Apply Dictionary: choosing this option will £ OutCels crEasERTTE b

apply the SOLA dictionary to the selected item
only. For more information about the SOLA
dictionary, see page 198.

Assign Default: Applies only to Default
nodes. Allows user to attach a value in cases
where this tag is not sent up as part of the
SOAP Request.

Assign Container: Specify a container name to associate with a Legacy 01 level item.

Custom Exit: (Optional). Specify the name of an exit program to be called to perform custom
transformations. Specifications on writing a custom exit will be provided on request.

Define Enumeration: T
choosing this option will -
display the enumerations
panel, which lets you make
changes to existing
enumerations, create new
enumerations or delete
enumerations. The
enumeration panel contains
all the existing enumerations
of the item you clicked on. If
there are no enumerations,
the panel will be blank.

| Enumeration Value Enumeration Description
T
(i

E"'Eﬂmx

Ok] [Cancel

89

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

You can create new enumerations by clicking the E™ icon and delete existing enumerations by
clicking the I icon next to the enumeration you wish to delete. To delete the L enumeration,
click on its associated W icon.

To change the value of an enumeration, enter the new value in the field under the Enumeration
Value column. You can also add an optional description under the Enumeration Description
column.

When you are finished with the enumerations panel, click to save your changes or

to discard them.

Display Table View: choosing this option will display the current item and all of its children in a
table view (users of SOLA 5.x will recognize this familiar layout). The table view shows all of the
items (parent and children) in a table under a series of column headings that correspond to the
item’s properties (from the properties panel).

—_— e ——
TableView =]

XPath: /Envelope/Body/namesSearch

Rowid Schema Name o Node Type Drata Type Description

1 nameSearch | e &

2 Boszsid | e string

3 SearchType |] string

4 SearchType-828-01 | n string =
| 5 SearchType-88-02 | n string

6 SearchValue |] string

7 SearchValue |] string

3 SearchValue |] string

9 AccessMethod |] string -

Fi 1l 3

Some users find it more convenient to change the various properties of an item and its children
using the table view. There is nothing that you can do in a table view that you cannot do by
selecting individual items and changing their values using the properties panel; the table view is
offered as a time saving convenience to those users who prefer this type of layout.

Delete this Node: choosing this option deletes the selected item.

Edit Check: (Optional). Specify the name of an edit check program to be called to perform
field validation. Specifications on writing an edit check program will be provided on request.

Edit Schema Name: The element or attribute name that appears in the schema may be
modified.

90

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Edit Legacy Name: use this to change the name of the legacy field. You can also change the
name by double clicking the field.

Fragmented Segment: selecting this option instructs SOLA that the segment being analyzed
contains data that crosses the 32K limit, which prepares SOLA to handle data fragmented into
chunks (which is how IMS circumvents the 32K limit).

Init Character: Specify an initialization character for a Legacy 01 level item. This is a single
character that will be used to initialize the structure by copying that character to every byte in
the structure. Init Character can only be specified at the 01 Structure name field, specifying it
for any other field in the structure will have no effect. Init Character can be specified on one of
two ways:

1. As a single displayable character
2. As a hexadecimal character, in the format X'00’, which represents the a low-values
character.

Input Processing: for input elements only (applies to Outbound analysis). Displays the input
processing sub-menu, detailed below:

= Excludelf: choosing this option displays a sub-menu of additional options. Selecting an
option from the sub-menu will exclude the selected field from the WSDL if certain
conditions are met. Options are:

Default: will exclude the field if it's equal to its default value (spaces for character
fields, zero for numeric fields).

Zero: will exclude the field if its value is 0 (zero).

Spaces: will exclude the field if its value is one or more spaces.
Low Value: will exclude the field if its value is binary zero.
HighValue: will exclude the field its value is all hexadecimal FF.

= StopArraylf: choosing this option displays a sub-menu of additional options. Selecting
an option from the sub-menu gives you the ability to pick an elementary item within an
array to use as a sentinel to stop table processing if certain conditions are met (based on
selected option)

Default: will stop the array if it’s equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will stop the array if the field’s value is O (zero).

Spaces: will stop the array if the field’s value is one or more spaces.
Low Value: will stop the array if its value is binary zero.

HighValue: will stop the array if its value is all hexadecimal FF.

Matching Report: this option is available only in the legacy tree. It displays the ‘Legacy &
Schema Matches dialog’, which displays all the associations (links) between the selected legacy
item (Cltem) and its children, and items in the schema tree (Sltems). Clicking on the top level
items will display a report of all associations in the tree.

91

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

| Matching Report = =1Ea

! Legacy & Schema Matches

Schema Name Schema Path

= Legacy Key: (InSmallIntMax) - /SmallInt-Test/InSmalllntMax (1 Schema Match)

InSmallinthlax [Envelope/Body/commareaTest'Smallnt-TestIinSmallnth ax

|
= Legacy Key: (InsmallIntieg) - /SmallInt-Test/InSmallIntieg (1 Schema Match) |
InSmallntNeg {Envelope/Body/commareaTest/Smallint-TestinSmallintMeg |
|

|
[| |2 Legacy Key: ({ InSmallIntPos } - /SmallInt-Test/InSmallIntPos (1 Schema Match)

InEmallintPos {Envelope/Body/commareaTest’Smallnt-TestinSmallntPos

|
|
= Legacy Key: (SmallInt-Test } - /Smalllnt-Test (1 Schema Match) I
|

| Smallnt-Test {Envelope/Body/commareaTest/Smallnt-Test

Node Operations: displays the node operations sub-menu, detailed below:

= All Attrs -> Elems: changes the selected item and all of its child nodes from an
attribute to an element.

= All Elems -> Attrs: changes the selected item and all of its child nodes from an element
to an attribute.

m Appent Child Node: choosing this option will create an item (Citem or Sitem,
depending on which type of analysis you are doing) and append it to the selected item
as a child. The newly created item will be named “DoubeClick to Edit”, indicating that
you should name the node by double clicking its placeholder name.

m Current Node -> Attr: changes the current node (but not its child nodes) into an
attribute.

m Current Node -> Default: changes the current node (but not its child nodes) into a
default node.

m Current Node -> Elem: changes the current node (but not its child nodes) into an
element.

m Current Node -> Text: changes the current node (but not its child nodes) into a text
node.

= Delete this Node: choosing this option deletes the selected item.

® Insert Node Before: choosing this option will create an item and place it in the tree
before the selected item on an equal level (i.e. if the selected item is a child node, the
newly created item will also be a child of the same parent).

Output Processing: for output elements only (applies to Inbound analysis). Displays the
output processing sub-menu, detailed below:

92

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

= Excludelf: choosing this option displays a sub-menu of additional options. Selecting an
option from the sub-menu will exclude the selected field from the WSDL if certain
conditions are met. Options are:

Default: will exclude the field if it's equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will exclude the field if its value is 0 (zero).

Spaces: will exclude the field if its value is one or more spaces.
Low Value: will exclude the field if its value is binary zero.
HighValue: will exclude the field its value is all hexadecimal FF.

= StopArraylf: choosing this option displays a sub-menu of additional options. Selecting
an option from the sub-menu gives you the ability to pick an elementary item within an
array to use as a sentinel to stop table processing if certain conditions are met (based on
selected option)
Default: will stop the array if it's equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will stop the array if the field’s value is 0 (zero).

Spaces: will stop the array if the field’s value is one or more spaces.
Low Value: will stop the array if its value is binary zero.

HighValue: will stop the array if its value is all hexadecimal FF.

Remove Association: removes all associations from the target node.
Remove Depending: removes an occurs-depending-on association.

Repeatable Segment: selecting this option instructs SOLA that the segment being analyzed
may be repeated a number of times, depending on the data set returned. Repeatable segments
can only be used in IMS analysis. Currently only output repeatable segments are supported.

Transformation: allows you to change the format of the item’s properties (e.g. change date
from YY-MM-DD to MMDDYY or “true or false” to “Y or N”). There are several formatting
choices for each available property type. This functionality is present in inbound and outbound
web services.

Date: change date format (e.g. YYMMDD to YY-MM-DD, etc.).

Time: change time format.

Timestamp: change timestamp format.

Boolean: change Boolean value format (e.g. true/false to T/F, etc.)

CodePage UTF8: choosing this menu option allows you to choose codepage
conversion to and from UTF8 (variable length characters) to DBCS (two bytes per
character). SOLA uses z/OS Conversion Services to do the conversions, so you'll need
to have that active on your system, and the appropriate codepages will need to be
installed. Please see the SOLA Installation Guide and SOLA Administration guide for
details.

93

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

= ﬂ getParts
gr PartMNurmher
Edit Scherna Mame

UTF-16 {1200)

Display Table Wiew KOREAN (833)

Define Enurneration KOREAMN DB (534)

Apply Dictionary THAI (538)

Rermowve Association THAI DB (839

Custom Exit

SWEDISH (278))

Transformation 2 D ate CHIMESE DB (835))

EditCheck 2 Tirne CHIMESE MIX (937)

Mode Operations 2 TimesStamp JaPaN OB (300)
Baoaolean

JAPAN MIX (939)

CodePage UTFS <-= GERMAN {1141)

Misc

FREMCH {1147)

L . - - - -
| TF

= Misc: allows you to set miscellaneous settings:

Retain XML cp37: indicates that the data in this element is an application XML
payload that the SOLA runtime must not parse and that has to be exchanged
between the SOAP client and the application in EBCDIC format. This is valid for
both input and output processing.

Retain XML UTF8: indicates that the data in this element is an application XML
payload that the SOLA runtime must not parse and that has to be exchanged
between the SOAP client and the application in UTF-8 format. This is valid for
both input and output processing.

SOLA offers the ability to validate the application’s input and output data at runtime as a natural
consequence of capturing the information required for transformation. See the Validation
section on page 85 for details.

Unlink This Node: this will undo a drag-and-drop link operation (see page 86), unlinking a
source tree item from an item in the target tree.

94

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Analyzer Properties

The properties displayed in the properties panel can be customized, however all SOLA
installations are shipped with a standard set of properties that are described here. These
properties not only display information about the selected item, they also contain configurable
fields that can change the way the item, and consequently the web service, behave.

*

Not all properties appear for every field type.
prop PP y yp createdTimestamp=2008-07-10-14.01. 33, 154000 |

If a property exceeds the available field createdTimestamp 2008-07-10-14.0...
space, dc_)uble cI_ick on the field to display a createdUser L}

pop-up dialog with the full length property B

value. dataType

m aType: the datatype in an abbreviated form.
m columnNm: this is the name of the legacy tree item.

m ctxSnstivelD: this is ID of the legacy tree item that is linked to the displayed schema

tree item
® dataType: indicates the item’s data type. Legacy dataType %

item data type names indicate mainframe data dataTypeFQ string

types while the Schema item data type names dependD hasef4Binar

conform to open system data types. This is a drop dateTime ﬁ_”)

down list and the value can be changed. See description T

Appendix A: Schema and Copybook Generation editCheckCode

on page 216 for details about the available oD Integer

OptionS. EnNvIron ShI:Ir't
exciudelfhul decimal

= dependlID: if the selected item is part of an ‘occurs depending on’ array, this field
displays the id of the item it depends on.

m description: a free form description of the item. You can use this to facilitate reuse by
making it easier for others to understand your analysis.

m effective: timestamp that indicates when the item was created and made effective
m environID: ID corresponding to the Environment in which the analysis is being done

m excludeifNull: this item is a drop down menu with two values, Y and N. Select Y to
filter responses based on their “natural nullable state” (e.g. 0 for numeric items or an

95

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

empty string for strings). If Y is selected, the field will be excluded from the WSDL if it is
null.

= |D: Unique internally assigned identifier for the element

m jo: this is the variable’s disposition (I/O status) and has the following options (the default
value represents what SOLA believes to be most appropriate for the associated
variable):

I: indicates that the variable is contained in the SOAP request and is input to the
COBOL or PL/I program.

O: indicates that the variable is output from the COBOL or PL/I program and will
be published in the SOAP response.

X: indicates that the variable is excluded, which means it is not referenced by the
COBOL or PL/I program and will not be part of either a SOAP request or a SOAP
response.

= |en: the maximum physical length, in bytes, of the variable. This will typically be the
same as the Precision, though in the case of decimal data types, Length and Precision
will be different.

= |evel: this is the variable’s level within the COMMAREA. This does not necessarily
directly correspond to the level number in the commarea, with the exception of 88 levels.
If the commarea structure level numbers are 01,05,10, the levels will be 1,2,3.

m maxOccurs: this is an Sitem property that indicates the maximum number of
occurrences of an item. This item corresponds to an xml schema’s maxOccurs value.

® methodID: this is the internal ID of the method

® minOccurs: this is an Sitem property that indicates the minimum number of occurrences
of an item. This item corresponds to an xml schema minOccurs value.

B namespace: this is an optional Sitem property to set the namespace for the schema
item

® nodeType: this is a menu with two options, e (Element) or a (Attribute). This field will
determine whether the associated item is treated as an element or an attribute in the
WSDL. When SOLA analyzes a compile listing, it determines what is input and output
and attempts to set most output items as attributes for performance and efficiency
reasons. Output Arrays are exceptions that will be represented as elements.

The figures below show two results of a Quick Test on the same method. The first is
with all fields set to A (Attribute) and the second is with all fields set to E (Element).

All Fields set to Attribute:

96

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

<?xml version="1.0" encoding="UTF-8" ?>
ol = T T

- <s0ap:Body:>
- <nameSearchResponse
xmins="http:/ fnameSearch.ClientFinder.x4mlsoa.com/CA/SOLACAD4/TXMLD990">
- <Commarea ReturnCode="0" ReturnMessage="" ProgramVersion="1.0" SequelCode="0"
CicsReturnCode="" HostSysid="CICB" TotalCenter="2" FetchCenter="2">
<ClientInfo ClientName="HOGAN, RUTH S' Producerld="7469968"
ClientNumber="113340063" PhoneNumber="" /=
=ClientInfo ClientName="HOGAN, RUTH S' Producerld="7469968"
ClientNumber="987130063" PhoneNumber="" /=
</Commareaz
</nameSearchResponse>
</soap:Body:=
</soap:Envelope>

All Fields set to Element:

<?xml version="1.0" encoding="UTF-8" ?=>
<l-- 2007 1.49.41
Elar = 66 mi ds= -=
- «<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
- <spap:Body>
- <nameSearchResponse
xmins="http:/ /nameSearch.ClientFinder.x4mlsoa.com/CA/SOLACAD4/TXMLD990">
- <Commareaz
<ReturnCode=0«/ReturnCode >
<ReturnMessage /=
<ProgramVersion=1.0</ProgramVersion:
<SequelCode=0</SequelCode>
<CicsReturnCode /=
<HostSysid>CICB</HostSysid>
<TotalCenter=2</TotalCenter
<FetchCenter=>2</FetchCenter=
<ClientInfo =
=ClientName>HOGAN, RUTH S</ClientName>
<Producerld =7469968 </Producerld >
<Clienthumber=113340063 </ClientNumber=
<PhoneMNumber /=
</ClientInfoz=
- <ClientInfo=
«ClientName>HOGAN, RUTH S</ClientName>
<Producerld 7469968 </Producerld=
<ClientNumber=987130063 </ClientNumber:
<PhoneNumber /=
=/ClientInfo=
«/Commarea
</nameSearchResponse:
</soap:Body >
</soap:Envelopes

m NSalias: this is an optional Sitem (Schema tree item) property to set the namespace
alias to correspond to the namespace setting on the schema item.

® objectType: this is the object’s type, either Citem (Legacy tree item) or Sitem.

m occurs: for arrays, this will be the number of rows contained in the array and will only be
populated at the group level. For the variables within the array, this field will be zero.

®m occursDepth: this relates directly to the array’s dimensions. In a multi-dimension array,
for instance, variables in the first dimension will be at ‘Occurs Depth’ one. Those in the
array’s second dimension will be ‘Occurs Depth’ two, etc.

®m occursFrom: this is the starting point of the array in the legacy program (e.g. a 1-100
array will have an occursFrom of 1). The minOccurs value may initially gets its value

97

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

from occursFrom, if present. If there is no occursFrom, the value of minOccurs will be
defaulted.

m occursSize: this is the total length of all data items that comprise a single row of the
COBOL array. If this number was multiplied by the ‘Occurs’ value it would yield the total
length of the COBOL array.

m offset: this is the offset (relative to zero) of the data item within the overall data
structure.

= parm: Not used Commarea Analysis
®= pattern: Not used Commarea Analysis

® precision: the data variable’s precision. This will typically be the same as the len
(length), though in the case of decimal data types, len and precision will be different.

= programlID: this is the internal ID of the program

= redeflD: if the item redefines another item, this field displays the internal ID of the
redefining item.

®m resultSet: Not used Commarea Analysis

= rowNum: for Citems (legacy tree items), this represents their row number in the legacy
tree. For Sitems (schema tree items), this represents their row number in the schema
tree.

m scale: for some datatypes (such as fractions), the scale represents the number of
significant positions after the decimal point

= schemaNm: this represents an Sitem’s (schema tree item) name in the WSDL.
m specialCond: Not used Commarea Analysis

= stopArrayifNull: this is a dropdown menu that gives you the ability to pick an
elementary item within an array to use as a sentinel to stop table processing if the item’s
value is null (“natural nullable state” for that particular data type, e.g. 0 for numeric items
or an empty string for strings). The Stop Array column will contain a checkbox if the field
is part of an array (otherwise it will be empty). Select S to activate stop array processing
for the associated field(stop the array if null). Select N to disable stop array processing
(not stop array if field is null).

= Type: displays the Citem’s picture clause, which will either be a fixed value or a drop

down menu containing two or more options. The available options depend on the data
type. The following is a compilation of all possible options:

Grp: indicates that the variable is a group level variable within the data structure.

98

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Dis: indicates a display, or character (PIC X) variable.
Num: indicates a numeric (PIC 9) variable.

Bin: indicates a binary (comp) variable.

Pck: indicates a packed decimal (comp-3) variable.
Ned: indicates a numeric edited variable.

Ptr: indicates a pointer variable.

B64: indicates to SOLA that this variable’s data must be converted to Base 64
format before being sent in a SOAP response or converted from Base 64 to
native binary if received as part of a SOAP request. This is used for transporting
binary data such as photographs or PDF files for instance.

value: this field is present in both Citems and Sitems, though it can only be set for
Sitems. Setting the value of an Sitem hard codes that value in the WSDL. This means
that the web service will always use the value you set and will never take input for this
item from the consumer.

99

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - Callable APIs and
Containers

SOLA offers three methods of passing a structured block of data to a program; Commarea,
CICS Channels and Containers and Callable APIs. The traditional DFHCOMMAREA is limited
to 32k, so to overcome this limit, SOLA can create web services by exploiting CICS Channels
and Containers and Callable APIs.

Callable API and Container programs are imported and analyzed using the Commarea
analyzer. Please read the Commarea (inbound, bottom up — page 29) section to familiarize
yourself with the Lifecycle Manager Asset setup, Import and Analysis processes before
continuing. This section will highlight the differences between creating a web service from a
standard Commarea program and callable API and container programs.

Callable APIs

A Callable program is invoked using a COBOL CALL instruction. Callable programs use the
standard register linking convention. The advantage to using callable programs is that there is
no limit to the size of the data area that is passed.

There is a pre-requisite condition to enable callable programs. In order for a web service
created from a callable program to function, a SOLA runtime Callable plugin module must be
running locally in the region in which the application callable program is executed

There are two SOLA runtime Callable plugin modules that are delivered and the choice of which
module to use is described below:

XMLPC205 - If your application callable program is coded not to expect DFHEIBLK as
first parameter then use this module.
XMLPC206 - |If your application callable program is coded to expect DFHEIBLK as

first parameter then use this module.

100

Lifecycle Manager Integrated

~r' SOLA Developer 6.4.2 User’s Guide

Step 1 — Mainframe Preparation

Preparation steps are identical to that of importing Inbound Commarea programs

To work with Callable API programs a PPT entry is needed in the WOR region that points to the
AOR region. Since the Callable API programs are not called directly but instead run under the
control of SOLA, the PPT entry for a DOM API program must specify
REMOTENAME(XMLPC205) or REMOTENAME(XMLPC206).

WOR AOR
PPT: PPT:

DEFINE PROGRAM (yourCallprogName) | DEFINE PROGRAM (XMLPC205)
LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)
REMOTE REGION (yourRegion)
REMOTE NAME : XMLPC205
REMOTE TRANID: (yourTranId)

PCT:
DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)
STATUS (Enabled)

101

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 2 — Importing a Callable Program

First, the Asset must be setup in Lifecycle Manager. The steps to setup a Callable API are
similar to that of Commarea programs (see page 33). Once the asset has been successfully
created and you have followed the SOLA link that will allow you to login to SOLA, you will be
ready to activate and import the program by switching from SERVICE to PROGRAM mode.

tl

SOLA uoot || File Datasets e | L

Environments{ TEST) * | SERVICE *

3 Directory PROGRAM
-)
Ella| I_Jﬂ_SOLA_Fln.& SERVICE
=55 QacL24p |
£ QACL24M1

. Activate Pi-'ogmm
From this point right click on the program name and click

Next right click again on the program name to begin the import. Follow the steps for importing
a Commarea program (see page 33) to create the web service from a callable program.

Note: In order to import a program into a project, you must be an authorized user of that project.

SOLA uDDI || File | Datasets “l# || Home

Emvironments{ TEST) * PROGRAM ~
=20 lpirector\r
=[] LM_SOLA_FinAcct2
= & QACL24p
i¥ QACL24

Import Program

The Import Screen is identical to that of Commarea except for the change in plugin name:

SOLA voot || mile | Datasets wd (L. Home | Import *

Emvironments{ TEST) ~ PROGRAM ~ | importing Callable - Bottom Up Producer & |
= ' Directory
=[5 tM_soLa_FinAcct2
= & QacL24ap pl'l]ljrﬂlll N
2 QacL24M1

Project:

Override Name: | SOLACLDS

Language: COBOL L
Enumerations: nchde w
Environment: TEST -

Program Description: Test Calsble
Structure Name: DFHCOMMAREA, LK-INPUT-AREA, LK-OUTPUT-#
Class Mamae:

DatasetfListing Name: | SOLAEXT. TEST.COBOLOSOLACLOS)

IMPORT RESET

102

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Once the program has been successfully imported you will right click on the method name to
activate the method. When activation is completed you will enter the Template name consisting
of eight (8) characters.

Operation Activation{ /TEST/LM_SOLA_FnAcct2/QACL24P/QACL24M1) x
|

Template Name: | ENTER TEMPLATE

Targst Ns: | hitp//QACL24M1.QACL24P sola soa.com/

SOAP Action:

| s

Here we have entered QACL24T1 as our Template name and will click Ok.:

Operation Activation{ / TEST/LM_SOLA_FnAcct2/QACL24P/QACL24M1) X
|

Template Name: QACL24T1
Target Ns: hitp:/QACL24M1.QACL24P sola.soa.com/

SOAP Action:

| [ok][conel]

The next step is to right click and select Analyze SOLA | LOOL || File | Datasets /|| Home
Method. Emironments TEST) * PROGRAM
o ' Directory
When presented with the Analysis panel enter all S[BLM_soLA_Finacet?
required data. This panel consists of a series of fields 3 /@ gacLa4p
(described in Commarea section (see page 41) used & QaoL2aM1

to provide information about the source program and e

the destination SOLA program that will be created.

You are now ready to use the Commarea Analyzer to complete and finalize this web service
beginning at page 45.

103

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Channels and Containers

Channels and containers are programs that implement the channel and container interface to
overcome the 32K Commarea limit.

Channels and containers are a feature of CICS TS 3.1 (and above).

Step 1 — Mainframe Preparation

Preparation steps are identical to that of importing Inbound Commarea programs.

104

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 2 — Importing a Channel/Container

Channel/Container import and analysis is similar to that of inbound bottom-up Commarea and
Callable API programs. The only difference is the addition of several fields to the import panel
that describe the channel and containers used by the program.

To get to the channel/container import panel, follow the same steps for Asset setup in Lifecycle
Manager beginning at page 29 to familiarize yourself with the Lifecycle Manager Asset setup,
Import and Analysis processes before continuing.

Once the asset has been successfully created in Lifecycle Manager and you have followed the
SOLA link that will allow you to login to SOLA, you will be ready to activate and import the
program by switching from SERVICE to PROGRAM mode.

Next right click on the Program name and click Activate Program. Right click again on the
Program name to Import Program.

Note: In order to import a program into a project, you must be an authorized user of that project.

Several things to note about the Import panel that set it apart from Commarea are highlighted in
the illustration below:

£

SO0LA | UDd | Fle | Datasets #| | Home | mmport =
Emdronments{ TEST) = PROGRAM = Trnporting Contaner - Bottom Up Producer H-j
2 I Directory -
Project:
3 | 28] AaronLMPublishiGroup b
=I[E8) LM_50LA_Findcct Pragram Marme:

= QaCaisrl

sl Agacazse Owerride Mame: QACKNIGR

= gacAILE Languaige: COBOL .
i QaCaizp

[ga 25 Enumarations: frckde -
i CaLD
H u;.m.wcnc Enwvirenmant: TEST b

A= QAXOILP

A = arocan

S OALLCADL Structure Mame: QACNO2C-INPFUT, QACROIC-OUTPUT
2[5 Lm_soLa_Finacctz

= QACAIZP

Program Description: Contaner Test for Buld 24

Class Mamies:

£ QACAZIMI e R ameena e
i = QACAIAP
TE T Chanavel Mame: QACHANNEL
Input Container: SEARCHCRIT
T OALNE L .
mml”13p Chiilpidl Container: OUTPUTRESP
ﬂE_.iQ.M'K.ﬂ]lE Error Conbalner: | Pl enter an eooor contsr

=58 LM_s0LA_Project
|58 qa-s0oLA
31|25 gaTestHe

IMPORT RESET
Browse Dotasets amd Listings

Sebnct Source DATASET JOB MAME & NUMBER HMULTIPLE DATASETS

Enter a dataset prefix: DIS3234

&[] DI52224

105

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

This panel contains some fields not present on the standard Commarea import panel.

B Channel: the name of the mechanism with which the program’s containers are
associated with. A channel is analogous to a COMMAREA, but it does not have the
constraints of a COMMAREA.

® |nput Container: the storage structure that contains input to the program.
B Qutput container: the storage structure into which the programs sends its output

B Error container: the storage structure into which the program sends its error
responses.

Fill out the extra fields described above, then follow the steps for importing an inbound
Commarea program using bottom-up methodology to create a web service from a
channel/container.

Note: If your program doesn’t follow the simple input container, output container and error
container approach, just enter the channel name and leave the container names blank. You
can enter them later.

Specifying your Container Names

If your program supports a more complex arrangement than the default input container, output
container and error container approach that SOLA provides on the initial Analysis screen, you
can specify them during analysis.

Let’'s say you have a program called MULTICON that uses three containers, INPUT-AREA,
OUTPUT-AREAL and OUTPUT-AREAZ2. Each container is associated with a 01 structure, so

you would:
o Enter the three 01 level structure names in the Structure Name field (separated by
commas)

e Enter the Channel name
e Leave the Container names blank

Tporting C: up WY Other Import Types *

106

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

With three containers, the Analysis screen would show three tabs in the source area, one for
each of the 01 level Structure names.

gt area You can associate a container with a structure by choosing the
-l'. e tab for that structure, and then right clicking on the structure’s
- root (the 01 level name in the tree), and choosing Assign

Container from the pop-up menu.

[Fer e

l'.'-_* = Right click on the 01 level structure name (the root of the tree) to
— T R — bring up a pop-up menu of choices for that structure, and choose

Assign Container from that menu.

LS {Ij This will bring up a pop-up panel for you to enter the container
name for the structure.

Note: The same menu pops up no matter which of the nodes you click on in the structure tree.
However, Assign Container will only correctly associate a container with a structure when you
click on the 01 level (root) of the structure.

Ay Lo Lasrery = : = 3 N
There’s no need to specify whether a container is

Input or Output, SOLA will determine that based on
rare vane whether you drag structure elements to the input
schema or output schema (or both).

gl avi

AT Nk onlare

107

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - IMS

Creating a Web Service from an IMS Program — Bottom Up

Creating a bottom-up web service from an IMS program is very similar to creating a web service
from a Commarea program, but there are some fundamental differences that must be
understood.

If you have not already read the section on creating web services from Commarea programs
(click the link to go to page 33). It is suggested that you do so, as you will need all of the
knowledge contained in that section to understand how to use the IMS analyzer.

Step 1 — Mainframe Preparation

For an IMS program you’ll need the PDS member or members that contain the IMS input and
output segment copybook(s) (a compile listing of your program works equally as well). You'll
also need a PDS to store the generated template, and a loadlib for the link-edited version of the
template. Finally, your target SOLA container must be configured to connect to IMS using
OTMA or IMS Connect.

108

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Step 2 — Importing the Program

To get to the channel/container import panel, follow the same steps for Asset setup in Lifecycle
Manager beginning at page 29 to familiarize yourself with the Lifecycle Manager Asset setup,
Import and Analysis processes before continuing.

Once the asset has been successfully created in Lifecycle Manager and you have followed the
SOLA link that will allow you to login to SOLA, you will be ready to activate and import the
program by switching from SERVICE to PROGRAM mode.

Note: In order to import a program into a project, you must be an authorized user of that project.
Next right click on the Program name and click Activate Program.

Right click again on the Program name to Import Program.
SOLA | UDOD! | File || Datasets «j|@

Note the IMS program icon: Environments(TEST) * PROGRAM ¥
= ' Directory

+ |28 AaronLMPublishGroup

2 |£3] LM_SOLA_FinAcct

3|55 LM_SOLA_FinAcct2
sk -Qacazzp
s -4Qacazsp
+ & QACL24P
o PP QACNO7P

<M QAIM13pP

¥ QAIMISM1

s Jqawca3ic

Several things to note about the Import panel that set it apart from Commarea are described on
below:

109

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Home Import '*
Importing IMS Message - Bottom Up Producer E

Project:
Program Name:

Override Name: QAIM25P

Language: COBOL i
Enumerations: Include ~
Environment: TEST ~

Program Description: MSTest
Structure Name: WS-INPUT-SEGMENT, WS-OUTPUT-SEGMEMNT
Class Mame:
Dataset/Listing Name: SOLAEXT.QALISTING(QAIM25P)

IMS Transaction: QAIM2SP

IMS Terminal: |Please enter an IMS Terminal
IMS Natural Lib: | Please enter natural ib i any.
IMS Program Type: | IMS Main Program e
IMS LLZZ Prefix: Don't Generate LLZZ(TRANCODE) Prefix v
IMS Segments IdBylLength: Segments not identified by kength S
IMPORT RESET

Browse Datasets and Listings

Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS

The IMS Message Import panel consists of a series of fields used to provide information about
the source program and the destination SOLA program that will be created.

Fields outlined in red are required. The red outline disappears when the field is populated.

B Project: this field is pre-populated and contains the name of the project into which the
program is being imported. Although it cannot be changed during import, you can drag
the program into a different project after it has been imported.

B Program Name: the name of the SOLA program that you will create. This name does
not have to match the name of the source program, unless you are importing an IMS
subroutine, in which case the program name must match the subroutine name.

® Override Name: The name of a target program to execute. Use this field when the
target name differs from the program name (for example, when the interface you'’re
analyzing is described in one program but used in another).

B [anguage: the language the source program is written in. Choices are COBOL, PL/I or
Natural.

B Enumerations: allows user to choose to Include or Exclude enumerations (viz. 88 level
items in COBOL) in the imported program.

110

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

B Environment: the created program’s environment. The environment is a custom
property in SOLA and available environments will depend on your particular installation.
Some examples of environments are “Test”, “QA” and “Production”.

B Program Description: a brief free-form description of the program.

B Structure Name: this is a comma separated list of all of the input, output and
input/output (both) structures that will be used by the web service. These names must
match the names of the structures in the program.

Structure Name: | IN-SEGMEMT-1,IN-SEGMENT-2, OUT-SEGMEN

B Class Name: when you expose a program as a web service, its operations will be
exposed as methods. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program.

B Dataset / Listing Name: the input source. As mentioned previously, SOLA can import
a commarea program from a compile listing (either saved or from the JES output queue)
or from one or more copybooks. A compile listing is preferred because it allows SOLA to
attempt to categorize the interface fields, saving you work during analysis.

B |[MS Transaction: the transaction ID under which the IMS program will be executed.
When the IMS Program Type field (see below) is “Main”, this should be set to the
transaction ID of the corresponding IMS program. When the IMS Program Type is set to
“Subroutine” this should be set to the SOLA IMS Driver Transaction ID (SOLA is shipped
with the Common Driver Transaction XML#IMCM). You can customize this by creating
your own transaction that executes the IMS Driver Program XMLPC260.

B |[MS Terminal: this field allows you to specify a Terminal ID, if it is required by the IMS
transaction. This is only required for applications that are coded to work on a specific
Terminal.

® |MS Natural Lib: the Natural Library Name, containing the Natural Load Module.

B |[MS Program Type: specify the program type, Main or Subroutine. For IMS Programs
that accept input and output Segments and can run under their own transaction IDs,
specify Main. For IMS Subroutines, which are invoked by COBOL programs within an
IMS region, specify Subroutine (and use Subroutine Name as the “Program Name”).

B |[MS LLZZ Prefix: instructs SOLA to either generate or not generate the IMS
LLZZ/Trancode prefix in the IMS segments being imported. This can be used when
importing application structures that don’t have the LLZZ/Trancode prefix. Choosing
generate will create extra fields in the template and will pass the trancode in the
generated LLZZ prefix.

111

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

You can see the generated prefixes in the image below:

EQMADDD1-LIMK-AREA ECQMAN00A-REP-STATLS-4

jEEQM.ﬁ.DDUI-LINK-.ﬁ.F{E.ﬁ.
ESOLF'.-GEI"-.IERF'.TED-FILLER-LL
HSOLA-GENERATED-FILLER-EE
HSOLA-GENERQTED-FILLER-TRF'.NCODIE

=B EQMADNDL-OPERATION-HAME
W ECMANNNL-EOP-4CTIVE

B |MS Segement IdByLength: The default processing of segments returned by
application is to match them in the same order as the output segments were specified in
the Import screen. If you want to override this matching logic and identify the returned
segments and match them to imported segment structures based on their lengths then
override the default. This feature is useful when your application returns multiple
segments having multiple structures and the order of segments returned are not fixed.

At the bottom of the Import panel is the Browse Dataset and Listings panel. This panel allows
you to pick the input source from a list without having to manually enter it into the
Dataset/Listing Name field.

To use this panel, select from one of the three available source types by clicking on the
appropriate button tab.

Select Source DATASET JOB NAME L\TNLJMBER MULTIPLE DATASETS

The Dataset option includes both saved compile listings and copybooks. You can change your
default dataset prefix by entering a new value in the Enter a dataset prefix: field. Your default
dataset prefix is a user-level custom property that can be set in your user properties (page 4).

=3 DBVENKA Once you have located the dataset or listing you want to
DEVENKA.BIND.COMPARE import from, double click the dataset/ listing name to
DEVENKA.BOS populate the Dataset/Listing Name field with your selection.
alz DBVENKA.DBJ%L
43 DBVENKA.DDIR If you select Multiple Datasets, you will not be presented

with a directory tree. Instead, you will be given five blank
fields that you can use to specify up to five copybooks.

112

e

IMPORT RESET

Browse Multiple Datasets and Listings

Select Source |

DATASET

JOB NAME & NUMBER

Additional copybooks: |Enter an additional copybook to import.

When you have filled in all required fields and are ready to import, click the IMPORT button.

Optionally enter a futher copybook name.
Optionally enter a futher copybook names.
Optionally enter a futher copybook names.

Optionaly enter a futher copybook names.

Importing IMS Message - Bottom Up Producer @ Other Import Types ™

Project:

Program Name:
Override Name:
Language:
Environment:
Program Description:
Structure Name:
Class Name:

Dataset/ Listing Name:
IMS Transaction:
IMS Terminal:

IMS Natural Lib:

IMS Program Type:

SolaDemo

SOAPSB3

When override is blank, program name wil be |
COBOL 4
TEST 4
Sola Demonstrations
LINE-INPUT,LINE-OUTPUT1,LINE-QUTPUT2
EquipmentService

SOLAIMS.TEST.COBCOPY #(SOAPSB3)
SOATXN3

Please enter an IMS Terminal.

Please enter natural lb if any.

IMS Main Program g

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

MULTIPLE DATASETS

IMPORT Q RESET

Upon successful import, a confirmation message will be displayed and program icon will change
color.

When importing IMS programs, the activation and creation of methods is a separate step from
the importing of the program. The following section will detail the creation of an IMS method.

113

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 3 — Creating Methods in an IMS Program

Once an IMS program has been imported, you can create methods by isolating individual
functions within the program. The IMS analyzer is almost identical to the commarea analyzer,
with some differences that will be explained in this section. To understand how to use the IMS
analyzer, you must first read the section on the bottom-up commarea analyzer (page 43), then
return to this section.

Because IMS programs handle multiple segments, in SOLA they contain multiple interfaces
(what would be called a “commarea” in a commarea program). Such an interface can be input,
output or input/output (both). When an IMS program is imported, all of the interfaces that will be
used by the web service are identified, and all of the identified interfaces can be used during
analysis.

The multiple interfaces appear as tabs in the legacy tree.

Prednalysis Analysis *

Prefix: APPLY DICTIONARY FINALIZE
In-Segment-1 In-Segment-2 Out-Segm| = || Schema Inputs Header
= Bl In-Segment-1 = € GetBP04Details
B in-Len-1 = € In-IM5Msg-Area-2
B = w-FILLER € In-IMSMsg-Fld1-X-2
B Tran-1d € In-IMSMsg-Fld2-X-2
B = w-FILLER = € In-IMSMsg-Area-1
;lIn-IMSMsg-Area-]. E_ In-IM5Msg-Fld1-x-1
| 1n-1MSMsg-Fld1-X-1 € In-IMSMsg-Fld2-5-1

| 1n-1MSMsg-Fld2-5-1

Schema Outputs | Header

= £ GetBP04DetailsResponse
= £ out-IMSMsg-Area-1
€ out-IMSM=g-Fld1-x-1
€ out-IMSMsg-Fld2-5-1
= £ Cut-IMSMsg-Area-2
€ out-IMSMsg-Fld1-%-2
€ out-IMSM=g-Fld2-x-2

The tab name matches the name of the interface (for example, the COBOL 01 level) that you
supplied during analysis.

114

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Other than this one difference, the IMS analyzer is identical to the commarea analyzer.

Working with Fragmented Segments

IMS is capable of circumventing the 32K limit by fragmenting a structure into multiple 32K
chunks. SOLA can handle programs with fragmented output segments, provided that only one
application output structure is fragmented.

To specify that an output structure is fragmented, right click on the structure’s 01 level during
analysis and select Fragmented Segment.

EQMADDD]-LIMNK-AREA ECMA000A-R3P-3TATUS-ARE

- B EQMADODL-L _ :
HSOLA-GE Display Table Wiew
HSOLA-GE Repeatable Segment
HSOL":"'GE Fragmented Segment

:IHEQMADDD Assign Container v
B eqmac
HEQMF&[Init Character

= B eomanag Matching Report

3B EomMalmTTRED-EGP-TD

A dialog box will appear asking you to confirm the change from unfragmented to fragmented.
Click OK to continue.

Fragmented Segment Confirmation 4

P This segment is currently marked as SNG4 GMENTED

_‘_t

Do you want to change it to S845WChTED

s J [Zancel]

The SOLA runtime will automatically combine the fragmented structure segments before
constructing the soap response.

If you selected a structure that is already fragmented and then select Fragmented Segment

from the right click menu, you will be presented with a dialog box that tells you the segment is
currently fragmented.

115

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Fragmented Segment Confirmation o

& This seament is currently marked as ARAGMENTED

—r

Do you want to change it to LAERA GWENTED

o I [Zancel

Working with Repeatable Segments

Repeatable segments are used to tell SOLA that some of the output data is to be mapped to the
same segment. This is similar in function to an array and is used when large volumes of output
data use the same format (e.g. customer name, DOB, address, etc.).

To mark a segment as repeatable, right click on the structure’s 01 level during analysis and
select Repeatable Segment.

EQMADDD] -LINK-AREA ECMANDOA-RSP-STATUS-AREA

;lEEQMP.DDDl-LIN‘C-P.REH
B8l =0LA-GENEF Display Table Wiew
HSOLA'GENEF Repeatable Segrnent
B =oLn-GENEF oy
;IHEQMAEIEIEII- Fragrmented Segment
HEQMQDDD Assign Container

EEQM’:"DDD Init Character

= BlEQMADDOL-F
= ElEQMAD00
B EQMAn001-REQ-EQP-INIT

Matching Report

A dialog box will appear asking you to specify an upper limit (you can set this as high as you
want).

Modify Occurs Count =]
EQMADDDL -LIMNK-AREA

Matne - Yalue

OCCUrs 4500

ik,] [Cancel

116

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - BMS 3270

For many years, the 3270 terminal was the principal method of communicating with CICS
transactions. Despite years of investment in alternatives, billions of these transactions continue
to be run every day by companies across the globe. In fact, in many companies, the 3270
transaction is still the most common way to access CICS transactions.

Although the physical 3270 terminal is long gone, the 3270 emulator remains to provide a PC
based alternative or a “screen-scraping” solution through the HLLAPI.

The reason that so many 3270 applications remain is because they are extremely efficient,
highly reliable and easy to operate. They have, however, proven very difficult to replace. This
is principally because the CICS 3270 “pseudo-conversational” programming model is very
difficult to port to other environments. In a pseudo-conversational transaction the 3270 operator
executes multiple iterations of 3270 transactions to perform a single business transaction.
When developing a screen-scraping solution, the programmer has to understand the countless
ways that 3270 transactions are constructed and he/she has to build a complex driver to
emulate the myriad operator interactions.

How SOLA Creates Web Services from BMS 3270
Transactions

SOLA has eliminated the complexity involved in making 3270 transactions available to the web.
SOLA attacks the complex 3270 problem by focusing on the “business transaction”, not the
individual pseudo-conversational transactions addressed by other approaches. SOLA doesn’t
use screen scraping, instead it runs natively in CICS and interfaces with the CICS supplied
3270 Bridge.

When creating web services from a series of 3270 transactions, SOLA combines a complex
chain of pseudo-conversational interactions into a single request/response operation, or “use
case”. For example, think of the interaction between man and machine when you use an ATM
to withdraw cash from your bank account. There are many possible interactions when
interfacing with an ATM, but withdrawing money from your checking account is one particular
use case. Another use case may be depositing money into your savings account. SOLA allows
you to expose each use case as a single web service operation.

To do this, SOLA provides an Analyzer for 3270 transactions. When creating a web service
from a 3270 transaction, you run your use case through the Analyzer, teaching SOLA how to
run it. Once you’ve successfully taught the Analyzer how to run the use case, the Analyzer
creates WSDL, meta-data and a test harness and documents the transaction in the SOLA UDDI
directory.

117

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Before you can use SOLA to analyze a transaction, you need to understand how the transaction
runs; the screen flow, the inputs and outputs, etc. One way to accomplish this is to run through
the transactions you want to expose, screen by screen. Once you understand how the
transaction is run, you can then use the SOLA Analyzer to expose it as a web service.

Creating a Web Service from a Simple BMS3270 Use Case

This section will describe the steps necessary to create a web service from a series of
BMS3270 transactions.

Step 1 — Mainframe Preparation

Before launching the SOLA developer, you should run through the use cases that you plan to
import. It is a good idea to not only run through each use case to its conclusion, but also to
experiment with faulty inputs and other ways to generate errors to see how the program
responds. If you are very familiar with the 3270 program, this step is not required.

118

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Step 2 — Importing and Analyzing the Use Cases

Select the project you wish to import to and right-
click it. From the pop-up menu, select Import
Environments{ TE5T} * PROGRAM = Program. If you wish to import the program to a new
project, first follow the steps for creating a new
project on page Error! Bookmark not defined..

i

SOLA | UDDI || Fie || Datasets e

= ' Directory

il T T Bt

| »

Import Program

£
H

When creating web services from 3270 use cases,
S~ User Access importing the parent program is done in conjunction
with creating a method. Unlike commarea programs,
_ _ a 3270 program cannot exist on its own (without
Show Project History methods). The program is nothing more than a
Delete Project container for methods.

&
Bl B

] User Access

S = A SR B
B B B ']

Add WsSDL Template

After you select Import Program, the Import panel

i
El
|

4@ AccountMaintenance will be displayed under a tab in the workspace. This
43 ACORD panel can be used to import any program type that
SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select
BMS3270.

Importing Commarea - Bottom Up Producer B | Other Import Types ™ |

f+4 Commarea
Project: SolaDemo

Container
Program Name: (Plegse enter a pro

& Callable
Override Name: |\When override is b @ IMS Message

v W W W

Language: [COBOL g3 outbound

Environment: | TEST E BMS 3270 D

Program Description: |Sola Demonstratior [LJ Stored Procedure

Structure Name: |Please enter a stru Adhocsql

Class Name: |F‘Iea5e enter a clas B3 cCustom
\+4 BPEL

Dataset/Listing Name: |F'Iease enter a listin

IMPORT RESET

The Import panel will change to reflect the selected program type.

119

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Importing BMS 3270 - Bottom Up Producer E Other Import Types *

Project: SolaDemo

Program Mame: | |

Class: | |

Description:

Method Name: | |

Terminal:

Transaction:

Template Name:

|
| cics sysio:[]

Template Dataset:

Load Dataset:

Endpoint: Prod -
@ Start Transaction from clear screen
Transaction Start:) Start from the first map
"~ Start with Command Line Argument
Default View: @ Graphical View © Field View
ANALYZE

The Import panel consists of a series of fields used to provide information about the source
program and the destination SOLA program that will be created.

m Program Name: this is the name that the imported program will be stored under (the
use cases will be methods of this program). This doesn’t have to be the actual name of
a program associated with the transactions, but it should be meaningful to the creator of
the web service.

= Class: when you expose this program’s use cases as a web service, each use case will
be stored as a method. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program.

m Description: the description of the class for documentation purposes. This is pre-filled
from project-level properties but can be changed.

® Method: each use case must have a uniqgue method name.

® Terminal: Terminal is only used if there is a terminal dependency for the program — for
example if you need to have signed on to a security system before you can execute the
transaction. In that case you would sign on using your 3270 emulator and then enter the
terminal ID where you've signed on in this field.

® Transaction: Transaction is the 4 character transaction ID that you enter from a blank
screen to invoke the use case.

120

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

= Template Name: this field tells SOLA what you want to call the template (run-time
metadata) that will be created when the use case is analyzed. The template tells SOLA
how to facilitate communications between a legacy application and a distributed client or
server. A template is an Assembler Data Only Load Module.

= Template Dataset & Load Dataset: these fields are used to tell SOLA where you want
the template source and the compiled and link-edited template to be stored. The source
of the template will be stored as a member in the Partitioned Data Set (PDS) named in
the Template Dataset field. The SOLA Analyzer will automatically assemble and link-
edit the template into the Load Library specified in the Load Dataset field.

m CICS SYSID: the 4 character CICS SYSID where the transaction runs.
= Endpoint: the region in which SOLA is running.

In addition to the fields, you have several options for how to start the transaction.

B Start Transaction from clear screen: Choose this option to have the web service start
from a clear screen. This is the default option.

® Start from the first map: Choose this option to have the web service start from the
transaction’s first map.

B Start with Command Line Argument: Choose this option if you want the transaction to
start with a command line argument. Selecting this button displays two additional fields.
Use these fields to enter the command line argument and its value. To use multiple
arguments, string them together in sequence. If you enter an argument and a value, the

transaction will be executed (during analysis)
Argument Name using the supplied information.

Argument Value

B Graphical View: chose this option to
launch the 3270 Analyzer with the default graphical view.

B Field View: click (select) this button to launch the 3270 Analyzer with the optional field
view.

When you have filled in all required fields and are ready to import the program and begin

analyzing the first use case (you cannot Import a 3270 program without creating at least one
method), click the Analyze button.

121

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Importing BMS 3270 - Bottom Up Producer B Other Import Types

Project: SolaDemo

Program Mame: SOLAEMON

Class: Widget

Description: Sola Demonstration

Method Mame: inquireWWidget

Terminal:

Tranzaction: SEMI

Template Mame: SEM1D00

Template Dataset: |SOLATEST.ASMTELO

Load Dataset: SOLATEST.LOADLIB ClCs =YsID: CICE
Endpaint: TORE -

@ Start Transaction from clear screen
Transaction Start: Start from the first map

Start with Command Line Argument
Default View: @ Graphical View Field View

ANALYZE

After you click ANALYZE, the Analysis panel will display the BMS3270 Analyzer.

Importing BMS 3270 - Bottom Up Producer B Other Import Types *

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY

Enter ¥

Scrollingkey:

n'z A

Drill Downkey:

Enter ¥

Drill DownType:

na -

Repeat ?

-

Is this last Map?

In the default view, the 3270 Analyzer is a graphical representation of a green screen with some
differences related to functionality: all empty spaces in all fields are painted with dot characters
(X o T), which aids in locating hidden fields. In recreating the green screen, SOLA

122

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

has captured not only the look of the original program but its functionality as well. You can
actually run through the entire 3270 program within the Analyzer. To create a method from a
use case, however, you should only run through the specific use case you are creating.

For example, the program shown in the illustration above has 20 options, and each option may
lead to other options. This program may represent hundreds of use cases. An example of a
specific use case would be selecting option 1 (information about a specific widget), entering the
widget number in the WIDGET field and advancing to the next map with the Enter key. The
next map should contain information about the widget number provided in the first map. This is
a simple but complete use case, and it can be likened to a customer requesting information
about a specific account. You can build a modern web based interface for the customer to
interact with, and by exposing use cases as web services; the customer can be invoking the
legacy program and data without realizing it.

Creating a Web Service

When creating a web service using the SOLA Analyzer, you are essentially doing the same
thing as creating a web service from a commarea program. You are creating a WSDL, which
describes the interface to the program; the input and output fields. As complex as a 3270 use
case may seem, it is really nothing more than a group of inputs and outputs. The inputs are the
fields the green screen program requires as well as the keys(button presses) it needs to
advance maps (e.g. Enter key to advance maps, PF1 to drill down, etc.). The outputs are the
data fields that the program returns.

The 3270 Analyzer provides a very simple interface for describing both input and output fields.
This interface allows for a wide range of field types, from simple input or output to error
message or end marker.

In describing how to create a web service from a use case, we will use the simple use case
mentioned earlier in this section (requesting data about a specific widget). Creating this simple
web service will allow you to understand how the Analyzer works and give you the skills you
need to create more complex web services.

The first step in creating our simple web service is to identify the input fields required for the use
case.

123

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

AMPLE _APPLICATICN

This is the input field that you must use to select an option from the green screen
menu. For this particular use case, we will be choosing option 1.

If you ran through the transaction in the green screen terminal, you would see that
entering an invalid widget number in field 2 results in an error message displayed

in this field. When creating web services, you can specify the number of times a
certain map is displayed. In our use case, this map should only be displayed once.
If it is displayed twice, it is because of an error (such as entering an invalid widget).
SOLA will know that an error has occurred, because a map that should only have
been displayed once has now been displayed twice, and will throw a SOAP fault. If
you wanted to capture the legacy error message in the SOAP fault, you could
describe this field in the WSDL as an error message field. SOLA would then use
the text contained in this field in the SOAP fault it throws.

e This is the input field that you must use to enter a widget number to inquire on.

Now that we know what fields we need on this first map, it’'s time to describe them for inclusion
in the WSDL.

To describe a field, right click it. SOLA has identified the input and output fields on the green

screen representation, so clicking anywhere on an output field or within the green box on an
input field will bring up the field menu.

124

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Field Detail Window : Field3

Field Name: Sglact
Input Value: |1

Data Type:
I/0 Type:
MDT:
Protected:
Hidden:
Length:
Instance:
Start of Group:

Group Parent:

APPLY TRANSLATE CANCEL

When configuring fields, you must change the field name, or else SOLA will ignore the field
while creating the web service. In this instance, we have assigned a default value of 1 to the
field, which we’ve named “Select”. In the image above, the 10 type is set to “Input”. This means
that while SOLA will run the transaction with the value we supplied (in this case 1), the WSDL
would indicate that this is a user supplied value. Since passing a value of 1 is necessary for this
use case, we will need to set the 10 type to “AlwaysDefault”, so that the web service will always
supply a value 1 for this field when running the legacy program.

Once you have configured the field, click OK. The Analyzer
will display an icon next to the field to indicate that it has been
configured.

It is now time to configure field e .

125

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Field Detail Window : Field48

Field Name: Widget
Input Value: | Q00000032
Data Type: |string
I/0 Type: Input
MDT: |QFF
Protected: |NO
Hidden: |NO
Length: g

Instance:

Start of Group:

Group Parent:

APPLY TRANSLATE CANCEL

Notice that we provided a value to this input field. When the web service is implemented,
however, the user can provide any value that he or she wishes. Since we did not mark this field
“AlwaysDefault” as we did for the previous field, this field will appear in the WSDL as an input
field and the web service will accept inputs from the user. Why then do we need to provide a
value when creating the web service? The transaction needs an input (in this case a valid
widget number) to advance to the next map. SOLA must learn how to run the transaction, and
the transaction must have inputs to run. This is why SOLA makes a distinction between regular
input fields and “AlwaysDefault” fields. While analyzing this use case, we can provide any valid
widget number.

Configuring fielde is optional (the web service can just throw a generic SOAP fault), but not

advisable.

Declaring a field’s 1/O type as an

i “ | “ErrorMsg” means that SOLA will take
Field Name: | Error the text of that field as a SOAP fault

should it encounter a fault condition.

Data Type: | st w
1/0 Type: Errr:rgMSg - That fault condition, however, has
noT: [om nothing to do with this field; the

presence of an error message in a field

d: “ " fi i
Protected: | YES declared an “ErrorMsg” field will not

Hidden: |NO generate a SOAP fault. The Analyzer
Length: [79 . must be taught when to throw a fault. As
Instance: v . mentioned previously, one example of
Start of Group: |No v this is declaring that a map must only
Group Parent: appear once. If that map appears twice,
then that means something has gone
APPLY | TRANSLATE | CANCEL wrong and SOLA will throw a SOAP

fault. If there’s a field declared
i “ErrorMsg” on the map that caused the

126

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

fault, the text in that field will be included in the SOAP fault. If there isn’t, SOLA will throw a
generic SOAP fault. The absence or presence of an error message field, therefore, affects only
the contents of the SOAP fault.

Now that we have fully configured the first map, it's time to set some map navigation options
and advance to the next map.

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY
Enter ¥

ScrollingKey:

nia -

DrillDownkey:

nia -

Drill DownType:

na A

Repeat ?

-
I= this last Map?

Mo ¥

Map Navigation

Map : 1

SOAMMO1L
SOAMAPL

o The Key value is the keyboard key that needs to be pressed to advance to the next

map. In 3270 applications, this is usually the enter key. The value in this menu
has to match what is required by the 3270 application. Notice that on the bottom
left of the green screen simulation is a key legend that tells users what keys to
press. It indicates “ENTER=PROCESS?”, telling us that the Enter key processes
our request. Therefore, in our use case, we should leave the default value of
“Enter”.

e This value dictates how many times the map is allowed to repeat before a SOAP

fault is generated. The default value is “0/1”, which indicates that the map can only
appear once (does not repeat). Options range from 0/1 to 4. There is also an
unlimited value. If Repeat? is set to “unlimited”, you must specify an end marker
or the web service will enter an endless loop (information on end markers and
other Analyzer functions and settings appears later in this section). Since our use
case does not call for this map to be repeated, we should leave it at “0/1”.

9 This value tells SOLA whether this is the last map in the use case. This setting is
important, as it is one of the ways that SOLA knows the use case has come to its
conclusion. In our use case, this value should be set to “No” for this map.

127

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

When you are ready to advance to the next map, you can click the NEXT MAP button.

Importing BMS 3270 - Bottom Up Producer B Other Import Types *

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY

Enter ¥

Scrollingkey:

LR

Drill Downkey:

niz A

DrillDownType:

n'a -

Repeat ?

-

Is this last Map?

No =+

Map Navigation

Map : 1
SOAMMO1

SOAMAPL

As requested, the 3270 application has provided information about the widget we specified.
Now we must describe the output fields we are interested in for the WSDL and set an end
condition so the web service knows when to terminate.

We are interested in all of the output fields that pertain to the widget, so right click on each of
them and configure them.

Field Detail Window : Field3

Field Name: | widget
Data Type: |string
I/0 Type: Exclude
MDT: QFF
Protected:
Hidden:
Length:
Instance:
Start of Group:

Group Parent:

APPLY TRAMNSLATE CANCEL

PE3I=END

£

128

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Since we’re describing simple output fields, the only thing we have to do is change the field
name.

Once you have named all of the output fields, the only thing left to do is to set an end condition.
Since this is the last map in our use case, you can do that by changing the value of Is this the
last Map? to “Yes”.

Importing BMS 3270 - Bottom Up Producer B Other Import Types ™

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY
Enter ¥

Scrollingkey:

na -

Drill Downkey:

na -

Drill DownType:

niz -

Repeat ?

-

Is this last Map?

When you are finished, click —— to continue.

You will be presented with a summary panel
that contains all the map and field
information you configured during analysis.

Importing BMS3270 B Other Import Types -
BMS Analysis Summary

CONFIRMFINAFIZES] [mReTRy If there were any errors in your analysis,
e S such as not specifying the last map or an
s s e = end marker, this panel would also contain
e st warning messages describing the problem.

Map Information:

You can browse this panel to make sure all

Map Name SOAMMDT MapSet Name SOAMAP1 . .
Program Name SOLAWGT Trantd s of the maps and fields are configured
ReceiveType ReceiveMap ~ #ExtendedAttributes 4 Correctly_ If you flnd Somethlng you don’t
of Fields 53 Repeat Count 1 .) .
a5 Ky e B ey — like, you don’t have to go back to analysis,
Rl (M v Scrol ey e you can change it right here in the summary
panel.
T When you are certain everything is the way
nsme Seat Golnd— opn - you want it, click the SRR button. A
S poscilAdions) etenees confirmation message will be displayed.
value 1 Data Type: \:?‘:EutF'tr:
g - - Message *
Nome g smidi BMS1010I - Analysis+Successful
o Sr::ecial-lcticn: I1nstanta:
N - Data Type: Layour:
Value UUUUUUUS string - 9599

129

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

BMS3270 Analyzer Reference

This section will provide detailed information about the BMS3270 Analyzer. It is strongly
recommended that you read this section in its entirety at least once before tackling any major
projects using the Analyzer.

As SOLA is intended to be used by mainframe programmers, the BMS3270 Analyzer and this
documentation are both designed to be easy to use by people with a certain degree of
mainframe knowledge. If you are not a mainframe programmer, you may find some portions of
this document to be intimidating or overwhelming. If this is so, then you should realize that
SOLA was designed to be easy to use by everyone, not just mainframe programmers.
Specialized mainframe knowledge and/or skills are not required to make the most of the
BMS3270 Analyzer (though they do help). Anyone can use the Analyzer to expose complex
series of transactions as web services, all it takes is a step by step approach, starting with
simple use cases and slowly working up to more complex ones. The Analyzer is, underneath
the surface, extremely intuitive and simple to use.

The BMS3270 Analyzer is divided into four sections; the workspace, the button bar, the map
tools and the map navigation controls.

Importing BMS 3270 - Bottom Up Producer B Other Import Types ™

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY

Enter ¥

ScrollingKey:

Nz T

Drill Downkey:

Nz v

Drill DownType:

niz A

Repeat ?

-
I= this last Map?

No =+

Map Navigation

Map : 1

SOAMMO1
SOAMAPL

130

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Map Tools

This tool bar is used to configure map navigation options such as key assignments, map repeat
settings and more. This tool bar is also used to control the view in the BMS3270 Analyzer
workspace.

Keay: Key: this is the keyboard key the user needs to press after making a
Enter selection. The default value is Enter, other options are PF1 — PF24 (function
keys).

Scrollingkey:

na = You can select a key (and simultaneously advance to the next map) by
pressing either the Enter key or one of the 24 function keys (Shift + function

Drill DownkKey:

n:,'a D:n = key for PF13-24) when you are ready to advance to the next map.
DrillDownType: NOTE: Function key shortcuts, such as F5 to refresh or F1 to open Windows Help
na = have been disabled in the BMS3270 Analyzer.

Repeat ? Scrolling Key: specifies which key is used to scroll the screen (if the screen
01 hd is scrollable). The default value is n/a (not applicable), other options are Enter

_ and PF1 — PF24 (function keys).
I= this last Map?
Drill Down Key: specifies which key is used to make selections (drill-down)
T —— on the screen. The default value is n/a (not applicable), other options are
2R TEVIESEHEN T Enter and PF1 — PF24 (function keys).

Mo -

Map: 1

SOAMMO1 Drill Down Type: specifies the drill down type. The default value is n/a (not
50AMAP1L . .
= applicable), other options are ALL or Key.

Repeat: indicates how many times the screen should repeat before an error message is
generated. The default value is 0/1 (appears only once). Other options are 2, 3, 4 and
Unlimited.

Is this last Map?: indicates whether this is the last screen in the transactions. Options are
YES and NO.

131

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Map Navigation Controls

This field shows a navigation map of all the screens involved in the transaction up to the current
screen (displayed in the work area).

Clicking on a map from the main Analyzer screen L Show Map Fields

reveals the Map menu. SOAMAM

Show Map Graphics

The options in the Map menu apply to the screen

from which the menu was accessed, not the screen that is currently displayed in the work area
(unless they are one and the same). Therefore, selecting a view option for the menu may
change which screen is being displayed in the work area.

mode.

Show Map Fields: selecting this option will display the selected screen in the field view mode.

Show Map Graphics: selecting this option will display the selected screen in the graphics view

Button Bar

NEXT SEQUENCE FINALIZE MNEXT MAP SUMMARY

B Next Sequence: click this button to restart the transaction with a new set of maps (e.g.,
if your transaction takes two different sets of maps depending on type account number
on the first map then you need to teach SOLA each sequence separately by entering
two different account number for these two different sets).

® Finalize: click this button to complete and save the analysis.

® Next Map: Click this button to proceed to the next BMS 3270 screen in the transaction.
You will not be able to proceed unless you have satisfied the requirements of the current
screen (input required values, etc.). If NextMap is clicked while editing a method, SOLA
will execute your transaction in real time.

B Summary: click this button to go to the BMS Analysis Summary panel.

132

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Working with the Graphics View

The Graphics view displays each screen of the BMS 3270 transaction as it would appear on a
BMS 3270 terminal, with additional graphical elements overlaid onto the contents of the screen.

Z4ML SANFLE

ATPPLIER. DE3C

TELLOW
RANGE
.SMALL..
JHEDIUM
MEDITUHM

APPLICATICH

WHITE 1
RED W
BLUE WID

MEDIUM .G

HEDITHM .E
HEDITH . :
JELLOW WIDGET
JORAWGE WIDGET
JWMHITE WIDGET

MEDITUHM
MEDITUHM
! MEDITH

GET.
. WIDGET...

. INTEFEWALL.. LLARGE..REDL WIDGET

ENTER=FORWARD,.. PF3=END.
¥

The contents of the screen are interactive, allowing
you to highlight or otherwise select fields and make
changes such as naming fields and setting default
values and field parameters.

Input fields recognized by SOLA are shown as solid
green boxes.

Whenever you move the mouse cursor over a field
(input, output, etc.), the cursor changes from an arrow
to a hand (this may vary if you have custom cursor
settings).

SELECT

WIDGET

133

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Field Settings

Field Detail Window : Field46 % | When the cursor changes to a
hand over a field, you can
Field Name: |Widget right-click to access a menu of

options for that field. Each

Input Value: | goo00003 . ;
field has its own menu of

Data Type: |string e options that define it and its
I/0 Type: Input v role in the transaction.
MDT: | OFF

The menu contains the

Protected: [NO following options (some

Hidden: |NO | options are not displayed with
Length: |8 | some fields):

Inst. : .. .
fetance il Input Value: this is the input
Start of Group: | No ~ value you want to enter to run
Group Parent: the transaction. Even though

in the execution of the web
APPLY— b TRANSEATE - CANCEL service this value may be

dynamic, SOLA has to be
taught to run the transaction
with fixed values. The generated WSDL can then be used to run the transaction with input from
user or application. The value is going to be same as what you would enter on a legacy green
screen for this field in order to execute the transaction. This option is only present if SOLA
determines that the associated field is an input field.

Field Name: this is used to assign a name to the field that a requestor of this service would
see. This is the name that will be published in the WSDL.

NOTE: If you change any properties of a field, SOLA will not allow you to proceed unless you
change the field name. The word “Field” with an uppercase F cannot be a part of that name, as
“Field’ is a restricted word. The name cannot contain spaces.

Data Type: this is used to specify the data type of an input or output field. Options are string,
int, short and decimal. This applies only to the WSDL file generated by SOLA and not to the
operations on the mainframe side. For example, if a certain field always displays a number and
the mainframe code identifies it as a string, you can set it to integer and the consumer of the
web service will treat the field as an integer.

I0: this is used to specify the nature of a field. It can have one of the following values:

Input: indicates that requestor will send this field to SOLA. SOLA may then use the
field to populate green screen, if the screen allows it.

Output: indicates the SOLA will pick this value from green screen and send it to
requestor.

InputOutput: indicates field is Input as well as Output.

134

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Exclude: indicates that a request will not send data related to this field. However,
SOLA may decide to put a hidden value if MDT is set to ON.

ErrorMsg: used in conjunction with the Repeat setting in the BMS Analyzer tools (left
side of screen). If the map is defined as repeating two times but during execution
SOLA encounters the same screen three times, SOLA would send a SOAP Fault
(error message). This error message will be picked from the field that is defined as
"ErrorMsg".

AlwaysDefault: indicates that SOLA will not publish this field to the requestor, and will
instead use a default value entered during this analysis as input during real execution.

EndMarker: is used in conjunction with the “Unlimited” Repeat setting in the BMS
Analyzer tools (left side of screen) in order to allow SOLA to stop the execution at the
desired point. With the MAP set to "Repeat Unlimited"”, SOLA needs a way to stop the
transaction. Setting an EndMarker value indicates to SOLA it should end the
transaction if the specified value (the value of the field when an EndMarker was set) is
encountered during real execution.

ContinueMarker: is the opposite of EndMarker and is used in conjunction with the
“Unlimited” Repeat setting in the BMS Analyzer tools (left side of screen) in order to
allow SOLA to stop the execution at the desired point. With the MAP set to "Repeat
Unlimited", SOLA needs a way to stop the transaction. Setting an ContinueMarker
value indicates to SOLA it should end the transaction if the specified value is not the
value of the field during real execution.

DrillDown: this is an input field that can be used to drill down (retrieve information
about) another field.

Key: this is a field that is used to identify a specific data item. In a list of data items,
the key field will be the field used to match a search query with the data item being
searched for. For example, when searching a list of widgets for a specific widget, you
can use the widget number as the key field. The user would pass a widget number,
and the transaction would scroll the list of widgets until a widget with matching widget
number is found.

MDT: indicates if MDT on the screen is ON or OFF. This value cannot be changed by the
user.

Protected: indicates if the field is protected. Possible values are YES and NO. This value
cannot be changed by the user.

Hidden: indicates if the field is hidden. Possible values are YES and NO. This value cannot be
changed by the user.

Len: indicates the character length of the field. This value cannot be changed by the user.

Instance: this value is a counter indicating the repeat instance of the map (how many times it
has been repeated during the transaction). For example, a blank screen counts as one

135

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

instance, and each time data is entered and the Enter key is pressed counts as another
instance.

StartOfGroup: SOLA populates this value only for the first field out of multiple fields selected
and "Grouped as Output" fields (see Marquee Tool section).

GroupParent: this is used only with fields that have been grouped (groups are explained later
in this section). This value will become a parent element in the output XML. All the fields that are
grouped together would appear as children elements under this name in the output XML.

For example, in the following image there are 7 fields:

F09/06/05

C

S © 5 SWCHMTD 100,04 EWCM # 0155044

All of these fields are grouped together and have a single parent called “ltemDetail”.
In this case output XML would appear as follows:

<ltemDetail>
<child1>X</child1>
<child2/>
<child3>09/06/05</child3>
<child4>WCMTD</child4>
<child5/>
<child6>100.04</child6>
<child7>WCM # 0165044</child7>
</ltemDetail>

To close the menu without saving changes, click =~ CANCEL

To hide the menu and save changes, click |~ APPLY

For information about the = TRANSLATE 1y tton, see “Translation Feature” below.

136

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Translation Feature

For dealing with cryptic or inadequate data labels, SOLA offers the translation feature.

Consider the following display:

For size, the data indicates a value of “P”, which means petite. However, since the letter P is
not usually associated with size, you may choose to pass a value to the data recipient that is
more easily understand. To accomplish this, SOLA offers the translation feature.

To access the translation feature, right click on the desired field to display the field options
menu, then click the = TRANSLATE " pytton.

Doing so will display the translation sub-panel.

Key: Eield Name Walue Translation
Erter -

widget @
Repeat ?
0/1 - RETURN

The sub-panel consists of three columns, one of which is pre-populated with the parent field
name. To use the translation feature, enter a value (from the program) under the Value column,
then enter a translation for the value in the Translation column. To add more blank fields (to

enter more values), click the button. To remove unnecessary blank fields, click the W
button.

When the web service is executed, the translated value will be sent to the user instead of the
original value.

For example, the possible values for size are P, M and G (Petite, Medium and Grand). Since
these are obscure and unintuitive, we want to replace them with the more easily understood
values of Small, Medium and Large. To translate these values, right-click on the Size field to

display the field options menu and then the = TRANSLATE " htton.

Since there are three values, click the button twice to add two more fields. Enter the three
values in the blank fields under the Value column, then their translations under the Translation
column.

137

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Field Name Value Translation
size P Small il
size M Medium (]
size G Largs| i

When finished, click =~ BEMURN " \Whenever the web service is executed, the value P will be
replaced with Small, M with Medium and G with Large.

Marquee Tool

The marquee (or selection) tool is one of the most powerful features of SOLA’s BMS 3270
Analyzer. Using the tool is similar to using a marquee tool in a graphics program that is used to
select a portion of an image.

To use the marquee tool, double click in the top left corner of what you want to select, then
double click the bottom right corner. A rectangle will appear, with its top left corner located at
the exact point of your first double click, and its bottom right corner in the exact location of your
second double click.

1 GREEN WI
: - - 1 .BLACE WIDC .
Qooooo15. P I LoD 5. L0 MF T M PINE WIDGET...

Selected items will appear with a white background. It is important to note that the marquee
does not represent the selected fields, the white background does. The marquee is a guide for
selecting the fields, nothing more.

Once a selection is made, a menu of options appears:

SHALL. ORANGE WIDGE |l il Group Output
ILLI.. THITE WI Copy o Merge Output

MEDIUM. RED W

MEDIUM. ELUE WI Paste Merge Input

MEDIUM. GREEN WIDGET Split

HEDITHM. B
HEDTTHM.

Di=miss Menu

I
Group Output *

Group Name:

APPLY CANCEL
138

Lifecycle Manager Integrated

~r' SOLA Developer 6.4.2 User’s Guide

Group Output: combines the selected fields into a group. In the output xml, the fields will be
listed under a group heading and can be manipulated as a single group by the output data
consumer. The first field in a group will be designated as the group parent. When this option is
selected, the following dialog box appears, allowing you to name the group and specify it's type.

Merge Output: combines the selected output fields into a single string. This is useful when you
want to send a group of fields as a single string. SOLA will accept the discrete fields from the
program and combine them into a single string during execution.

Merge Input: combines the selected input fields into a single string. This is useful when you
may have multiple input fields on the green screen but you want the requestor to send a single
string rather than multiple strings. SOLA will chop the input strings and fill the necessary
multiple fields during execution.

Copy: this is a very powerful feature of the marquee tool. It allows you to make changes to a
field, then copy those changes and paste them to other fields. Using this feature, you only have
to make one set of changes when working with a large list of repetitive fields. To use this
feature, make changes to a field, select it with the marquee tool, then select Copy Modifications.
Use the marquee too to select a single field or a group of fields that you want to share the same
settings, then select Paste.

Paste: select this option to paste the settings of one or more fields copied using the Copy
Maodifications option onto a matching field or group of fields. The target selection must match
the copied fields. For example, if a line has four fields and you copy the first three, you can only
paste them onto the first three fields of every remaining line.

Split Field: this is another very powerful feature of the marquee tool that lets you split a single
large field into several smaller fields. This feature is explained later in this section.

Cancel: cancels the selection.

139

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Split Field Feature

The Split Fields feature allows a single long string containing several meaningful pieces of data
to be sent as separate data items. This relieves the consumer of the burden of having to worry
about formatting/reformatting issues.

To use the feature, first use the Field Options menu to name and configure the field you want to
split. Then select a portion of the field with the marquee tool and choose Split Field from the
marquee tool options menu.

This will display the Split Field menu.

Split ” Parent Name: this value is
populated by SOLA and is
taken from the name given to
the parent field using the Field
Options menu. This value
cannot be changed by the user

The length and starting position control the value of the split.

Parent Name: |widget

Split Name: (except in the Field Options
Split Value: | BROWN menu)'
O 0 Split Name: use this to assign
a name to the split portion of
Starting Position: |9 the field.
Split Length: |5 Split Value: this is the field

value, which SOLA attempts to
retrieve from your marquee tool
APPLY CANCEL selection. Although you can
manually alter this value, it is
recommended that you use the

Starting Position and Split Length fields to adjust it.

Starting Position: allows you to set an offset value (number of spaces) for the split field. This
is used in conjunction with Length to pinpoint the correct location of the split field. You know
you have the correct offset and length settings when the Split Value field displays the correct
value (of the portion of the field you are trying to split).

Split Length: allows you to set a length value (in characters) for the split field. This is used in
conjunction with Offset to pinpoint the correct location of the split field. You know you have the
correct offset and length settings when the Split Value field displays the correct value (of the
portion of the field you are trying to split).

To save changes and split the field, click =~ APPLY

To exit without saving changes, click =~ CANCEL

Repeat the process for all portions of the field you want to split.

140

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Key Matching Feature

A key field is a field that is used to identify a specific data item. In a list of data items, the key
field (or fields) will be the field(s) used to match a search query with the data item being
searched for. For example, when searching a list of widgets for a specific widget, you can use
the widget number as the key field. The user would pass a widget number, and the transaction
would scroll the list of widgets until a widget with matching widget number is found.

There are two ways to use key matching; drill down and update.

Drill Down Key Matching
To use the key field for drill down key matching, you must set the following values:

Key: this key advances screens when NOT scrolling through a list trying to match the
key field. This can be the same as the Scrolling Key, but doesn’t have to be.

Scrolling Key: this must be set to the key the transaction needs to scroll through a list
while trying to match the key field.

Drill Down Key: this must be set to the key the transaction requires to drill down when
a matching field has been found (key field match successful).

Drill Down Type: this must be set to single, so that SOLA knows that only list items that
match the key field should be drilled down.

Repeat: this should be set to “Unlimited” so that the transaction can scroll down as far
as necessary to match the key field.

Is this the Last Map: this should be set to “Yes” so that SOLA does not enter an
endless loop if the map doesn’t match.

141

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Importing BMS3270 B COther Import Types ~

Key: MNEXT SEQUENCE FINALIZE NEXT MAP SUMMARY
PFd = N - -
SAMPLE APPL CH
Sorallinaley: ScollingKey matches transactions’s “forward” key
DrillDownkey:
FF2

DrillDownType:
Single -

Repeat ?
Unlimited

1= this last Mapg

ez w

Map Mawvigation

D, PF3=END, PF&=

DrillDownType is set to "Single”

You must also define the following fields on the map:

Drill Down Field: this is the field, typically located at the head of a row, in which the
transaction requires a certain input (e.g. “i") to drill down into its associated row.

Key Field: this is the field or fields in the row that will be matched to the search query.

Continue Marker or End Marker: define a continue marker as a precaution to allow
SOLA to stop scrolling if a match is not found.

For example, the following screen contains a list of widgets:

The leading input field has been defined as a Drill Down field:

142

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

SOLA SAMPLE APPLICATION

Field Hame: | Drilifield

Input Value: |1

Data Type: |stn'ng
1/0 Type: DrilDown

MDT: |[;.|:|:

Protected: | MO

Hidden: |N[}

Length: |1

Instance: |

Start of Group: |N{)

B <) <3 <3} |

Group Parent: |

 APPLY TRANSLATE CANCEL

The Widget number field has been defined as the Key Field:

CSOLA SAMPLE APPLICATION

Field Name: | widget

Data Type: |stn'ng

I/0 Type: | Key

MDT: |D|:F

Protected: | YES

Hidden: |N[}

Length: |35

Instance: |

Start of Group: |Ng

B] | <] 3] <3 .

Group Parent: |

 APPLY TRANSLATE CANCEL

143

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Once the drill down field and the key field have been defined, advance to the next map (the
results of the drill down). Once that map is configured, return to the list screen and copy and
paste the settings for the drill down and key fields all the way down the list. Since
DrillDownType was set to single, SOLA will only drill down if the key field matches.

Update Key Matching

Key matching can also be used to update data (rather than just drill down for more information).
For example, a widget transaction might have one or more input fields on every line of data:

In this transaction, you search for a matching widget number then enter a new supplier and a
new price. The settings for this type of transaction are the same as the previous use of key
matching, except that you do not define a drill down field on the map. Instead, you enter values
in the input fields then set the DrillDownKey and Key values to the keyboard key that the
transaction wants as an update key and click Next Map.

Once you are at the next screen (typically it’s the first screen) with an “Update Successful”
message, go back to the list screen and make the Key value different from the DrillDownKey
value.

Caution: before finalizing, verify the Key, ScrollKey, DrillDownKey and DrillDownType
values.

Graphics View Screen Symbols

The following symbols may appear next to fields on the screen.

- This symbol indicates that changes were made to the field (using the field
settings menu).

‘_,n:, This symbol indicates that the field has been split into component features with
¢ the Split Field feature (available through the Marquee tool).

This symbol indicates a part of a field that has been split into a separate

- component field with the Split Field feature (available through the Marquee tool).
This symbol appears in conjunction with the scissors symbol, and only in rows
where you have manually split the row. If you copy and paste field settings it will
only show up in original (see the Marquee Tool section for information on copying
and pasting).

144

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

This is not a discrete symbol but is in fact an overlap of the scissors and arrow
symbols that sometimes occurs on the screen.

This symbol indicates the presence of a field whose value has not been set. This
can be used to spot unpopulated or empty fields.

145

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Working with the Fields View

The ‘Fields View’ displays the BMS 3270 screen as a series of fields with associated options.
This view is not as versatile or powerful in terms of features as the graphics view, but can be
used to quickly make changes to all of the fields of the screen in one place.

Mumber MName InputOutput Length Protected Hidden MDT Value
0 Field0 Exclude * 23 YES MO OFF SOLA SAMPLE APPLICA
1 Field1 Exclude - 8 YES MO OFF SOAMMOZ2
. Field2 Exclude - 1 YES NO OFF 5
3 Field3 Exclude - 8 YES MO oOFF WIDGETH
4 Field4 Exclude - 6 YES NO OFF COLOR
5 Fields Exclude - 1 YES NO OFF 5
5 Field6 Exclude ~ 5 YES NO OFF PRICE
7 Figld? Exclude - 8 YES MO OFF SUPFPLIER
Fieldd Exclude ~ 20 YES Mo ofFfF DESC
5 Field3 Exclude ~ 1 YES NO OFF
10 Field10 Input - 1 NO NO OFF
11 widget Input ~ 35 YES No oFF DDD000O0Z2 BROWN X !
Field12 Exclude ~ 39 YES NO OFF XLARGE WIDGET
13 Field13 Exclude ~ 1 YES NO OFF
14 Field14 Exclude ~ 1 NO NO OFF
15 Field15 Exclude -« 35 YES NO oFF 000000032 EROWN 5
16 Field16 Exclude ~ 39 YES Mo OFF 3-BLUE-SMALL-7
17 Field17 Exclude ~ 1 YES NO OFF
18 Field18 Exclude ~ 1 NO NO OFF
19 Field19 Exclude -« 35 YES NO oFF 00000004 GREEMN P &
20 Field20 Exclude ~ 39 YES MO OFF 4-GREEN-P-652
21 Field21 Exclude ~ 1 YES NO OFF

Field Num: a sequential value assigned to all fields on a given map, starting with the first field
detected.

Field Name: this is used to assign a name to the field that a requestor of this service would
see. This is the name that will be published in the WSDL.

146

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

InputOutput: this is used to specify the nature of a field and can have one of the following
values:

Input: indicates that requestor will send this field to SOLA. SOLA may then use the field
to populate green screen, if the screen allows it.

Output: indicates the SOLA will pick this value from green screen and send it to
requestor.

InputOutput: indicates field is Input as well as Output.

Exclude: indicates that a request will not send data related to this field. However, SOLA
may decide to put a hidden value if MDT is set to ON.

ErrorMsg: used in conjunction with the Repeat setting in the BMS Analyzer tools (left
side of screen). If the map is defined as repeating two times but during execution SOLA
encounters the same screen three times, SOLA would send a SOAP Fault (error
message). This error message will be picked from the field that is defined as
"ErrorMsg".

AlwaysDefault: indicates that SOLA will not publish this field to the requestor, and will
instead use a default value entered during this analysis as input during real execution.

EndMarker: is used in conjunction with the “Unlimited” Repeat setting in the BMS
Analyzer tools (left side of screen) in order to allow SOLA to stop the execution at the
desired point. With the MAP set to "Repeat Unlimited”, SOLA needs a way to stop the
transaction. Setting an EndMarker value indicates to SOLA it should end the transaction
if the specified value is encountered during real execution.

ContinueMarker: is the opposite of EndMarker and is used in conjunction with the
“Unlimited” Repeat setting in the BMS Analyzer tools (left side of screen) in order to
allow SOLA to stop the execution at the desired point. With the MAP set to "Repeat
Unlimited", SOLA needs a way to stop the transaction. Setting an ContinueMarker value
indicates to SOLA it should end the transaction if the specified value is not the value of
the field during real execution.

Length: indicates the character length of the field. This value cannot be changed by the user.

Protected: indicates if the field is protected. Possible values are YES and NO. This value
cannot be changed by the user.

Hidden: indicates if the field is hidden . Possible values are YES and NO. This value cannot
be changed by the user.

MDT: indicates if MDT on the screen is ON or OFF. This value cannot be changed by the
user.

Value: this is the value of the field taken from the green screen. Making changes to the value

usually doesn’t affect anything. The only reason for you to change the value is for use with the
following settings; EndMarker, ContinueMarker or AlwaysDefault.

147

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Field View Screen Symbols

The following symbols may appear next to fields on the screen.

- This symbol indicates that changes were made to the field (using the field
settings menu).
r":" This symbol indicates that the field has been split into component features with
¢ the Split Field feature (available through the Marquee tool).

Environment Setup

Before you can test a new web service you will need to perform some set-up steps for the SOLA
Run-time. On page 31, we discussed the MRO (Multiple Region Operation) concept. The
following is an MRO diagram of the architecture for 3270 programs.

-- Namespace -
MQ Queue xmins="http://<namespace uri>/BM/TGADPO47/TR#D001"
/ / / XMLP
. - / ‘ Soap arser
rogram | acy / R uest
Soap Type | %gﬂ? / eq
Response ," Nam. f
/ /
/ Templat H 501 A Plug-in for ”"“59"
i / WEmy) BMS3270
/ / Programs Tree
Soap Request DPL
viaMQ / /
v s
Common Driver Metadata
Soap Bequest Program Soap
Re;ponse
Soap Legacy Program
S Response
oap Template
Response
IP Address
Program Response Legacy Program
Multiple 3270
Client Requestor T Progr
Operations
T CICS Document l
l RCT
CICS / Systern Components P
I SOLA Provider Code **|P Port can be shared across multiple

CICS Regions running in a single LPAR
Legacy P Metadaf
I m’ﬁ&f”.‘,‘,mw“ I Legacy Program MVSTCP/IP Support

SOA Enabling BMS3270 via CWS/MQ

To configure the WOR and AOR so that our Widget transaction will run, we will need to create
the following definitions.

148

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

WOR AOR

DEFINE PROGRAM (XMLPCWGT) EXISTING TRANSACTION (TGW#)
GROUP (SOLAGRP)
LANG (LE)

DEFINE PROGRAM (TGW#DO0O01)
GROUP (SOLAGRP)
LANG (ASSEMBLER)
STATUS (ENABLED)

DEFINE TRANSACTION (TGW#)
REMOTESYSTEM (AOR) *
REMOTENAME (TGW#)

For this example, the Transaction will be running in the WOR and so will not need a
Remotesystem or a Remotename.

We define a “dummy” program that will drive the transaction in the WOR. We also define the

template (an assembler program) in the WOR. Finally, a transaction is set up in the WOR
pointing to the AOR in which the BMS 3270 transaction runs.

149

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - Stored Procedures

Note: Lifecycle Manager and SOLA integration of Stored Procedures Web Services is not
supported at this time

Stored procedures, sometimes called sprocs or SPs, are subroutines stored in databases that
can be called by applications. They are most often used for data validation, access control and
to consolidate functions that were originally implemented in applications.

How SOLA Creates Web Services from Stored Procedures

SOLA is capable of registering stored procedures and making them available as web services.
The registration process involves searching for stored procedures, supplying necessary
arguments, executing the stored procedure and finalizing registration. Once registered, a stored
procedure becomes a method stored in SOLA’s UDDI directory and can be called as a web
service.

Creating a Web Service from a Stored Procedure

This section will describe the steps necessary to create a web service from a stored procedure
by searching for a specific stored procedure, registering it with the SOLA directory, providing
required arguments, executing the stored procedure and finalizing the registration. There is no
analysis when making web services from stored procedures, as procedures are fairly simple
and perform single functions. The end result will be a WSDL, metadata template, test harness
and a UDDI entry.

150

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 1 — Mainframe Preparation

Before you begin the stored procedure registration process, it is a good idea to configure the
mainframe environment to enable your stored procedure to be executed. During the registration
process, SOLA will attempt to execute the stored procedure to verify that the data you have
provided is valid. Although you can set up the environment at any time before the actual
execution takes place, it is a good idea to do so before the registration process.

To configure the mainframe environment, you will need to set up PPT entries in the SOLA
WOR.

WOR AOR

PPT: PPT:

DEFINE PROGRAM (yourSPprogName) DEFINE PROGRAM (XMLPC200)
LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)

REMOTE REGION (yourRegion)
REMOTE NAME :XMLPC200
REMOTE TRANID: (yourTranId)

PCT:
DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)
STATUS (Enabled)
RCT:

DB2ENTRY (yourTranId)
PLAN (XMLPLAN) *

* XMLPLAN must contain an entry which represents the collection that your target stored procedure belongs to.

If you have any difficulties with making these table entries, consult an administrator.

151

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Step 2 — Verify Stored Procedure Syntax

The SOLA run time supports a subset of the stored procedure syntax, shown below in blue.
Before importing a stored procedure, verify that your procedure expects or returns only the
supported data types:

>>— 4=+ —SMALLTINT -~ — — - — = —— ——— —m +-><
| +-+-INTEGER-+—+ [
| | "-INT----- ' \
[U-BIGINT-=-=-= : |
| = ({8, @) commooooooooooooooos |
S e D) G M A e e e e LS e e e e e E e S e e e +
| +-DEC----- + '-(integer-+----------- +=) ="
| '-NUMERIC-' '-, integer-'
| -(53) -———---
+-+-FLOAT——+——-—-———————— B ettt e et +
| '-(integer)-"' | |
| +-REAL--—---——-—-———————- + |
(I .-PRECISION-. | |
| '-DOUBLE-—+-——==—-———— +-!
| .= (34)-.
+-DECFLOAT-—+---—-- R e e EEE RS P e e +
| '-(l6)-"
| A . |
+-+-+-+-CHARACTER-+-—+—-——-—-———— ommm e e e e T e B +-+
| | | '-CHAR------ ' '-(integer)-' | '-FOR--+-SBCS--+--DATA-' I
| | '-+-+-CHARACTER-+--VARYING-+-- (integer) -' +-MIXED-+ |
(. | '-CHAR------ ! | '-BIT---' |
| ' -VARCHAR---—==—==——————— ! |
(. -(IM) —=———— - . |1
| '-+-+-CHARACTER-+--LARGE OBJECT-+-—+—-——=——————————————— it +=!
| | '-CHAR------ G | '-(integer-+---+-)-' '-FOR--+-SBCS--+--DATA-'
| ' —CLOB-=———=——————————————————— 0 +-K-+ '-MIXED-"'
[+-M—+ |
| '-G-! |
| (1) . |
+-+-GRAPHIC-—4-—-—-——————— Fo————— o +
(I '-(integer)-' | |
| +-VARGRAPHIC-- (--integer—--)----—+
(I ~(IM) —mm - |
| '-DBCLOB=——+=———=——=——————————— += |
| '-(integer-+---+-)-"'
[+-K-+ |
| +-M-+ |
| '-G-! \
| O |
+-+-BINARY-—+-—————————— o o +
| '-(integer) -' | |
| +-+-BINARY VARYING-+- (integer)-—--——--———————————— + |
| | '-VARBINARY-----—- ! | |
| -(IM) ———————— - |
| '"-+-BINARY LARGE OBJECT—+-—+-———————————————— =
| BB OEEEEEEEtss s V= (dategee=r=—=-r=)) =" |
| +=K—+ |
| +=M—+ |
| Al _G_ Al |
+-+-DATE------ o +
| +-TIME------ + |
| '-TIMESTAMP-' |
o ROW L D——— = = — = — —m o +
I =l === L

152

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Step 3 — Stored Procedure Registration

soLAa | uoot || Bl | patase #/#®] Select the project you wish to import to and right-click it.
From the pop-up menu, select Import Program. If you

Environments(TEST) ™ wish to import the program to a new project, first follow the
= Directory steps for creating a new project on page Error! Bookmark
Iz - not defined..
5 {b Import Program
o Add User Access In orde_r to import a program into a project, you must be an
e authorized user of that project. Once the program is
] Show User Access imported, you can drag and drop the program from one
o Show Project History project to another. However, you must also be an

£y
L-

authorized user of the project you wish to move the

Delete Project program into.

£y

2 InsuranceMidwWest
7 InsuranceNorth After you select Import Program, the Import panel will be
displayed under a tab in the workspace. This panel can
be used to import any program type that SOLA supports.

&

d

The default program type is commarea, so use the Other Import Types menu to select Stored
Procedure.

Importing Commarea - Bottom Up Producer B | Other Import Types ™ |

) f+4 Commarea B

Project: | SoaDemo | Container b

Program Name: |Please enter a pro E Callable b

Override Name: |\When override is b @ IMS Message b
Language: [COBOL g3 outbound
Environment: TEST E BMS 3270

Program Description: |Sola Demonstratior [[J) Stored Procedure
Structure Name: |Please enter a stru Adhocsql {E

Class Name: |F‘Iease enter a clas B3 Custom
\+4 BPEL

Dataset/Listing Name: |F‘Iea5e enter a listin

IMPORT RESET

The Import panel will change to display the stored procedure search panel.

153

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Harne Import *

Importing Stored Procedure D Cther Impark Types ©

Schema Specific Mame
Owner MName
SEARCH

The first step in creating a web service from a stored procedure is to select which stored
procedure you want to use. To do so, you search for it based on one of the following search
criteria:

m Schema: narrows the search to stored procedures with a matching schema.
m Specific Name: narrows the search to stored procedures with a matching name.
m Owner: narrows the search to stored procedures with a matching owner name.

= Name: narrows the search to stored procedures with a matching alias name (usually
the same as specific name).

Although all fields are optional, you must supply at least one parameter. Wildcard characters
(%) are permitted during the search, as are partial words. The example blow search below is
based around a single letter of the stored procedure’s specific name, so all stored procedures
whose specific name starts with the letter “s” will be returned. If you wanted to return all results
that have the letter s in the specific name (rather than just those that start with s), you could
specify %s in the Specific Name field.

Horme Import *

Importing Stored Procedure D Cther Impart Types ©

Schema Specific Name 5
Owner Name
SEARCH %
Once you have specified at least one search parameter, click = SEARCH " The results

summary panel will be displayed.

154

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Home Import #

Importing Stored Procedure @ Other Import Types ™

Select a specific name from the list below to continue.,

Schema Specific Name Routine Origin Language Collection

SOLAGLF SOLASPOD1 P E COBOL

SOLAGQLF SOLASPODZ P E COBROL TOA

SOLAGLF SOLASPOD4 P E COBOL

SOLAGLF SOLASPOS P E COBOL

SOLAGQLF SOLASPOG P E COBOL

SOLAGLF SOLASPO7 P E COBOL

SOLAGQLF SOLASPXX P E COBROL

SOLAGLF SOLASWOZ P E COBOL SOh

=vEIBM SOLCAMESSAGE P E C

SYSIRM SQOLCOLPRIYILEGES P E [DESMASPCC

SvsIBM SOLCOLUMNS P E C DEMASPCC

SYSIBM SQOLFOREIGNKEYS P E C DEMASPCC

SYSIBM SOLGETTYPEINFO P E C DENASPCC

=vEIBM SOLPRIMARYKEYS P E C DEMNASZPCC

SYSIRM SQLPROCEDURECOLS P E C DESMASPCC

SvsIBM SOLPROCEDURES P E C DEMASPCC

SYSIBM SQLSPECIALCOLUMMNS P E C DEMASPCC

SYSIBM SOLSTATISTICS P E C DENASPCC

SYSIBM SQOLTABLEPRIYILEGES P E [DEMASPCC

SvSIBM SOLTABLES P E C DENASPCC

SvsIBM SOLUDTS P E C DEMASPCC
RETURN

The results summary shows information about all of the stored procedures that match your
search criteria. The information is organized under the following column headings:

m Schema: the stored procedure’s schema name.

m Specific Name: the stored procedure’s internal name. The names in the column are
links. Click on the link to select that stored procedure and create a web service that will
call it.

® Routine: the routine type, can be P (for procedure) or F (for function).
®m Origin: the stored procedure’s origin, can be E (for external) or | (for internal).

®m Language: the stored procedure’s language. Options are all types, Assemble, C,
Cobol, Compjava, Java, PLI, Rexx and SQL.

= Collection: the DB2 collection that the stored procedure belongs to.

155

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Importing Stored Procedure @ Ckher Import Twpes = To continue with the import
process, select a stored procedure

from the list by clicking on its

Select a specific name from the list below to continue, name in the Specific Name

e column.
Schema Specific Mame
SOLAGLF SOLASPO If no stored procedures are listed,
ggtigtg gg:::g::m go back to the previous screen
SOLAGLF COLASPOS and try a new search with different

A OmCas parameters.
At any point during import, you

can return to the previous panel by
clicking |~ RETURN

Clicking on a stored procedure’s name will display the procedure details panel.

Harme Impork '*

Importing Stored Procedure E Other Import Types ™

Schema: SOLAQLF Zpecific Marme: SOLASPO4 FRoutine Type: P

Ordinal PType Parm Mame DType Length Scale Parm Data
1 Input PROJECTHAME CHAR 35 0
2 Input DECIMAL_IN DECIMAL 7 2
3 Input SMALLINT_IN SMALLINT 2 0
10 /0 PARM_DATE DATE 4]

REGISTER RETURN

The procedure details panel displays the input portion of the signature for the selected stored
procedure. In order to execute, most stored procedures require input. SOLA will analyze the
selected stored procedure and automatically determine what input fields it requires. You will

need to input the data required to execute the stored procedure before proceeding.

The data you input will not necessarily be the data that is used when the stored procedure is

called as a web service after registration. SOLA needs valid input data to execute the stored
procedure to make sure that it was registered correctly.

The panel provides information about each parameter in the input portion of the stored
procedure’s signature under a series of column headings:

= Ordinal: the order that the parameter appears in the signature.
= PType: the parameter type, either | (input) or I/O (input/output).
= Parm Name: the parameter name.

156

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

® DType: the type of data that this parameter represents.
® Length: the parameter’s internal length.

®m Scale: for some types of parameters (such as fractions), the scale represents the
number of significant positions after the decimal point.

m Parm Data: this column contains fields in which parameter values can be entered.

To proceed, enter the appropriate values (you will need to be familiar with the stored procedure
and what it does to know what values are appropriate) for every parameter and click

REGISTER " to continue.
The registration panel will be displayed.
Home Import #

Importing Stored Procedure E Cther Import Tvpes ™

Zchema: SOLAQLF Specific Mame: SOLASPO1 Routine Type: P

Project Solalnztall Program SOLASPO
Method Class
Description MSpace Prefix
EndPoint Zpad[1443) w
EXECUTE RETURN

The registration panel is where you give SOLA the information it needs to expose the stored
procedure as a web service. The stored procedure must be given a method, class and program

name. You can also specify the end point, an optional namespace prefix and provide a
description.

® Project: the SOLA project that the stored procedure will belong to. This cannot be
changed during registration, though you can drag the program from one project to
another once it is created.

® Program: the SOLA program name that the stored procedure will be organized under.
This cannot be changed.

m Method: the SOLA method name used to execute the stored procedure.
m Class: the SOLA class name that the stored procedure will be organized under.

®m Description: a free-form description field.

157

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

= NSpace Prefix: This field is optional. Use it to customize the descriptive portion of the
namespace of the WSDL that will be generated when the stored procedure is registered.

= EndPoint: the end point that the stored procedure will run in.

When you have provided the registration information, click =~ EXECUTE

SOLA will attempt to execute the stored procedure with the data you provided (on the Stored
Procedure Details screen) and display the results.

If the stored procedure does not execute successfully, an error message will indicate failure,
and SOLA will display a new set of hyperlinks at the bottom of the panel.

Importing Stored Procedure @ Other Import Types

Schema: SOLAQLF Specific Name: SOLASP04 Routine Type: P

Project ‘Solalnstal | Program SOLASPD4 |
Method test | Class Project Test |
Description |tES’f program | MSpace Prefix | |
EndPoint | Zpad(1443) v|
An error occured during stored procedure execution. Click the links below to view the request and/or response.
Request Response
EXECUTE RETURN

Clicking on the Request link will open a new window containing the SOAP request that was sent
when SOLA attempted to execute the stored procedure. Clicking the Response link will open a

new window containing the SOAP response that was returned. You can use this information to

determine why the stored procedure failed to execute properly.

If the stored procedure is executed successfully, you will be taken to the finalize panel, where
SOLA will display information about the parameters used by the stored procedure.

Home Import #

Importing Stored Procedure E Other Import Types ~

Click to display request message Click to display response message
Level Parameter Name Input/Output Length Scale Occurs
1 SPA-LINKAGE-AREA B 0 0 0
2 ad I 250 0 0
4 StoredProcOwner I a 0 0
4 StoredProcMame I a 0 0
< PROJECTNAME I 35 0 0
2 adResponse] 250 0 0
4 completeData O 250 0 0
= DATA O 250 0 0
8 OutputParameters O 250 0 1

FINALIZE RETURN

158

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

The information is presented under a series of column headings:
m |evel: the parameter’s logical level.
= Parameter Name: the parameter name.
= |nput/Output: the parameter type, either | (input), O (output) or B (both).
= | ength: the parameter’s internal length.

m Scale: for some types of parameters (such as fractions), the scale represents the
number of significant positions after the decimal point.

= Qccurs: if the parameter is an array or a table, this indicates how many times it occurs.

You can view the SOAP request

Click to display request message Click generated by SOLA and the
Level Parameter Name i"'} Input/Output response returned by the stored
1 SPA-LINKAGE-AREA B procedure,

N

ad I
oF ,._,-Ij..::? Nner b 4

To view the SOAP request, click
the request link. Likewise, click
the response link to view the
response.

If the procedure executed correctly and the request and response are satisfactory, you are
ready to finalize the registration.

Click FINALIZE | {9 create the web service.

159

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - Ad-hoc SQL

Note: Lifecycle Manager and SOLA integration of Ad-hoc SQL Web Services is not supported
at this time.

SOLA provides the means to register a method within your project that will let you run Adhoc
SQL as a web service.

How SOLA Creates Web Services from Ad-hoc SQL

To run Adhoc SQL as a web service, SOLA creates a dummy program that will represent your
Adhoc SQL requests. You do not need to register each SQL request as a separate method.
One dummy program will provide access to all of your Adhoc SQL.

160

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

7

Creating a Web Service from Ad-Hoc SQL

This section will describe the steps necessary to register a method to run Adhoc SQL as a web
service. There is no analysis when making web services from Adhoc SQL. The end result will
be a WSDL, metadata template, test harness and a UDDI entry.

Step 1 — Mainframe Preparation

To configure the mainframe environment, you will need to set up PPT entries in the SOLA
WOR.

WOR

AOR

PPT:
DEFINE PROGRAM (DummyprogName)

PPT:
DEFINE PROGRAM (XMLPC200)

LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)
REMOTE REGION (yourRegion)
REMOTE NAME : XMLPC200

REMOTE TRANID: (yourTranId)

PCT:

DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)

STATUS (Enabled)

161

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Step 2 - Adhoc SQL Registration

~ Select the project you wish to import to and right-click it.
SOLA | UDDI || Fle || Datase /'#| From the pop-up menu, select Import Program. If you
wish to create the program in a new project, first follow the

Envi ts(TEST) ™ \ :
vironments() steps for creating a new project on page Error! Bookmark

=, Directory not defined..
E-RIE- .
= _-.{b Import Program In order to import a program into a project, you must be an
= Add User Access authorized user of that project. Once the program is

imported, you can drag and drop the program from one
project to another. However, you must also be an
Show Project History authorized user of the project you wish to move the
program into.

&

4 Show User Access

(EIRgEY
L,

Delete Project

&

2 InsuranceMidWest

£y

R After you select Import Program, the Import panel will be
InsuranceNorth displayed under a tab in the workspace. This panel can
be used to import any program type that SOLA supports.

+

The default program type is commarea, so use the Other Import Types menu to select Adhoc
SQL.

Importing Commarea - Bottom Up Producer B | Other Import Types ™ |

f+4 Commarea b
Project: SolaDemo
Container b
Program Name: |Please enter a pro @ Callable b
Override Name: |\When override is b @ IMS Message b
Language: |COBOL G outbound
Environment: | TEST E BMS 3270
Program Description: |Sola Demonstratior [Stored Procedure
Structure Name: |Please enter a stru k=] Adhocsql P
Custom
Class Name: |P‘Iease enter a clas E
- — |4 BPEL
Dataset/Listing Name: |P|ea5e enter a listin

IMPORT RESET

The Import panel will change to display the Adhoc SQL panel.

162

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Project : Solalnstal Program:

Class Name: AdhocSOL Method: runSCL

Class Desc: Run ADHOC S0L Category: Msc =

SOLA Binding EndPoint: 1 PUBLIC CICA{ 1443) -
REGISTER

The only information you need to provide is the program name and the binding endpoint.
m Project: the name of the project to which the dummy program will belong. This is pre-
populated based on the project from which you accessed the import screen and cannot
be changed.

m Program: the program name that will represent your Adhoc SQL requests. As this is
not an actual program, you may enter any unique name up to eight characters long.

m Method: this will be the method you use to represent your Adhoc SQL requests. It's
default name, runSQL, cannot be changed.

m Class Name: the class name that will represent the dummy program. Class names are
necessary for the dummy program to be used in distributed systems. It's default name,
AdhocSQL, cannot be changed

m Class Description: a brief description of the dummy program. This cannot be changed.

m Category: the category (type) of program. Options vary by installation.

m SOLA Binding Endpoint: the mainframe endpoint in which the dummy program will
run.

Once you have entered the program name, optional category and a binding endpoint, click
REGISTER " to create the dummy program.

163

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Using SOLA Developer - Custom Programs

Note: Lifecycle Manager and SOLA integration of Custom Program Web Services is not
supported at this time.

SOLA is capable of creating web services from DOM API programs. The Document Object
Model (DOM) is a specification designed by the World-Wide-Web Consortium (W3C) to provide
an object oriented and vendor independent way to inquire on and modify XML documents. The
DOM works on the concept of converting an XML document to a tree structure and loading the
entire document into memory. Inquiring on and modifying the XML can be done using methods
provided by the DOM specification.

SOLA provides a DOM parser and API to inquire on and modify XML documents. The SOLA
DOM API can be used by CICS transactions and Batch jobs, while the SOLA DOM parser and
API together provide functions to inquire on an XML document repeatedly in any direction, as
well as a method to create new XML documents from COBOL programs.

Note: in SOLA 6.0 PTF SFX-6116 and IDE Release Version 6.1.10 and greater, there is a new
model for custom programs; a new Custom program interface to support use of a new DOM

API. The procedures described here reflect this new model. Legacy custom programs will still
be supported, but any new development should comply with the new standards described here.

How SOLA Creates Web Services from Custom Programs

The process for creating a web service from a DOM API program is similar, conceptually, to
creating a web service from a commarea program. SOLA is given information about the
program and its inputs, then a method is created through analysis (the standard commarea
analyzer is used)

164

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Creating a Web Service from a Custom Program

This section will describe the steps necessary to create a web service from a DOM API
program.

Step 1 — Mainframe Preparation/Coding Custom Program

PPT Entries

To work with SOLA, DOM API programs require a PPT entry in the WOR region that points to
the AOR region. Prior to SOLA 6.0 PTF SFX-6116 and IDE Release Version 6.1.10 the remote
PPT definition for custom program invokes XMLPC200 on AOR region. To exploit the new DOM
APl interface the remote PPT definition has to be setup to invoke XMLPC202.

WOR AOR

PPT: PPT:

DEFINE PROGRAM (program name) DEFINE PROGRAM (XMLPC202)
LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)

REMOTE REGION (yourRegion)
REMOTE NAME (program name)
REMOTE TRANID (yourTranId)

PCT:

DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)

STATUS (Enabled)

Containers

The following is a list of possible containers that your custom program may use (all containers
are contained within channel SOLA-CUSTOM):

B SOLA-STATUS: Communications pertaining to status are handled through this
container. Contains SOLACUV2 copybook is described later in this section. This
container is input/output.

B SOAP-REQUEST: Contains the decrypted SOAP request. This container is input only.

165

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

B SOAP-RESPONSE: This container is optional. It should be present only if a normal
return code is present in the status container and will contain your SOAP response. This
container is output only.

B SOAP-FAULT: This container is optional. If you want to create a custom fault, you
should put that fault in this container. This container is output only.

Once the SOAP request has been retrieved, your program can use any parser to process the
request and build either a SOAP response or a fault (we recommend the SOLA parser,
XMLPC112, though XMLPC110 which supports the old DOM API from SOLA Version 5 and
earlier Version 6 releases will be supported together with the new interface).

Once the SOAP response or fault has been built, it will need to be placed back into a specific
container (along with the proper status). When control returns to the SOLA region, SOLA will
interpret the status and take appropriate action (i.e. under normal circumstances, it will send
back the SOAP response).

Under normal circumstances you will place the completed SOAP response into the CU-RESP-
CONTAINER container and set the CU-RETURN-CD to zero. In this case SOLA will simply
deliver your soap response to the client requestor.

Required Copybooks

The copybook SOLACUV?2 is passed to the custom program in the status container. You will
need to retrieve it into the custom program, update the information in the data area and place it
back into the status container. This is used to report status information from the custom
program and maps the area passed to the application linkage.

Note: When SOLA 6.0 PTF SFX-6116 and IDE Release Version 6.1.10 are applied, you will
also get following copybook updates as a part of SAMPLIB:

XMLDOMW1 - Interface for new DOM API (We have added new 88 level items so the flags
match old interface).
XMLCUV12 - Copybook that maps the area passed to Application linkage

The following are the contents of the SOLACUV2 copybook:

05 CU-RETURN-CD PIC S9(04) BINARY.

88 CU-RETURN-NORMAL VALUE +0.

88 CU-THROW-FAULT VALUE -1.

88 CU-CUSTOM-FAULT VALUE -2.
05 CU-RETURN-MSG PIC X(100).
05 CU-CHANNEL-NM PIC X (16) VALUE 'SOLA-CUSTOM'.
05 CU-STATUS-CONTAINER PIC X (16) VALUE 'SOLA-STATUS'.
05 CU-STATUS-LEN PIC S9(09) BINARY.
05 CU-REQ-CONTAINER PIC X (16) VALUE 'SOAP-REQUEST'.
05 CU-REQUEST-LEN PIC S9(09) BINARY.
05 CU-RESP-CONTAINER PIC X(1l6) VALUE 'SOAP-RESPONSE'.
05 CU-RESPONSE-LEN PIC S9(09) BINARY.
05 CU-FAULT-CONTAINER PIC X(16) VALUE 'SOAP-FAULT'.
05 CU-FAULT-LEN PIC S9(09) BINARY.

166

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

The names of the SOAP-RESPONSE and SOAP-FAULT containers can be overridden by your
custom program if you wish. Other container names need to remain the same.

Faults

You can throw two types of faults. If you set the CU-RETURN-CD to -1 SOLA will throw the
message contained in the CU-RETURN-MSG area as a SOAP Fault (your program need not
create an actual SOAP fault). You can alternately set the CU-RETURN-CD to -2 and SOLA will
retrieve your custom SOAP Fault from the CU-FAULT-CONTAINER and send it to the
requestor.

Sample Program

For a sample custom program, see Appendix D.

Step 2 — Testing the Program

It is recommended that you test the program using the SOLA Raw Tester before creating a web
service. For instructional purpose, you can use the sample program “Convmph” that is shipped
with SOLA. This sample program uses the DOM API to consume and create XML, and also
uses the XML format conversion program to convert data into and out of XML string notation. It
has one simple function, to convert miles per hour into kilometers per hour. The program
accepts a single value as input and creates a single value as output.

Convmph demonstrates using the DOM API to retrieve a value, convert the value, use it in a
calculation, create an output XML document and include the output value in the document.
Sending a SOAP fault is also demonstrated.

Convmph expects an input XML message like the one below:
<mph>value</mph>

Before executing the XML input message, wrap it in a SOAP message as follows.

<soap:Envelope xmlins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ConvMph xmIns="http://convMPH..SOLAsoa.com/CU/CONVMPH/ ">
<mph>value</mph>
</ConvMph>
</soap:Body>

</soap:Envelope> The namespace must
specify “CU” followed by

the program name

167

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Access the raw tester by
clicking the SOAP Test button
on the button bar. This will
display the raw test panel.
Enter the request shown above into the test field, using a value of 100 as input.

w Project V" soaP Tt'{b lj‘ Muonitor Search

Binding EndPoint: HTTP://MAINFRAME DIGEV(
ADD USERNAME TOKEN ENCRYPT BODY
<zoap:Envelope =

xmlns:socap="http://schemas.xml=cap.org/scap/envelope/ ">

<=zoap:Body>

<ConvMph =zmlns="http:,//convMPH. .S50LA=oa.comn/CO/CONVHMEPH, ">
<mph>value</mph>

</ ConvHph>

</ soap:Body>

</ znap:Enveloper

TEST RESET

Figure 1 — Test SOAP Request

Click = TEST " {0 test the program.

Assuming everything is set up correctly, Convmph will return a SOAP response (in a new
browser window), in which 100 mph has been correctly converted to 160.93 kph.

168

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Step 3 — Import Custom Program

~ Select the project you wish to import to and right-click it.
SOLA | UDDI || Fle || Datase /'#| From the pop-up menu, select Import Program. If you
wish to create the program in a new project, first follow the

Envi ts(TEST) ™ \ :
vironments() steps for creating a new project on page Error! Bookmark

=, Directory not defined..
E-RIE- .
= _-.{b Import Program In order to import a program into a project, you must be an
= Add User Access authorized user of that project. Once the program is

imported, you can drag and drop the program from one
project to another. However, you must also be an
Show Project History authorized user of the project you wish to move the
program into.

&

4 Show User Access

(EIRgEY
L,

Delete Project

&

2 InsuranceMidWest

£y

R After you select Import Program, the Import panel will be
InsuranceNorth displayed under a tab in the workspace. This panel can
be used to import any program type that SOLA supports.

+

The default program type is commarea, so use the Other Import Types menu to select
Custom.

Importing Commarea - Bottom Up Producer B | Other Import Types ™ |

f+4 Commarea b
Project: SolaDemo
Container b
Program Name: |Please enter a pro @ Callable b
Override Name: |\When override is b @ IMS Message b
Language: |COBOL G outbound
Environment: | TEST E BMS 3270
Program Description: |Sola Demonstratior [Stored Procedure
Structure Name: |Please enter a stru k=] Adhocsql
Custom
Class Name: |P‘Iease enter a clas E
- — |4 BPEL
Dataset/Listing Name: |P|ea5e enter a listin

IMPORT RESET

The Import panel will change to display the Custom Program import panel.

169

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Importing Custom - Bottom Up Producer a Other Import Types *

Project: SolaDemo Class Name:

Program: Method:

Class Desc: Category: Misc -
SOLA Binding EndPoint: 1 PUBLIC CICA{ 1443) -

Flea=e enter input XML without SOAP Envelope / Body / method tag.
Only enter input parameters in xml form
Example: =Bossld=BESD891=/Bossld=<fAccnt=1234=/Accnt==Flg="=</Flg=

ANALYZE

The Import panel consists of a series of fields used to provide information about the source
program and the destination SOLA program that will be created.

m Project: the name of the project to which the imported methods/operation will belong.
This is pre-populated based on the project from which you accessed the import screen
and cannot be changed.

m Program: the name of the program to which the new method will belong. Unlike bottom
up commarea analysis, you cannot create a program on its own.

= Method: the name of the method/operation to be created.

m Class Name: when you create a web service from a DOM API program, it will be
exposed as a method. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program to which this
method belongs.

m Class Description: a brief description of the program.

®m |nput field: this is the large empty field towards the bottom of the panel. This is where
you insert the XML input that the DOM API program requires to run. Just as with other
program types, SOLA requires a valid sample input value to run the program. When the
web service you create is published, consumers will be able to submit any value they
chose. When entering the input, use XML format without a SOAP envelope, body or
method tags.

170

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

m Category: the category (type) of program. Options vary by installation.

® SOLA Binding Endpoint: the mainframe endpoint in which the program will run.

When you have filled in all of the required information, click = ANALYZE
Importing Custom - Bottom Up Producer E Other Impaort Types
Project: Solalnstall Class Mame: Convert Speed
Program: CONVMPH Method: corvmph
Class Desc: Convert MPH to KPH Category: Misc
SOLA Binding EndPoint: 1 PUBLIC CICA{ 1443) -

Flease enter input XML without SOAP Envelope / Body / method tag.

Cnly enter input parameters in xml form
Example: =Bossld>=BESD891</Bossld=<Accnt=1234=/Accnt=<Flg=Y</Flg=

<mph>100<,/mph>

ANALYZE Ik

Custom programs use the standard (bottom up) commarea analyzer, and analysis is performed
the same way.

171

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Test Harness

SOLA Developer uses two testing tools to test web services; the quick tester and the raw tester.

m Quick Tester: used to test a specific method. The quick tester runs the web service
and asks for the inputs the web service requires, and then makes a soap call and
provides the SOAP response as raw XML. The tester also provides comprehensive
configuration capabilities, allowing the user the make changes to xml structure for
debugging purposes. It is considered good practice to test every web service that you
create.

m Raw Tester: used to test raw XML. Users can copy and paste XML (SOAP Request,
etc.) into the Raw Tester, edit it as necessary, and send it as a SOAP request. SOLA
will then query the target legacy program and send a SOAP response as raw XML. This
testing facility is very useful for testing customizations and tweaks in situations where the
user either cannot or does not want to make changes using one of the SOLA analyzers.

172

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Quick Tester

To access the quick tester, click on the

Environments{ TEST) * PROGRAM *
method you want to test and select

Quick Test Harness from the pop-up menu. = ‘jgﬁ;ta;"om et
This will display the quick test panel. jE{EzACAo_zp

. . % QACAD2ZM1
The purpose of the quick test panel is to e e
display the method’s required inputs, have the .
user enter values for those inputs and then View Method Wsdl
submit the SOAP request to the legacy Quick Test Hamess
application, just as the web service would if it Re-Analyze Method
were in production. The user can also make Mark a6 TSREADY
changes to the XML structure for debugging

purposes, using either drag and drop

functionality or manually editing the XML. In

this manner, you can experiment with the web service, figure out what it needs to make it work,
and then go back to analysis and make those changes. The Quick Tester supports HTTPS.

Home Quick Test '*

Method Name: GetBFO04Details Binding EndPoint: TORE -
TreeView GridView FormView Saved Tests
= € =nap:Envelope »

= E_ soap:Body
= € GetBPD4Details
= € In-IMSMsg-Area-2
= € In-IMSMsg-Fld1-X-2
fgf
= € In-IMSMsg-Fld2-X-2

m

= € In-IMSMsg-Area-1
= € In-IMSMsg-Fld1-X-1

= € In-IMSMsg-Fld2-5-1
4 I F
TEST SHOW SOAP XML |~ SAVE SOAP XML

The quick test panel has three views, any one of which can be used to enter values for the
required inputs. There is also a saved tests view, detailed below.

m Tree View: this is the default view and is a compromise between simplicity and
configurability. The inputs are clearly displayed and easily configured and there is a

173

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

certain amount of customization you can do with the XML structure by dragging and
dropping tree items.

m Grid View: this is the simplest to use but least configurable view. You cannot change
anything, but the inputs are all laid out in a neat table for ease of use.

m Form View: this is the least user friendly but most configurable view. The SOAP
request is shown as raw xml. To make changes to the inputs, you have to change the
XML manually. This allows for tremendous customization (you can change the XML
however you like) but is not very easy to use.

= Saved Tests: when configuring a test, you can use the | SAVE SOAP XML hytton to
save the information you entered. The Saved Tests tab contains a list of saved tests,
and clicking on a test in this list will restore the saved configuration information. You can
also delete saved tests using the @ icon.

Tree View
The tree view is the default view and is a compromise between simplicity and configurability.

TreeView Gridview FormView Saved Tests

= E,_ soap:Envelope -
= E_ soap:Body
= € GetBPD4Details
= € In-IMSMsg-Area-2
= € In-IMSMsg-Fld1-X-2
Fof
= € In-IMSMsg-Fld2-X-2

m

= € In-IMSMsg-Area-1
= € In-IMSMsg-Fld1-X-1

= € In-IMSMsg-Fld2-5-1
4 I ¥

TEST SHOW SOAP XML | SAVE SOAP XML

The first and default view (shown above) is the tree
view. This shows the same XML structure tree that you
saw in the commarea analyzer, though it only shows the
input half. For every tree item that was described in
analysis as a variable input (an input without a fixed
value) will have either a text box (if there were no = € SearchType
enumerations/restrictions) or a drop down menu (if

there were enumerations).

&) € searchType

174

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

You can drag and drop items from one position in the tree to another to experiment with XML
structure. Keep in mind, however, that if you discover a fault in your original structure and can
successfully execute the web service with a new structure you've created in the quick test
panel, you will have to go back to analysis and make the same changes there.

Grid View

The second view is the grid view, which shows all of the inputs as either text boxes or drop
down menus, but does not show the XML structure or allow you to tweak the positioning of the
tree items.

TreeView GridView FormView Saved Tests

Hame = Value
In-IMSM=g-Fid1-x-1
In-IMSM=g-Fld1-X-2
In-IMSM=g-Fid2-5-1
In-INSM=sg-Fid2-X-2

4 I I

TEST SHOW SOAP XML | SAVE SOAP XML

This is the simplest and least configurable view mode to use. The only thing you have to do is
enter the required inputs.

Form View

The third and last view is the form view, which displays the SOAP request as raw XML. This is
the most configurable view as you can make whatever changes you want to the XML directly.
In many ways, this is like the raw test panel (described later in this chapter), but it is pre-
populated with the method’s SOAP request, minus the user configurable variables.

175

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

TreeView GridView FormView Saved Tests

<soap:Envelope ¥xmins:soap="http://schemas.xmisoap.org/soap/envelope/ = -
<coap:Body>
<GetBP04Detais
¥mins="http://GetBPO4Details. SOLABPO4 Class. x4 ml.soa.com/IM/SOLABPO4 TXSWEBODG =
<In-IM5Msg-Area-2=
=In-IMSMsg-Fld1-¥-2= </ In-IMSMsg-Fld1-¥-2 =
<In-IMSMsg-Fld2-%-2 ==/ In-IMSMsg-Fld2-¥-2 =
=/In-IMSMsg-Area-2=>
<In-IM5Msg-Area-1=
=In-IMSMsg-Fld1-%-1==/In-IMSMsg-Fid1-¥-1=>
=In-IM5Msg-Fld2-5-1 =</ In-IMSMsg-Fld2-5-1=
=/In-IM5Msg-Area-1=
= /GetBP 4 Details=
=fsoap:Body=
< /soap:Envelope>

m

1| 1] 3

TEST SHOW SOAP XML | SAVE SOAP XML

To use this view, enter the inputs directly into the XML and make whatever changes you need in
case the web service doesn’t work. Using this view requires an understanding of XML.

Testing the Method

Once you have configured the inputs using one of the three view types, click = TEST " to
send the SOAP request.

You can also view the SOAP request that the web service will send to the legacy application by
clicking ~SHOW SOAP XML

The response will be returned as a SOAP response in a new browser window (or tab).

176

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Raw Tester

To access the raw tester, click
the SOAP Test button on the
button bar. This will display the
raw test panel.

1 [e | =
" SOAP Test .J‘ Monitor Search ,‘k Error Search Q4 Browse Dalaset |\2

Home SOAP Tester '*

Binding EndPoini: |01 PUBLIC TEOP(1445) =] ;l
ADD USERNAME TOKEN EMCRYPT BODY FORMAT XML
TEST RESET =
“| | i

The Raw Test screen is used to test a piece of SOAP code in its raw state (i.e. SOAP code can
either be manually entered or pasted for testing). Tests initiated from this screen use http as a
transport. The Raw Tester does not support HTTPS.
The raw tester has options not available in the quick tester:

ADD USERNAME TOKEN Click this button to add a WS-Security header to your SOAP

message, with your mainframe Userld and password in the WS-
Security header.

ENCRYPT BODY Click this button to encrypt the entire body of the SOAP XML.

FORMAT XML Click this button to indent and make the XML more readable.

To test a piece of SOAP code, either paste it into the large text box or manually enter it. Click
TEST " to send the SOAP call.

177

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Monitoring and Logging

SOLA offers a complete set of monitoring, logging and error reporting tools. The SOLA run-time
automatically logs every transaction in the SOLA Monitor log, which is designed to handle high-
volume transactions while not adding overhead to a transaction. The run-time does this by
logging transactions to an in-memory structure (a CICS user-maintained data table (UMT)).
Background transactions spool this data from the UMT to a DB2 table.

Any time the SOLA run-time detects an error (SOAP fault, program abend, parsing error, etc.) it
logs a message in the SOLA Error log. The SOLA Error log is written directly to a DB2 table. It
contains the full input SOAP message, the error message and a link to the transaction in the
SOLA Monitor log.

Transaction Logs

You can search the transaction logs by - —
clicking the Monitor Search button on et = U@‘”' Search | I Emc
the button bar.

This will display the monitor search panel.

Home Monitor Search '*

TOR EndPoint: |01 PUBLIC TEBOP(1445) =1

Start Date: 2014-04-07 3 Start Time: 00.00.00 v

End Date: 2014-04-07 3 End Time: 23.59.59 ~

Program Mame: I— :I::r::::d I—

Program Type -All Types- |- | iedﬂ'::}St P —

TOR System D= [| IAEE:R St 0

Trans ID: I— TOR Task No: I—

Elapsed (ms) = IU— Max Records: F _lFis:'spuelt DHTML Wiew =
SEARCH RESET

To conduct a search of the transaction log, enter search parameters using the search fields to
narrow the scope of your search. You can also conduct a search with the default (mostly blank)
settings, though this may take some time to complete and may result in a very long list of
transactions.

The following is a description of the search fields:

® TOR EndPoint: narrows the search to transactions within a matching TOR region.

® Start Date and End Date: the start and end dates are automatically populated with the
current date, though these values can be changed if necessary. All transactions are

178

Lifecycle Manager Integrated
r‘ SOLA Developer 6.4.2 User’s Guide

stamped with the date and time at which they take place, and only transactions that took
place on or after the start date and on or before the end date will be returned.

B Program Name: narrows the search to transactions executing this program.

B Program Type: narrows the search to transactions initiated by a
method executed by the specified program type. Options are listed
y p prog yp Y ITI —

in the illustration on the right:
Co l

mimanga
B TOR System ID: narrows the search to transactions with a Callable [
i Container
matching TOR system Id.)
QutBound [
® Trans ID: narrows the search to transactions with a matching m’;ﬁm
transaction Id. BPEL
TgadpXmi
Custom

B Elapsed Time (ms) >: the amount of time elapsed from the time the
transaction was generated to completion.

B Start Time and End Time: the start and end times are automatically populated with the
current system time and can be changed by manually entering a time (hh.mm.ss). All
transactions are stamped with the date and time at which they take place, and only
transactions that took place at or after the start time and at or before the end time will be
returned.

B Method Name: narrows the search to transactions generated by the execution of the
specified method.

B Request IP Addr: narrows the search to transactions generated in response to a
request that originated from an IP address which matches the specified IP address (if
the request came via HTTP).

B AOR System ID: narrows the search to transactions with a matching AOR system Id.
B TOR Task No: the task number assigned to the transaction in the TOR region
B Max Records: the maximum number of rows to be returned from the search.

® Result Type: specifies how the results will be displayed, either as DHTML (normal
view) or as an Excel spreadsheet. Selecting Excel will download the results and open
MS Excel (if installed), displaying the data in an Excel spreadsheet.

Once you have specified your search parameters, click =~ SEARCH

The results of the search will be displayed below the monitor search panel. If the list exceeds
the available screen size, then you will need to to see all of the search results.

179

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Home Monitor Search '*

TOR EndPoint: [01PUBLICTeOP(1445) =

Start Date: 2014-03-31 [Start Time: ~ 00.00.00 v

End Date: 2014-04-07 3 End Time: 23.59.59 v

Program Name: l— m:::??d l—

Program Type m iedﬂ'::eﬂ 0y l—

TORSystem™D: [o system

Trans ID: l— TOR Task No: l—

Elapsed (ms) > lﬂ— Max Records: F _ﬁsp:\t lm

SEARCH RESET

Task Date Task Time :rﬂorgemm Method Name _I:;I:‘?!ram IR:quester
2014-04-07 22.11.28 QACAD2P QACA22M1 CA 10.5.20.39
2014-04-07 22.06.50 QACAD2P QACA22M1 CA 10.5.20.39
2014-04-03 15.56.47 QAIM25P QAIM13M1 ™ 10.5.20.39
2014-04-03 15.56.28 QAIM25P QAIM13M1 ™ 10.5.20.39
2014-04-02 15.49.18 SOLACLOS QACL24M1 CL 10.5.20.39
2014-04-02 15.35.39 SOLACLOS QACL24M1 CL 10.5.20.39
2014-04-01 13.58.06 SOLACAD4 nameSearch CA 10.5.20.49

The information is organized under a series of columns:

® Task Date: the day the transaction was Task Date Task Time
generated, represented as yyyy-mm-dd. 2008-06-19 07.12.42
Clicking on the date for a specific
transaction displays the search details panel % 07.12.51
that contains very detailed information about 5008-06-1 07.10.44

the transaction.
B Task Time: the time the transaction was generated, represented as hh.mm.ss.
® Program Name: the program whose execution generated the transaction.
B Method Name: the name of the method whose execution generated the transaction.

® Program Type: the category (type) of program whose execution generated the
transaction.

B Requester IP: the IP Address of the originating request (responsible for executing the
method that generated the transaction, if it comes via HTTP).

To get detailed information about a specific transaction, click on the transaction date. This
will display the search detail panel.

180

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Home Search Transactions '%/|| Search Detail *

Task Date: 2008-06-19 Task Time: 07.12.31 Eg‘iﬁ’gf"“ SOLACAD7

Method Name: DotNetSearch ¥;gg|:am CA Request Addr: 10.5.20.24

TOR System 105 AOR System TOR Trans ID:XML

ID: ID:

AOR Trans ID: TOR Task No: 1198.0 AOR Task No: 0.0

AOR Task s] HTTP Status

Time: 0 milliseconds Task Elapsed: 10 Code: 403

Abend Code: No Abend Request Size: 1199 bytes FF.tl_gzl?onse 336 bytes
<<First <Prev Next> Last>>

This panel contains detailed information about a specific transaction organized under the
following headings:

B Task Date: the date (yyyy-mm-dd) of the transaction.

B Task Time: the time (hh.mm.ss) of the transaction.

B Program Name: the program whose execution generated the transaction.

B Method Name: the method whose execution generated the transaction.

B Program Type: the type of the program whose execution generated the transaction.

B Request Addr: the IP Address of the originating request (responsible for executing the
method that generated the transaction).

B TOR System ID: unique identifier for the TOR region where the transaction originated.
B AOR System ID: unique identifier for the AOR region where the transaction originated.
B TOR Trans ID: unique identifier given to each program that runs in a TOR.
B AOR Trans ID: unique identifier given to each program that runs in a AOR.

B TOR Task No: unique identifier that is given to each unique instance of a program
running in a TOR.

181

N

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

AOR Task No: unique identifier that is given to each unique instance of a program
running in a AOR.

B AOR Task Time: how long it took to execute the program in the AOR, accurate to +/- 5
milliseconds.

B Task Elapsed: the total end to end time (AOR+TOR) that it took to execute the program,
accurate to +/- 5 milliseconds.

® HTTP Status Code: the HTTP response code generated as a result of the transaction
(e.g. 200 — OK, 403 — Auth Failure, etc.)

B Abend Code: the mainframe abend code if the program abnormally terminates (i.e.
abnormally ends - abends).

B Request Size: the size of the input SOAP XML in bytes.

B Response Size: the size of the output SOAP XML in bytes.

The links at the bottom of the panel allow you to navigate through all the transactions in the list.

=< < First = Prewv Mext> Last>>

<<First: show details for the first transaction in the list.
<Prev: show details for the previous transaction.
Next>: show details for the next transaction.

Last>>: show details for the last transaction.

182

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Error Logs

You can search the error logs by Search |~ (Error Search [@] Browse Da
clicking the Error Search button on J‘@
the button bar.

This will display the error search panel.

o Mew Froject W SOAP Tast ,'_L Monitor Search '.'.I_L Error Search r_,_;g'. Erowse Dataset !.:{I..' Admin Menu Iﬁ

Home Error Search '#

TOR EndPoint: |o1PuBLIC TROP(1445) | =]
Start Date: 2012-12-13 |[F Start Time: 00.00.00 A
End Date: 2012-12-13 |[F End Time: 23.59.59 w
Program Mame: I Method Mame: I
Program Type: Im Result Type: Im
Additional Filters: [audit [T Schema Warnings I Errors: I
SEARCH RESET
< | i

To conduct a search of the error log, enter search parameters using the search fields to narrow
the scope of your search. You can also conduct a search with the default (mostly blank)
settings.

The following is a description of the search fields:
B TOR EndPoint: narrows the search to errors generated within a matching TOR region.

B Start Date and End Date: the start and end dates are automatically populated with the
current date, though these values can be changed if necessary. All errors are stamped
with the date and time at which they take place, and only errors that took place on or
after the start date and on or before the end date will be returned.

® Start Time and End Time: the start and end times are automatically populated with the
current system time and can be changed by manually entering a time (hh.mm.ss). All
errors are stamped with the date and time at which they take place, and only errors that
took place at or after the start time and at or before the end time will be returned.

B Program Name: narrows the search to errors generated by the specified program.

B Method Name: narrows the search to errors generated by the specified method.

183

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

7

B Program Type: narrows the search to errors generated by a method executed by the
specified program type. Options are All Types, Commarea, Callable, BMS3270,
Outbound, AdhocSQL, TgadpXml or Custom.

B Result Type: specifies how the results will be displayed, either as html (normal view) or
as an Excel spreadsheet. Selecting Excel will download the results and open MS Excel
(if installed), displayed the data in an Excel spreadsheet.

®m Additional Filters: narrows the search to include only Audit Information, Schema
Warnings or specific Error codes.

Once you have specified your search parameters, click ~SEAREH

The results of the search will be displayed below the error search panel. If the list exceeds the
available screen size, then you will need to scroll to see all of the search results.

Home Error Search '*

TOR EndPaint: |orpusLicTEOR(1445) =]

Start Date: 2012-12-10 [H Start Time: 00.00.00 v
End Date: 2012-12-17 [End Time: 23.59.59 hd
Program Mame: W Method Mame: I—
Program Type: m Result Type: Im

Additional Filters: [~ audit [~ Schema Warnings ¥ Errors: |

SEARCH RESET

Error Date Error Time Program Name

2012-12-11 04.16.14 SOLACADS
2012-12-11 04.08.49 SOLACADS
2012-12-11 04.08.36 SOLACADS

Method Name
nameSearch

nameSearch

nameSearch

Program Type
CA

CA

CA

The information is organized under a series of columns:

Error Date

Error Time

® Error Date: : the day the error was generated, 2012-12-11 04.16.14
represented as yyyy-mm-dd. Clicking on the date 5019-19-11 04,08 49
for a specific error displays the search details
panel that contains very detailed information 2012-12-11 04.08.36
about the error. \”_'?

184

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

N

Error Time: the time the error was generated, represented as hh.mm.ss.

® Program Name: the program that generated the error.

Method Name: the name of the method that generated the error.

® Program Type: the category (type) of program that generated the error.

To get detailed information about a specific error, click on the error date. This will displays the
search detail panel.

Error Date: 2012-12-11 Error Time: 04.08.36
Program Name: SOLACAD4 Method Name: nameSearch Monitor Detail...
Program Type: CA Error Code: 0 Task Number{g446)

10.5.20.35

SOAESS99E XMLPCOS0-5000 Tor:Te0P Task: 8446
Code:-00006 Inbound regquest refused by Host / UsermameToken or HITP
Authorization header not found

<<First =Prewv Next> Last==

This panel contains detailed information about a specific error organized under the following
headings:

® Error Date: the date (yyyy-mm-dd) of the error.
B Error Time: the time (hh.mm.ss) of the error.
® Program Name: the parent program of the method that caused the error.

® Method Name: the method that caused the error.

185

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

B Program Type: the category of the parent program of the method whose execution
caused the error.

B Error Code: the error code of the generated error.

B Task Number: the TOR task number of the task that caused the error.
the AOR, accurate to +/- 5 milliseconds.

This panel may contain an error display field that contains additional debugging information.

<?xml wversion="1.0" encoding="utf-g8"7
»zoap:Envelope
¥xmlins:soap="http://schemas.xmlsoap.org/soap/envelope,/"
¥mlns:xsi="http://www.w3.org/2001/¥MLEchema-inatance™
¥xmlns:xsd="http: ./ /www.w3.org/2001/¥MLSchema " »<s0ap : Body><GetDocid
¥mlns="http://www.dsd.ml.com/x4ml /CCUPCO50,/Custom" »<hccount>62890439
< /hocounty</GetDocid»</so0ap :Body></3n0ap :Envelope>

Custom API didnot build the XML (TPCI/XMLPCOOQO)

This field is divided into two panes. The bottom pane displays the mainframe error message,
while the top pane displays the input XML that caused the error.

The links at the bottom of the panel allow you to navigate through all the errors in the list.

< < First < Prewv Next> Last>>
<<First: show details for the first error in the list.
<Prev: show details for the previous error.
Next>: show details for the next error.

Last>>: show details for the last error.

186

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Dataset Browsing

SOLA Developer has a facility that carch | (3] Brewss Dataset | GF A
allows users to browse mainframe e & {F_")
datasets. To access this facility, click

the Browse Dataset button on the button bar.

This will display the browse dataset panel.

Home Browse Dataset '#

ISFF Library:

Project SOLADEMO
Group:

Tvpe:

Member

Other Partitioned. Segquential or V5AM Data Set:

This panel is designed to look and function just like a mainframe terminal. The panel is
comprised of a series of fields that you can use to enter information about the sequential
dataset or PDS member that you wish to brose.

When you have filled out the required fields, click =~ BROWSE

The following is a description of the panel’s fields:
B Project, Group, Type and Member: these fields are used for searching for PDS

members. The majority of mainframe PDS names use three qualifiers, Project, Group
and Type. These fields are required when attempting to view PDS members.

B Fully Qualified Name: this field is used when searching for sequential datasets or
PDSs. This field is required attempting to view sequential datasets.

187

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Orchestration

Orchestration is a separately priced option. Documentation on the Orchestration feature will be
supplied on request.

188

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Administration

SOLA Developer is equipped with a comprehensive suite of administrative functions that pertain
to the development tool, its environment variables and access controls.

There are two administration consoles, the admin menu and the access controls menu:

B Admin Menu: this console contains administrative tools for configuring system files and
properties, managing dictionary settings, viewing log files and creating custom schemas.

® Access Controls Menu: this console contains administrative tools for managing
access control groups, user access lists and alternate ids, as well as accessing the user
activity log.

189

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Admin Menu

To access SOLA Developer’'s o Dataset | @ Admin Mpru | S Access C:
administration functions, click on the ij‘t")
Admin Menu button in the button bar.

This will display the admin console.

Home Admin '*

ruser b PleEdtor g% Toweat enomcen ISltn Cutom uecyde
SOLA Property File Editor d
Cnix Root Path Name File Name
= | |
3| = = B
SELECT UPDATE RESET
Property Name Property Value Property Descr

| | | 1)

The admin console is comprised of five panels, accessed by icon tabs. The default icon tab is
File Editor. Click on a different icon tab to open the other admin panels.

This icon tab opens user registration panel, where you can register a new SOLA
pd user.

t._l'-r

Add User

use to browse and edit system properties, such as LMEndPoint,
. LMintegrationMode (Y or N switch), SOLASOAPAddress and more. This panel is
Editor very similar to the file editor panel, except that it extracts properties from a system
file and displays only those properties rather than the entire contents of the file.

This icon tab opens the property editor panel, which the SOLA Administrator can
Flk

190

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

1

File Editor

e

LOgs

& Traces

e

Dictionary
Controls

‘.-\
e
.- o
Creabe
Environment

Installation
Security

‘:HJ

Custom
Schema

Ny

Lifecycle
Manager

This icon tab opens the file editor panel, which you can use to browse and edit
system files such as debugging.xml and endpoints.xml. This is very similar to the
property editor panel, except that it displays and allows you to edit the entire file,
rather than the properties from that file.

This icon tab opens the logs and traces panel, where you can gain quick access to
SOLA log and trace files.

This icon tab opens the dictionary control panel where you can make changes to
the various global dictionaries, upload dictionary files and download global
dictionary files to your local machine.

This icon tab opens the Create Environment panel, which you can use to create
custom environments (test, production, etc.).

This icon tab lets you change the SOLA installation password (SOLAIN) when
logged in either as SOLAIN or an Administrator.

This icon tab opens the custom schema panel, where you can configure new or
existing custom properties for projects, users, programs and more.

There are two properties located in the Property Editor file ‘integration.xml’ that
enable us to communicate to LM; these two properties are the LMEndPoint and
LMUserid. Clicking this icon allows the User to enter the LM installation password
that is associated with the LMUserid and used to connect SOLA to Lifecycle

Manager.

191

Lifecycle Manager Integrated

‘r‘ SOLA Developer 6.4.2 User’s Guide

File Editor

The Property / File Editor panels are very similar to one another and serve the same purpose;
the editing of system files. The file editor provides access to the entire file, whereas the
property editor extracts system properties from the file you are editing and displays them as
fields. Which of the two you use depends on your own preferences.

Home Admin *

B3k § & & = M

Property Le Dictionary Create Installation Custom Lifecycle
- L 0 Lo ecycle
Add User Editor File Editor & Traces Controls Environment Security Schema Manager

SOLA File Editor

SELECT RESE] UPDATE DELETE
Cntx Root Path Name File Name
fost | |
2l
=

The top portion of the screen is used to locate the file you wish to view or change. You can
either manually enter information into the upper fields, or use the lower menus to select
locations from a list. Start with the CntxRoot menu to select a root. Doing so will populate the
other two menus.

192

Lifecycle Manager Integrated

‘ ﬁ SOLA Developer 6.4.2 User’s Guide

Cnitx Root Path Name File Name

finst Jsystem /Dictionary01 xml SELEC
fingt - Jaystem - /Dictionaryl1 xml -

<?xml wversion="1.0" encoding="UIF-8"7> /Assembler bt

<filesystem id="Dictionary0l"> /debugging xml

1 /Dictionary01 xml

- - . 5 =T . i
_?chtlonargg} fm}ns.llst http.KIWWﬁisoa.comfPropertyLlstfso /Dictionany011 (1) h

R | 1 S —— . S — IR R— — T

Once you have located a file, click | SELEET

The contents of the file will be displayed in the large text box.

Home Admin =

BlS|& &8 & & = M

Property Logs Dictionary Create Installation Custom i
File Editor Lifecycle

Add User Editor & Traces Controls Environment Secyrity Schema Manager
SOLA File Editor

SELECT RESET UPDATE DELETE
Cntx Root Path Name File Name
fem Joymaen FDiecscmaryd1 em
I."n!l. - I Il'!:.rslllrn = I Mictonandlaonl = I
<?xm]l veraion="1.0" ancoding="UTF-8"7> -
<filasyatem id="Dicticnary0l">

<Dicticnary0l xmlns:list="http://www.sca.com/PropertyList/acla™

smlna="http:/ www.sca.com/Propertyltem/acla">

<property names="ACCESS-METHOD" valus="AccesaMsthod"™ deacr=""
status="A"/>

<property name="ACCVOl-STREAM-ORIDE"™ wvalus="ReguessatMethodCode™
descr="" atatus="A"/>

<property name="BOSS-ID" value="BosalID"™ descr="" status="A"/>

<property name="CICS-RC" value="CICSReturnCode™ desacr=""
status="A"/>

<property name="CLIENT-NAME" value="ClientName" descr=""
status="A"/>

<property name="CLIENT=-NUM" value="ClientNumber" deacr=""
status="A"/>

<property name="CLIENTINFO" valus="Clientinfo" descr=""
status="p"/>

<property name="ClientInfo" valuse="ClientInfo" descr=""
status="A"/>

<1ist:DFHCOMMAREA> =l

When you wish to save your changes, click = YFPATE
If you want to undo your changes, click = RESET

If you want to delete the file, click = PEEETE " This action is not undoable!

193

e

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Property Editor

The Property / File Editor panels are very similar to one another and serve the same purpose,
the editing of system files. The file editor provides access to the entire file, whereas the
property editor extracts system properties from the file the SOLA Administrator is editing and
displays them as fields. Which of the two that the SOLA Administrator chooses to use depends
on their own preferences.

{SGAF' Test

Home || Emror Search '®

4 Wonstor Seanch

Admin *

<
N

Aidd User

Property
Editor

_ﬂ Jlll'l&

Fibz Editir Create

Dactionany

L
& Traces Controks

SOLA Property File Editor

Cnix Root

PFath Name

Environmenit

Custom
Schema

[rstallation
Security

File Name

|r'|d |"l'r'F"|'"

Py |
SELECT

Property Mame

[

UPDATE

RESET

Property Value

fiabuggng xmi

B L | By

Property Descr

lnnrh'wi'llrnnd

| T

Inmhwl.m:dd

HaLmon

'_hl ripratedh ode

¥

I
|
I

foonscueFie

[vES

[rES IO

e

P

Jiwie

feochede etz

]

I

[

'.lr'lu’ﬂc-rd'-' 456 36T O are Tk b D CM HP bl

I

[iessataticrlisedd =]
Irizallasees | bnaed
lratalatcr Pairwsnd
]

ton polaFile

[

wnzhude_levelld
g nes i
L SeanBadgn
AustedDactonacy
LODIFent

b _vusdy

IDEM prdamaProry
IDEAschParPaquen
IDE vt

dl

[

[

iy, Emor Search -*. Browae Datayet !:3:." Acdmn Mery a Access Contboly B ﬂ

XX B

N

Lifecycle
Mansger

pr

The top portion of the screen is used to locate the file whose properties you wish to view or
change. You can either manually enter information into the upper fields, or use the lower
menus to select locations from a list. Start with the CntxRoot menu to select a root. Doing so
will populate the other two menus.

194

N

Lifecycle Manager Integrated
r‘ SOLA Developer 6.4.2 User’s Guide

Cnix Root Path Name File Name
Ainst Saystem SELEC
Angt - Jaystem - -

Property Name Property Value - .
/debugaging xml
SDictionany01 i‘h
SDictionany011 (1) 2ml
RESET SDictionany0171 {2} xml

Once you have located a file, click SELEET

Note: There are three files that contain propertles required for SOLA to communicate with
Lifecycle Manager and they are debugging.xml, endpoints.xml and integration.xml. These
required properties are setup during installation. The necessary properties within each file are
defined as follows:

debugging.xml:
® | MintegratedMode

endpoints.xml:

B Enter OpenAccessEndPoint, RestrictedAccessEndPoint, SOLASoapAddress, etc.
properties in this file.

integration.xml:

B Enter the following properties in this file:

Property Name
[LMEndPaint

ILf'-"I PingFrequenay

||_M Userd

The file’s properties will be displayed as fields in the property editor. You can make whatever
changes you want by changing the values in the Property Name fields, or adding a Property
Value and Description to a blank field.

SOLA Property File Editor
Cnitx Rool Path Hame File Hame
= = oo
sl] ~———y '
SELECT UPDATE AsOm
property Hame brope: T < e
T | [B
| Erm———r fanace Q Plearse Confim Lipdate [[}
[E—— fres [z im0 B
= E piwie |
[| E _ G| [|
| e—— =] fparvica [B

195

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Note: For a complete description of each Property Name and their allowable values please
refer to the SOLA Administration Guide.

To add a blank row so that you can create a new property, click the icon.

To delete an existing blank row or property, click that row’s corresponding W icon.

When you wish to save your changes, click UPDATE and then confirm the Update by
clicking OK.

If you want to undo your changes, click =~ RESET

If you want to delete the file whose properties you are editing, click =~ PELETE

WARNING: this action is not undoable.

196

Lifecycle Manager Integrated

‘ I" SOLA Developer 6.4.2 User’s Guide

Add User

The Add User panel is used to register a user account with SOLA Developer. Once you
successfully log in, you must enter the required registration information to use SOLA Developer.

FIEEE Y B

Property “ Logs Dictionary Create Installation Custom
Add User Editor File Editor & Traces Controls Environment Security Schema

User ID: l]

User Type: SOLA Administrator ¥

First Name: I I

Last Name: l l

Work Phone: I I

Cell Phone:
Division:

Email:

CREATE RESET

Your first name, last name and work phone number are required. You can also supply your cell
phone, division and email address.

197

Lifecycle Manager Integrated

~r' SOLA Developer 6.4.2 User’s Guide

Dictionary Controls

The SOLA Dictionary is used during analysis to replace cryptic variable names with names that
are more easily understood. For example, a COBOL variable called “LK-CLNT-NM” could be
replaced with “ClientName”. Once values are defined, SOLA can attempt to automatically
replace matching variable names with the specified definitions or to present a drop down menu
with close matches if more than one match is found.

Note: Throughout this section all references to COBOL also apply to PLI/I.

B 9 kE|l@ g =

Property File Editor Logs Dictionary Create Installation Custom
Add User Editor & Traces Controls | Environment Security Schema

Upload Local Dictionay File
Browse dicticnary files:

UPLOALD

Dictionary Contrel Panel

COBOL Name hd

UPDATE DELETE ALL DOWNLOAD
MName Internally Generated Walue
(] 1k 4051430402240
(] 40 4250681077760
(] AZER 5324567366144
(] ABEND 5324503389504
(0] AEND 5324503389504
(] AC 5324163399360
(0] ACCESS 5326135707776
(] ACCOUNT 5326055280000
(0] ACCOUNTS 5326056738808
(] ACCT 5326159470528
(] ACCTND 5326195114656
(] ACCTNUM 5326196468008
¥

The dictionary panel is divided into two sections, the main dictionary control panel below and
the upload section above.

198

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Selecting Dictionary Type

The Dictionary menu is used to select the data from one of the four SOLA dictionaries.

Direct Map

iDirect Map

COBOL MName

Standard Hame

Common Abbreviations

B Direct Map: shows a list of COBOL field names and the equivalent schema names that
they should be substituted for.

B COBOL Name: shows an internally maintained list of tokens that are used by the
dictionary to conduct match searches. A token is a part of a COBOL field name that is
derived by splitting the name at the hyphens (or underscores in the case of PL/l). For
example, the COBOL field name WS-ACCT-NUM consists of three tokens, WS, ACCT
and NUM. This list contains two columns, Name and Internally Generated Value. The
Name column contains the COBOL token, and the Value column contains an internally
calculated number that SOLA’s heuristic algorithm calculates. Although this is an
internal list, it can be added to.

B Standard Name: shows an internally maintained list of tokens that are used by the
dictionary to conduct match searches. A token is a part of a schema name that is
derived by splitting the name at the capitalized letters. For example, the schema name
AccountNumber consists of two tokens, Account and Number. This list contains two
columns, Name and Internally Generated Value. The Name column contains the
standard token, and the Value column contains an internally calculated number that
SOLA’s heuristic algorithm calculates. Although this is an internal list, it can be added
to.

B Common Abbreviations: This dictionary contains a list of abbreviations used in SOLA’s
tokenizing processing logic for parsing COBOL copybook fieldnames. If a COBOL token
matches a common abbreviation, then that abbreviation will be substituted for the token.

Uploading and Downloading Dictionary Files

The SOLA dictionary has the capability to add to its contents by uploading text files and to
export its contents by allowing users to download the contents as a text file. Uploaded files are
applied to the currently selected dictionary type (Direct Map, COBOL Name, etc.) and are
appended to existing data. When downloading, only the currently selected dictionary is
exported.

The file format for both downloaded files and files to be uploaded is as follows: .txt file, plain
ASCII text, ~ (tilde) delimited and carriage return separated.

199

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Upload Leocal Dictionay File
Browse dictionary files: ¢ A\S0OLAMiles customdictionary.dic Browse...

UPLOAD l:\ﬂ_.-.)

To upload a dictionary file (and append that file to the existing dictionary), either manually enter
a file name (including full path) or use the Browse button to locate a file using Windows
explorer.

When you are finished, click UPLOAD

To download the currently selected dictionary, click =~ POWNLOAD

Working with the Dictionary Control Panel

The data shown on the Add to Dictionary screen is organized under two column headings. The
column on the left is always called Name, while the column on the right can be called either
Rename or Internally Generated Value, depending on which of the four dictionary types you
are looking at.

® Name: this column contains a list of variable names that need to be replaced with more
human-readable names when performing analysis.

B Rename: this column contains the schema equivalent to the value in the Name
column. These entries can be defined by the user or automatically populated by SOLA.

® Internally Generated Value: this column contains a numerical code generated by
SOLA to identify the value in the Name column. This is not changeable and is used only
by SOLA.

You can create additional rows of data to add new values to the dictionary, or you can delete
either blank rows or existing name/value pairs.

To create additional rows, click the button. To remove an unwanted blank row or to delete a
name/value pair, click the W button.

You can also make changes to dictionary values (except internally generated values) by
modifying the contents of the field you want to change.

200

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

Direct Map -
UPDATE DELETE ALL DOWNLOAD

MName Rename
mam NTR TotalCounter w
WS-5QLLC0DE SequelCode '@'
WS5-5QLLCODE SglCode ()
WS5-SEARCH-WVALUE SearchValue)

NS SEARCH-TYPE [i

You can sort the dictionary by either the “Name” or “Rename” columns in the Direct Map and
Common Abbreviations dictionaries and by the “Name” column in the COBOL Name and
Standard Name dictionaries. To sort by either column, click once on the column name link to
sort in ascending order (a-z) and again to sort in descending order (z — a).

Using Wildcards with the Direct Map Dictionary

The Direct Map dictionary is capable of utilizing wild card characters in its matching algorithm.
There are two types of wild card characters used by the Direct Map dictionary; % and "

%: the % character can be used either before, after or surrounding a dictionary tag.
It is similar to the * character in Windows searches. If it appears before a tag, then
any item that ends with that tag will be considered a match. If it appears after a tag,
then any item that starts with that tag will be considered a match. If it surrounds a tag
(appears before and after), then that tag can appear anywhere in the item for it to be
considered a match.

Example:

%YZ - Possible matches: XYZ, WXYZ, etc.
WX% - Possible matches : WXYZ, WXY, etc.
%A% - Possible matches: ACCT, BATCH, COMMAREA, etc.

Using the % wildcard character means that every item that matches the tag in the Name
column (%XYZ, etc.) will be replaced with the value in the Rename column when the
dictionary is applied.

N1 the " character is used for exclusions at the token level. The dictionary will
remove matching dash delimited tokens from COBOL names. When using the »
character, nothing should be entered in the Rename field (the ~ is for exclusions, not
renames).

201

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Example:
LK” applied to LK-ACCT-NUM would result in ACCT-NUM.

Using the " wildcard character means that all tokens matching the tag in the Name
column (LK”, etc.) will be stripped from all COBOL names when the dictionary is applied.

MName Rename
%COMMAREAZ, Commarea W
LK™ W
ws]
]

When you wish to save your changes, click = UPDATE

202

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Logs & Traces

The Logs and Trace Files panel provides quick and easy access (view or delete only) to SOLA
log and trace files. These same files can be viewed and edited from the Property/File Editor
screen. However, if your goal is to view or delete the files as quickly as possible, the Logs and
Trace Files screen should be used. These files contain information for SOLA Developer activity
only.

V SOAP Test | { Monitor Search | X Eror Search | Q] Browse Dataset | (3 Admin Menu | J AccessCovos ' B ' [l (9
Home Error Search * | Admin *
J, ~2 J',t . “"}.F ‘ XS0 |
¥ - 0 & o
e Property File EQROe _ Logs Dicti uv.\.'y Create Installation Custom ufecycle
Add User Editor T & Traces Controis Environment Secutity Schema Manager

The criteria below will be applied to either{ "Select” or "Delete" }, for the processing of message logs.

[AtLogFiaTypes =] [FomBeganeg =] [ToEndmy =}

Al Log Fie Types
Standand Output

Standard Enoe

|x-n.em Browses -I SELECT Or you may apply this criteria to delete log files >>> DELETE

The Logs and Trace Files screen contains three pull down menus that are used to quickly select
and view or delete a log file within a certain date range.

All Log File Types: Will display both Standard Output and Standard Error detail.

Standard Output: Will display only Standard Output detail containing messages such as
DEBUG, ALERT and INFO.

Standard Error: Will display only Standard Error detail containing WARNING and ERROR
type messages.

Once you've selected a file type, you can select a date range. Then view your selection detail
by clicking ~ SELECT

Only the SOLA Administrator can delete the selected detail by clicking ~ PELETE
WARNING: this action is not undoable.

203

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Custom Schema

The custom schema panel allows you to create custom properties for projects, programs,
methods, users or environments.

B2 5 4k § &6 (=N

Property Dictionary Creabe Installation Cusbom Lifecyche

Add User Editae Fibe Eitor B Traces Contrals Environment Security Schema Hansger

Custom Schema Properties(Environ Level)

Refrieve Properties ™ Add Property Save Changes

Rowid Property Hame Data Type Minimum Length | Maximum Length Description Action

1 one_test siring] 10 DELETE
4 PackageNum siring i} 10 DELETE
3 EnvironProgp siring o 10 DELETE

SOLA maintains a schema of properties for each of these categories and the administrator has
the opportunity to modify those properties and use the new values. For example, let's say your
company uses a home grown change management system called XYZ. In XYZ, all changes are
grouped together according to the programmer’s cost center. The administrator could define a
new user property called “costCenter” and that property could then be used when Finalizing an
Analysis to categorize the change for XYZ.

In the image above, the Custom Schema panel is displaying environment properties. To modify
user properties, click on the Retrieve Properties drop down, and choose User.

Custom Schema Properti Options are:
Retrieve Properties ¥ | Add © = Project: pick this option to create custom properties for
Enviran projects. These properties will apply to all projects and will be
: by Nan appended to the default properties.
Project let
Program eMurr ® Program: pick this option to create custom properties for
Method Prop programs. These properties will apply to all programs in every
y project and will be appended to the default properties.
sSer
I

m Method: pick this option to create custom properties for
methods. These properties will apply to all methods and will be
appended to the default properties.

204

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

m User: pick this option to create custom properties for user accounts. These properties
will apply to all users and will be appended to the default properties.

® Environment: pick this option to create custom properties for SOLA Developer
environments (e.g. Test, Stage, Prod, etc.). These properties will apply to all SOLA
Developer environments and will be appended to the default properties.
When you have selected an object to add properties to, the panel will display the existing

properties for that object. The properties are organized under columns. These columns
correspond to the value fields in the top part of the panel.

® Rowid: a sequence number
= Property Name: the name of the custom property.

= Data Type: the type of data the property can contain. Options are string, int, short and
Boolean.

= Minimum Length: the property’s minimum length in bytes.
® Maximum Length: the property’s maximum length in bytes.
®= Description: a free form, optional description.
®= Action: a DELETE action button.
s v | Add Preerty | Save C You can add properties by clicking the Add Property
= button, which adds a blank row at the bottom of the screen.
Click inside the blank row and enter values in the value fields. When you have entered all

required information, click Save Changes. Your new property will be displayed under the
property columns.

Custom Schema Properties(Environ Level)

Retrieve Properties ™ Add Property Save Changes

Rowlid Property Name Data Type Minimum Length Maximum Length Description Action

1 one_test string 0 10 DELETE
2 PackageMum string 0 10 DELETE
3 EnviranProp string 0 10 DELETE
4 " hairColor string 0 1 ack, blonde, brown, ﬂub DELETE

You can delete any property row, including the ones you’ve just added, by clicking DELETE in
the Action column.

If you close the panel before clicking the Save Changes button, your changes will be lost.

205

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Create Environment

The create environment panel lets you create SOLA environments that are then linked to
backend environments using the promote.jcl file.

SOLA™ Developer

dmin

05) TEST

| Q- W O0AP Test | X Maniter Search % Eior S X Browse Datase (3 Adren Ne A,‘ oes Conk c h a
hGroup

SOLA WDt | Fle | Dotaset LA N .
W 7 o
J 4 B(&lE U N
10) STAGE A s acnd tonary | ¢ Inszatiston ° :

Acct = S Comtrels | Emwonmantl - Seauity Scheena Hanager
Acct2

M P —————— e

35| LM_SO0LA_Project Environment Name: || Y Vi [

4[5 qa-soLa b Ot

o 5§ QAT estMe Sequence: | v

OO A
Emaconments(TEST) * PROGRAM * r

15) PROD

(Promote Migration): Promoted programs wil be moved to next tage >4

(Demote Migration): Demoted peograms wil be moved to proor stage N

Description: |

CREATE RESET

To create an environment, select an environment name, a sequence, promote and demote
option, then enter a brief description such as test, production, etc.

® Environment Name: the environment name is a one to eight character name that
represents the environment.

m Seguence: the sequence represents the environment promotion hierarchy. The lower
the sequence number, the lower the environment in the hierarchy. Typically, test
environments occupy the lower rungs in the hierarchy, QA or stage environments
somewhere in the middle and production environments occupy the highest rungs (and
therefore would have the highest sequence numbers). It is recommended that you
stagger your sequence numbers (e.g. 1,5 and 9 instead of 1,2 and 3) so that you will
have room for additional environments. Sequence numbers do not have to be
sequential (1,14, 58 is the same as 1,2,3).

® Promote Migration: choose to ‘Move’ or ‘Copy’ programs to the ‘next’ stage.

m Demote Migration: choose to ‘Move’ or ‘Copy’ programs to the ‘prior’ stage.

When you have made your selections, click = ©*EATE " tg create the environment.

206

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

You can filter the view in the SOLA Developer directory to show projects that have programs
belonging to a specific environment by using the Environments menu.

Once you have created your environments, you need to edit
promote.jcl to tie the SOLA Developer environments with the
backend environments. The file promote.jcl gets executed
whenever you promote or demote a program from one environment fl}TZi\GE@ lRetease

to another. For instruction on how to edit promote.jcl, consult the R
SOLA Administration Guide.) enance

SOLA || UDDI | Fie || Datase ¥/|#

| Environments(TEST) 7 |

15) PROD1 h
I BTORETMIOWEST
=@ DEPTXYZ

To Promote or Demote programs, use the directory tree menus.

Click on the program name and select ‘Promote’ or ‘Demote’ from the menus. If the
‘actionOnPromote’ or ‘actionOnDemote’ environment attribute was set to ‘M’ during the creation
of the environment, Promote will advance the program to the next ‘higher’ environment in the
sequence, and likewise, Demote will move the program to the previous or ‘lower level’
environment in the sequence. After promote and successful ‘move’ the program object in the
lower level is expired.

Note: One exception by default is
Demote from the highest level (e.g. Prod)
will always be forced to ‘copy’. After
Demote and successful ‘move’ the

Emvironments{ TEST } * PROGRAM *
= _'I_I.Z)irectcr\.r
1|33 AaronLMPublishGroup
=I[E3] LM_SOLA_FinAcct

Sl oacaozp program object in the ‘higher’ level

¥ oaca Filter by Program environment is expired, except if it is from
it%giiz‘; L — rr%dr;lghest level’ environment (e.g.
= },jq,qc,ﬁggp View Program Wsdl)
> Hgiﬁg; Policy Management If the ‘actionOnPromote’ or
P T ST Promote ‘actionOnDemote’ environment attribute
@fJawcal Markas WORKING Demote was set to ‘C’ during the creation of the
nkdanvaar environment, Promote will Copy the

program to the next ‘higher’ environment in the sequence, and likewise, Demote will Copy the
program to the previous or ‘lower level’ environment in the sequence. After promote and
successful ‘copy’ the program object in the ‘lower level is retained, and after demote and
successful ‘copy’ the program object in the ‘higher level’ is retained.

Deleting Environments

You cannot delete environments using SOLA Developer. You will need to use Resource
Manager.

207

Lifecycle Manager Integrated

~ r‘ SOLA Developer 6.4.2 User’s Guide

Installation Security

The installation security icon tab lets you change the change the SOLA installation password
(SOLAIN) when logged in either as SOLAIN or an Administrator.

v SOAP Test .,\ Montior Search _x Ermor Search ',{ Browse Dataset @ Adrwn Menu 8 Access Controls a n u

N |

Home Admin *

B 3 4 8 & 8|«

AGd User P’(\)cp:ov:y File taror 3 ‘l?::m ()&)t‘::;v ;aﬁﬂ:m ln;:‘:::n 2‘:?:; ;:f:;:
SOLA Property File Editor
Cntx Root Path Name File Name
fos | |
e =1 = = N
SELECT UPDATE RESET
Property Name Property Value Property Descr '
1 | |

To change the installation password, go to the Admin menu screen and select SOLA Installation
Security:

B 5 % @ & & |=

PFroperty - Logs Dictionary Create Installation Custom
Add User Editor File Editor & Traces Controls Environment

Seenrity Schema

A password change dialog box will appear. Provide the necessary information and click
Change.

Change Installation Password *
Current Password: essses

D d

New F d:

Retype Password: |ooooooo| |

Change H Reset H Cancel]

208

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Lifecycle Manager

The Lifecycle Manager icon tab lets you enter the LM installation password that is associated
with the LMUserid and used to connect SOLA to Lifecycle Manager. This is accessible when
logged in either as SOLAIN or an Administrator.

Home Admin =

B 3k 8 &8 =0

Add Uiser I:--L.::Jp:._::::_-, File Bditor LII;“.::es Lﬂuﬁ:j? Lnf-:SﬂEEmu m-:: -.:t::" :-::I:-;T:- :LL:E.:
1 W
SOLA Property File Editor =l
Cntx Root Path Mame Fille: Mams
fr= [[
v B | = >
SELECT weDATE RESET
Property Namae Property Value Propéerty Descr .
| I I

After clicking the Lifecycle Manager icon you will be presented with the LM Password Manager
panel to enter the installation password:

V" SOAP Test Iy, Monitor Search 'u'L‘L Error Search F_ql Browse Dataset ’:3:} Admin Menu a Agccess Controls E u

) ™

Home Admin *

G B 5 h ®

e

Add User P't%l?leor:y Flle EditOr g Troce Dclcotrl:::];rsv [nﬁ:‘;:iem mél:clfrtiin ;.:152?1?; H:,c:;éf
SOLA Property File Editor ;I
Cnix Root Path Name File Name
= | |
[= = [
SELECT UPDATE RESET
LM Password Manager b
Property Name Property Value B
I I -
Retype Password:
0K] [Cancel]
Once you have entered the installation password [=l B -
that connects SOLA to LM you will receive this et L Passiord] Successil
message:

209

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Access Controls

To access SOLA Developer’s access o Menu | B Accers Controls
control functions, click on the Access {ﬁ?
Controls button in the button bar.

This will immediately open up the Access Controls console and display User Activity Log / User
Activity Search panel.

Access Controls
User Access Liser Alternate
List Activity Log 1D

User Activity Search

Application ID: SOLA Activity Type: SignOn -
Activity Date From: 2008-0%-29% & Activity Time From: 00.00.00
Activity Date To: 2005-09-23 < Activity Time To: 235959

SOLA End Point: Soap Request:

User Name:

All fields are optional. Use any combination of search fields.

Use wildcard characters [percent "%:" and/or underscare "_") during yvour search.
SEARCH RESET

The access controls console is comprised of three panels, accessed by icon tabs. Click on a
different icon tab to open the other access controls panels.

This icon tab opens the Show Users Access panel, which lists information about
ﬁ the Users in each User Group.

User Access
List

This icon tab opens the user activity search panel which can be used to search
the SOLA user activity log for specific activities that match specified search
T parameters.
Activity Log

mainframe ftp access to make full use of SOLA’s functionality (give them ftp

i i This icon tab opens the alternate ids panel, which is used to allow users without
access from within SOLA only).

Alternate
IDs

210

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

7

User Access List

The User Access list panel is used to list access information for all Users in all User Groups.

Show Users Access
Rowld ACCESS RECORD ID Group Id Group Name User ld User Name Operation Type Resource Id Resource Name Action
1 0001-01-01-00.00.00.000000 0001-01-01-00.00.00.000000 DefaultUsers 2014-03-04-10.37.47.100000 DJSTEST 0001-01-01-00.00.00.000000 Remove
i) 1[5 O 0 RO UeraulUsers (T3 041030 04 6000 OISTESTS T 0T 00 00 00 000000
3 2014-01-03-12.09.50.611780 0001-01-01-00.00.00.000000 DefaultUsers 20134142-45.05.30.6303%4 UQa3 DELETE 2013-40-30-15.57 45.276992 LM_SOLA_FinAcct
e 15300200 4=0 4=00-0-00- 000600 B pLiaR R it i HEAS PROGRA 340304 5574527699 Einy

5 0001-01-01-00.00.00.000000 2013-06-07-08.43.10.100000 SOLAAdmIn 2013-06-07-08.43.43.030004 DBCARDJ 0001-01-01-00.00.00.000000 Remove
6 2013-07-01-12.48.51.890001 2013-06-07-08.43.10.100000 SOLAAdmIn 2013-06-07-08.44.19.130006 DJS224 PROJECTADMIN 0001-01-01-00.00.00.000000 Remove
7 0001-01-01-00.00.00.000000 2013-06-07-08.43.10.100000 SOLAAdmin 2013-06-07-08.43.29.330003 HAL3000 0001-01-01-00.00.00.000000 Remove
] 0001-01-01-00.00.00.000000 2013-06-07-08.43.10.100000 SOLAAdmin 2013-06-07-08.49.46.090007 UQAt 0001-01-01-00.00.00.000000 Remove
9 0001-01-01-00.00.00.000000 2013-06-07-08.43 10.100000 SOLAAdmin 2013-06-07-08 43 11.050002 Usws 0001-01-01-00.00.00.000000 Remove
10 0001-01-01-00.00.00.000000 2013-06-07-08.43.10.100000 SOLAAdmIn 2013-06-07-08.44.00.700005 VSISTHA 0001-01-01-00.00.00.000000 Remove

Each existing SOLA user account is listed, and for each user account, every User Group and
Project within each Group that the account has access to is listed.

In the above example, user UQA3 has PROGRAMMER access to the Resource/Project named

LM_SOLA FinAcct in a specific environment. The same user has DELETE access to the same
project LM_SOLA_FinAcct to delete programs and methods.

211

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

User Activity Log

The user activity log panel is used to search through SOLA’s user activity log in the same way
that the monitor search panel (page 178) is used to search SOLA’s transaction log.

Access Controls

i i
User ACcess @ Alternate

List Activity Log 1Dz

User Activity Search
Application ID: SOLA - Activity Type: SignCn -
Activity Date From: 20080529 & Activity Time From: 00.00.00
Activity Date To: 2008-05-253 w Activity Time To: 235959
S0OLA End Point: Soap Request:

User Name:

All fields are optional. Use any combination of search fields.
Use wildcard characters (percent "%:" and/or underscore "_") during your search.

SEARCH RESET

To conduct a search of the activity log, enter search parameters using the search fields to
narrow the scope of your search. You can also conduct a search with the default (mostly blank)
settings, though this may take some time to complete and may result in a very long list of
activities.

The following is a description of the search fields:
= Application ID: currently, the only option is SOLA.

m Activity Type: narrows the search to activities of the specified type. Options are:
SignOn: user sign-on.
Error Search: error log search.
Monitor Search: monitor (transaction) search.
Testing: quick test or raw test.
Import: importing a program.
Analysis: method analysis.
Delete: deletion of a project, program or method.

= Activity Date From and Activity Date To: the start (activity date from) and end
(activity date to) dates are automatically populated with the current date and can be
changed by manually entering a date (yyyy-mm-dd). All activities are stamped with the

212

Lifecycle Manager Integrated
r' SOLA Developer 6.4.2 User’s Guide

date and time at which they take place, and only activities that took place on or after the
start date and on or before the end date will be returned.

m Activity Time From and Activity Time To: the start and end times are automatically
populated with the current system time and can be changed by manually entering a time
(hh.mm.ss). All activities are stamped with the date and time at which they take place,
and only activities that took place at or after the start time and at or before the end time
will be returned.

m SOLA End Point: narrows the search to activities that involve a request with the
specified end point.

m SOAP Request: if an activity involves a SOAP request sent through the SOLA website,
then this field can be used to narrow the search based on a part of that SOAP request.
For example, if you populate this field with the word “SOLA”, then any activity that
involved a SOAP request with the word SOLA in any context will be returned (provided it
matches any other search parameters that are specified).

= User Name: narrows the search to the activities of the specified user.

Once you have specified your search parameters, click =~ SEARCH

The results of the search will be displayed below the activity search panel. If the list exceeds
the available screen size, then you will need to scroll to see all of the search results.

The information is organized under a series of columns:

® Appl ID: the application involved in the activity. Clicking on the application ID for a
specific activity displays the search details panel that contains very detailed information
about the activity.

m Activity Type: the type of activity. Option are:

SGN: user sign-on.

MON: monitor (transaction) search.

LOG: error log search.

TST: quick test or raw test.

DEL: deletion of a project, program or method.
TRC: atrace initiated by an administrator.

= Row Number: each activity is assigned a sequence number, which is displayed here.
= User Name: the user involved in the activity.

m User Date: the day the activity took place expressed as yyyy-mm-dd.
213

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

= User Time: the time the activity took place expressed as hh.mm.ss.

m End Point: the end point in which the activity took place.
To get detailed information about a specific activity, click on the activity’s application ID. This
will displays the search details panel.
The search details is a series of fields that contain data about a specific user activity, along with
a large field that contains the soap request that was sent to the SOLA soap server as a part of
the activity (if there was one).
The information is organized under the following headings:

= Activity:

SGN: user sign-on.

MON: monitor (transaction) search.

LOG: error log search.

TST: quick test or raw test.

TRC: atrace initiated by an administrator.

= User Name: the user account that triggered the activity.

= Activity Date: the date (yyyy-mm-dd) of the activity.

® Activity Time: the time (hh.mm.ss) of the activity.

® SOLA End Point: the mainframe end point where the activity took place.

m Message: large field that contains the soap request that was sent to the SOLA soap
server as a part of the activity (if there was one).

214

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

Alternate IDs

The Alternate User IDs panel is used to define mainframe Ids that have FTP access.

Access Controls
Usar Access User Alternate
List Activity Log 1Ds

ornate Do 14
(T1] '@'

abc

m

Once defined, these IDs can be added to a user Id at the project level to allow users without
mainframe ftp access to make full use of SOLA Developer’s functionality (give them ftp access
from within SOLA Developer only). FTP access is necessary for browsing datasets, importing
programs, and for finalizing an analysis.

Fill in the required fields to add an alternate ID.

m Alternate User Id: enter a mainframe user Id that has mainframe ftp access. This can,
but does not have to, be an existing SOLA user.

m Password: the password associated with the ID.

To add additional fields, click the button. To remove an unwanted blank field or to delete an
user ID/password pair, click the @ putton.

215

7

Lifecycle Manager Integrated

SOLA Developer 6.4.2 User’s Guide

Appendices

Appendix A: Schema and Copybook Generation

Datatype Mapping and Copybook Generation Rules

The following table lists schema datatypes and how they are handled by SOLA when importing
WSDL and generating a copybook to be used for outbound requests.

Datatype Action Programmer Notes
Response

string Gets generated as User can modify the
PIC X(01), unless a “len” property during
maxLength facet is analysis.
specified in the
schema restriction.

boolean Gets generated as User can put 'true' or | SOLA Analyzer
PIC X(05). A 'false' or ‘1’ and ‘0’ assumes canonical
comment is added to values. The SOLA
the copybook runtime doesn't
specifying two validate this field.
possible values.

decimal Gets generated as A user can influence | SOLA validates this
PIC S9(1) COMP-3, this field by changing | field while converting
unless totalDigits the “precision” and from XML to packed
and/or fractionDigits “scale” properties decimal format. Non
facets are specified in | during analysis. numeric data is
the schema rejected.
restriction.

float Gets generated as A user can influence | SOLA validates this
PIC S9(1) COMP-3, this field by changing | field while converting
unless totalDigits the “precision” from XML to packed
facet is specified in property during decimal format. Non
the schema analysis. numeric data is
restriction. rejected.

double Gets generated as A user can influence SOLA validates this

S9(13)v9(4) COMP-3,
unless total Digits
facet is specified in
the schema
restriction.

this field by changing
the “precision”
property during
analysis.

field while converting
from XML to packed
decimal format. Non
numeric data is
rejected.

216

7

Lifecycle Manager Integrated

SOLA Developer 6.4.2 User’s Guide

duration Gets generated as A user can influence | This field is treated as
PIC X(256). this field by changing | a string by SOLA.
the “len” property Validation is not
during analysis. We performed.
recommend that the
user follows the
lexical or canonical
representation.
dateTime Gets generated as A user can influence | This field is treated as
PIC X(25). A this field by changing | a string by SOLA.
comment is added to | the “len” property dateTime validation is
the copybook showing | during analysis. We not performed.
a sample format such | recommend that the
as 2009-11- user follows the
18T09:27:01.231Z. lexical or canonical
representation.
time Gets generated as A user can influence | This field is treated as
PIC X(14). A this field by changing | a string by SOLA.
comment is added to | the “len” property time validation is not
the copybook showing | during analysis. We performed.
a sample format such | recommend that the
as 12:00:00-05:00 user follows the
lexical or canonical
representation.
date Gets generated as A user can influence | This field is treated as
PIC X(16). A this field by changing | a string by SOLA.
comment is added to | the “len” property date validation is not
the copybook showing | during analysis. We performed.
a sample format such | recommend that the
as 2002-10-10+05:00 | user follows the
lexical or canonical
representation.
gMonthDay Gets generated as A user can influence | This field is treated as
PIC X(13). A this field by changing | a string by SOLA.
comment is added to | the “len” property month day validation
the copybook showing | during analysis. We is not performed.
a sample format such | recommend that the
as --11-01-04:00 user follows the
lexical or canonical
representation.
gMonth Gets generated as A user can influence | This field is treated as

PIC X(13). A
comment is added to
the copybook showing
a sample format such
as --11-01-04:00

this field by changing
the “len” property
during analysis. We
recommend that the
user follows the
lexical or canonical
representation.

a string by SOLA.
month validation is
not performed.

217

Lifecycle Manager Integrated

SOLA Developer 6.4.2 User’s Guide

gDay Gets generated as A user can influence | This field is treated as
PIC X(5). A comment | this field by changing | a string by SOLA. day
is added to the the “len” property validation is not
copybook showing a | during analysis. We performed.
sample format such recommend that the
as ---31 user follows the
lexical or canonical
representation.
gYear Gets generated as A user can influence | This field is treated as
PIC X(10). A this field by changing | a string by SOLA.
comment is added to | the “len” property year validation is not
the copybook showing | during analysis. We performed.
a sample format such | recommend that the
as 2009-05:00 user follows the
lexical or canonical
representation.
gYearMonth Gets generated as A user can influence | This field is treated as
PIC X(13). A this field by changing | a string by SOLA.
comment is added to | the “len” property year month validation
the copybook showing | during analysis. We is not performed.
a sample format such | recommend that the
as 2009-10+05:00 user follows the
lexical or canonical
representation.
hexBinary Gets generated as User will have to This field is treated as
PIC X(256). convert this field a string by SOLA.
programmatically. SOLA doesn'’t directly
support this datatype.
No validation is
performed
base64Binary Gets generated as A user can influence SOLA converts
PIC X(256). this field by changing | Base64 to binary and
the “len” property vice-versa. Base64
during analysis. validation is
Adjust “len” according | performed and an
to the rule that 4 bytes | error is thrown if there
of XML data will get is a violation.
converted to three
bytes of binary data,
and vice-versa.
anyURI Gets generated as A user can influence | This field is treated as
PIC X(256). this field by changing | a string by SOLA. No
the “len” property validation is
during analysis. performed
QName Gets generated as A user can influence | This field is treated as

PIC X(256). this field by changing | a string by SOLA. No
the “len” property validation is
during analysis. performed

218

7

Lifecycle Manager Integrated

SOLA Developer 6.4.2 User’s Guide

NOTATION

Gets generated as

A user can influence

This field is treated as

PIC X(256). this field by changing | a string by SOLA. No
the “len” property validation is
during analysis. performed

normalizedString

Gets generated as

A user can influence

This field is treated as

PIC X(256). this field by changing | a string by SOLA. No
the “len” property validation is
during analysis. performed

token Gets generated as A user can influence | This field is treated as
PIC X(256). this field by changing | a string by SOLA. No
the “len” property validation is
during analysis. performed.
integer Gets generated as Numeric validation is

PIC S9(09) COMP.

performed when
mapping from XML to
fullword binary.

NonPositivelnteger

Gets generated as
PIC X(256).

User will have to
convert this field
programmatically.

This field is treated as
a string by SOLA.
SOLA doesn’t directly
support this datatype.
No validation is
performed

Negativelnteger

Gets generated as
PIC X(256).

User will have to
convert this field
programmatically.

This field is treated as
a string by SOLA.
SOLA doesn'’t directly
support this datatype.
No validation is
performed

nonNegativelnteger

Gets generated as
PIC X(256).

User will have to
convert this field
programmatically.

This field is treated as
a string by SOLA.
SOLA doesn’t directly
support this datatype.
No validation is
performed

long Gets generated as Numeric validation is
PIC S9(18) COMP-3. performed when

mapping from XML to
packed decimal.

short Gets generated as Numeric validation is
PIC S9(04) COMP. performed when

mapping from XML to
halfword binary.

int Gets generated as Numeric validation is

PIC S9(09) COMP.

performed when
mapping from XML to
fullword binary.

219

7

Lifecycle Manager Integrated
SOLA Developer 6.4.2 User’s Guide

byte Gets generated as User will have to This field is treated as
PIC X(256). convert this field a string by SOLA.
programmatically. SOLA doesn’t directly
support this datatype.
No validation is
performed
UnsignedByte Gets generated as User will have to This field is treated as
PIC X(256). convert this field a string by SOLA.
programmatically. SOLA doesn’t directly
support this datatype.
No validation is
performed
Unsignedint Gets generated as User will have to This field is treated as
PIC X(256). convert this field a string by SOLA.
programmatically. SOLA doesn’t directly
support this datatype.
No validation is
performed
UnsignedLong Gets generated as User will have to This field is treated as
PIC X(256). convert this field a string by SOLA.
programmatically. SOLA doesn’t directly
support this datatype.
No validation is
performed
UnsignedShort Gets generated as User will have to This field is treated as

PIC X(256).

convert this field

programmatically.

a string by SOLA.
SOLA doesn'’t directly
support this datatype.
No validation is
performed

Positivelnteger

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated as
a string by SOLA.
SOLA doesn't directly
support this datatype.
No validation is
performed

220

7

Lifecycle Manager Integrated

SOLA Developer 6.4.2 User’s Guide

Other Restrictions—Numeric Facets

maxLength is used to define the length of a field during copybook generation

length is used to define the length of a field during copybook generation

pattern if the pattern is resolvable length will be derived from it.

enumeration gets converted to 88 level condition-name in the copybook. If the field
type is string the field length will be derived from the maximum length of
the enumeration values,

whiteSpace ignored

maxinclusive ignored

maxExclusive ignored

minExclusive ignored

mininclusive ignored

totalDigits precision in the copybook is derived from totalDigits

fractionDigits

scale in the copybook is derived from fractionDigits

Other Constraints

minOccurs SOLA doesn’t handle minOccurs automatically. It requires the
programmer to specify “excludeif’ during analysis
maxOccurs converted to the occurs clause in the copybook, unless Custom, then all

input and output arrays in Custom programs will get generated with
maxOccurs="unbounded".

General Restrictions
B SOLA doesn’t support RPC style WSDL. Document-literal is the only style that’s

supported.

B SOLA doesn’t support non-SOAP bindings.

B SOLA discards array occurrences that exceed the value set during analysis. No warning

is produced when data is discarded.

B The only XML schema to mainframe datatype transformations are based on the
supported mainframe datatypes, such as character (XML normalization), binary
(halfword and fullword) and packed decimal (numeric nibbles and sign nibble).

B Choice schema indicators are not supported.

221

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

Appendix B: Refreshing Templates in the SOLA STC

The SOLA STC uses “Templates” to store run-time meta data. A Template is an Assembler
Data-Only Load Module. For performance reasons, the SOLA STC manages the loading and
caching of Templates. Ordinarily this isn’'t an issue, but when you change a Template you need
to refresh the Template in the SOLA STC.

The SOLASTC provides two methods of refreshing a template:
® A manual method intended to be used by a programmer

® A web service method intended to be used for integration with a Change Management
system.

Manually Refreshing a Template

CICS provides the ability to “NewCopy” a program with the CEMT transaction. SOLA IMS
Container provides the same ability to “NewCopy” a template (the only user modifiable
component hosted in the SOLA STC), but instead of providing a transaction SOLA provides a
refresh button on the Quick Test pane.

After “Analyzing” a new method, right click on the Method and choose “Quick Test to bring up
the Quick Test pane. In the upper right of the pane is a “refresh” button. Pressing this button
refreshes the Template in the SOLA STC identified by the Binding Endpoint.

Home Quick Test '*

e
Method Name: nameSearch Binding EndPoint: | 50L1 v i

TreeYiew Gridiew Farrmiew Saved Tests

= E'_ soap:Envelope
=] E'_ soap: Body
= E'_ nameSearch
= € ws-B0SS-1D

=l E, WE-SEARCH-YALUE

< >

TEST SHOW SOAP XML SAVE SOAP XML

Refreshing a Template Using the Web Service Interface

SOLA provides integration points with your Change management system. One of those points
is the “NewCopy” web service. By integrating the “NewCopy” service, you will be able to ensure
that a template is available for use.

222

Lifecycle Manager Integrated

~ r' SOLA Developer 6.4.2 User’s Guide

The following web service request can be executed against the SOLA STC to refresh the
template:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ObjectService xmlns="http://project.ObjectFinder.x4mlsoa.com/SL/XMLPC804/">
<Operation>select</Operation>
<ObjectType>SOLAUtil</ObjectType>
<Object objectType="SOLAUtil" operationType="newCopy"
programNm="[TemplateName]"/>
</ObjectService>
</soap:Body>
</soap:Envelope>

Replace [TemplateName] with the name of your template. The service can be executed from

any web services client, including the SOLA Test Harness. Many customers use a SOLA
Outbound Service from the SOLA Batch Container.

223

Lifecycle Manager Integrated

~r' SOLA Developer 6.4.2 User’s Guide

Appendix C: Overriding IMS Connect parameters on the
soap:Header

IMS Connect parameters are specified at the Container Group level. See the Resource
Manager User’s Guide for information on specifying IMS Connect parameters for a Container
Group.

The programmer has the ability to override IMS Connect parameters by specifying the
parameters to be modified on the soap:Header of the input soap request. The following
example shows how a programmer can override the IMS Connect exit to replace the value for
IMSCIRMMsgld (which may have been specified on the Container Group) with a new value of
SAMPLE.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<IMSConnectParm>
<IMSCIRMMsgId>*SAMPLE*</IMSCIRMMsgId>
</IMSConnectParm>
</soap:Header>
<soap:Body>
<sampleSOLAIMSMain
xmlns="http://sampleSOLAIMSMain.sampleSOLAIMSMain.x4ml.soa.com/IM/SOLAIMO1/SOA#IMOL">
<feet>5</feet>
<inches>6</inches>
<fahrenheit>77</fahrenheit>
</sampleSOLAIMSMain>
</soap:Body>
</soap:Envelope>

The allowable values that can be specified on the soap:Header are:

<IMSConnectParm>
<IMSCCommitMode><0 or 1></IMSCCommitMode>
<IMSCSyncLevel><none or confirm></IMSCSyncLevel>
<IMSCDataStoreID>...</IMSCDataStoreID>
<IMSCfgdn>...</IMSCfgdn>
<IMSCIPaddress>...</IMSCIPaddress>
<IMSCport>...</IMSCport>
<IMSCTCPip>...</IMSCTCPip>
<IMSCNumSessions>
<IMSCIRMMsgId>8characters</IMSCIRMMsgId>
<IMSCIRMClientID>8characters</IMSCIRMClientID>
<IMSCIRMTermID>8characters</IMSCIRMTermID>
<IMSCIRMUserID>8characters</IMSCIRMUserID>
<IMSCIRMPasswd>8characters</IMSCIRMPasswd>
<IMSCIRMGroup>8characters</IMSCIRMGroup>
<IMSCIRMTran>8characters</IMSCIRMTran>

</IMSConnectParm>

224

http://schemas.xmlsoap.org/soap/envelope/
http://samplesolaimsmain.samplesolaimsmain.x4ml.soa.com/IM/SOLAIM01/SOA#IM01

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

CommitMode and SynclLevel Combinations supported by SOLA

1. CommitMode = 0 (Commit-then-Send) & SynclLevel = Confirm
This is the default combination enforced by SOLA runtime.

To specify this combination on the soap request pass the
following in <soap:Header>

<soap:Header>
<IMSConnectParm>
<IMSCCommitMode>0</IMSCCommitMode>
<IMSCSyncLevel>confirm</IMSCSyncLevel>
</IMSConnectParm>
</soap:Header>

2. CommitMode = 1 (Send-then-Commit) & SyncLevel = None

To specify this combination on the soap request pass the
following in <soap:Header>

<soap:Header>
<IMSConnectParm>
<IMSCCommitMode>1</IMSCCommitMode>
<IMSCSyncLevel>none</IMSCSyncLevel>
</IMSConnectParm>
</soap:Header>

3. CommitMode = 1 (Send-then-Commit) & SyncLevel = Confirm

To specify this combination on the soap request pass the
following in <soap:Header>

<soap:Header>
<IMSConnectParm>
<IMSCCommitMode>1</IMSCCommitMode>
<IMSCSyncLevel>confirm</IMSCSyncLevel>
</IMSConnectParm>
</soap:Header>

225

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

Appendix D: Sample Custom Program

The following program contains comments that will help you use this sample program to
construct your own custom programs for use with SOLA.

000100 IDENTIFICATION DIVISION. 12/12/97
000200 PROGRAM-ID. SOLACUEX. TGWPC045
000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000050 0% == == o *

000501* This is a sample 'Hello World' program which demonstrates the *

000502* basics of writing a SOLA Custom Program (Version 2). *

000503* This simple program accepts a 'Function' code from SOAP *

000504* request and depending of the value of the code does one of thex*

000505* following: *

000506%* *

000507* Function: HW - Throws a SOAP Response 'Hello World' *

000508* Function: HWF - Throws a SOLA soap fault (return code = -1) *

000509* Function: HWCEF - Throws a Custom SOAP fault (return code = -2)*

000510%* *

000511* Following is a sample of what the SOAP request for this *

000512* program would look like: *

000513* *
000514*<soap:Envelope *

000515* xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> *

000516* <soap:Body> *

000517* <helloWorld *

000518* xmlns="http://helloWorld.SolaExamples.x4ml.soa.com/CU/SOLACUEX/">
000519* <Function>HW</Function> *

000520* </helloWorld> *

000521* </soap:Body> *
000522*</soap:Envelope> *

000523* ————————— - *

000530*———————————— *

000600 WORKING-STORAGE SECTION.

000700* ——=—————— - m *

000800

000900 01 WS-MISC-DISP-DATA. 00301003
001000 05 WS-CHANNEL-NM PIC X (16) VALUE 'SOLA-CUSTOM'.

001100 05 WS-STATUS-CONTAINER PIC X(l6) VALUE 'SOLA-STATUS'.

001600 05 WS-FUNCTION PIC X(04) VALUE SPACES. 14800003
001610 05 WS-ABCODE PIC X (04) VALUE SPACES. 14800003
001700 05 WS-RESP-EDIT PIC 77Z7ZZ9. 00390799
001800 05 WS-RESP2-EDIT PIC ZZZZ9. 00390899
001900 05 WS-DOM-RC-EDIT PIC Z7Z7ZZ9. 00390899
002000 05 WS-SOAP-NS PIC X (41) VALUE

002100 'http://schemas.xmlsoap.org/soap/envelope/"'.

002200 05 WS-METHOD-NS.

002300 10 FILLER PIC X (31) VALUE

002400 'http://helloWorld.SolaExamples.'.

002500 10 FILLER PIC X (23) VALUE

002600 'x4mlsoa.com/CU/SOLACU24" .

002700

002800 01 WS-MISC-BINARY-DATA. 00301003
002900 05 WS-SUB PIC S9(04) VALUE +0 BINARY. 00301003
003000 05 WS-RESP PIC S9(09) BINARY VALUE +0. 00520099
003100 05 WS-RESP2 PIC S9(09) BINARY VALUE +0. 00530099
003200 05 WS-STATUS-LEN PIC S9(09) BINARY VALUE +0. 00530099
003300

226

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

003400 01 WS-MISC-POINTERS. 00090003
003500 05 WS-CONTAINER-PTR USAGE IS POINTER VALUE NULL. 00053192
003600 05 WS-Dom-Ptr-Req USAGE IS POINTER VALUE NULL. 00053192
003700 00270003
003800 01 WS-SWITCHES. 01200099
003900 05 WS-TAG-FOUND-SW PIC S9(04) BINARY VALUE +0. 01260099
004000 88 TAG-NOT-FOUND VALUE +1. 01270099
004100 88 TAG-FOUND VALUE +2 +3 +4. 01280099
004200 88 TAG-DATA-FOUND VALUE +3. 01290099
004300 88 NO-TAG-DATA VALUE +4. 01300099
004400 00270003
005100 COPY XMLDOMWI .

005200

005500*——————————— = *

005600 LINKAGE SECTION.

005700*————————mm e e *

005800

005900 01 SOLA-Status-Area.

006000 COPY SOLACUV2.

006100

006200 01 SOAP-REQ-RESP PIC X (1000000).

006300

006400 === == *

006500 PROCEDURE DIVISION.

006600 ———— = *

006700 CONTINUE.

006800 ——————m *

006900 0000-MAINLINE.

007000* === == *

007100

007200 PERFORM 0010-GET-SOLA-STATUS-AREA

007300 THRU 0010-EXIT

007400

007500 PERFORM 0020-GET-SOAP-REQUEST

007600 THRU 0020-EXIT

007700

007800 PERFORM 0030-PARSE-SOAP-REQUEST

007900 THRU 0030-EXIT

008000

008100 PERFORM 0100-PROCESS-SERVICE-REQUEST

008200 THRU 0100-EXIT

008300

008400 PERFORM 0200-PUT-SOAP-RESPONSE

008500 THRU 0200-EXIT

008600

008700 PERFORM 0300-PUT-SOLA-STATUS-AREA

008800 THRU 0300-EXIT

008900

009000 GO TO 9999-RETURN

009100

009200 CONTINUE.

009300

009400 OOOO-EXIT.

009500 EXIT.

009600

009700 ——————mm e * 14978300
009800 0010-GET-SOLA-STATUS-AREA.

009900 ———————mm e * 14978300
010000 46
010100 EXEC CICS

010200 HANDLE ABEND

010300 LABEL (9999-HANDLE-ABEND)

010400 END-EXEC

227

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

010500

010600 MOVE LOW-VALUES TO WS-CHANNEL-NM 03
010700

010800%* Get the channel associated with this transaction.

010900

011000 EXEC CICS ASSIGN

011100 CHANNEL (WS-CHANNEL-NM) 03
011200 RESP (WS-RESP)

011300 RESP2 (WS-RESP2)

011400 END-EXEC

011500

011600 IF (WS-RESP NOT = +0) OR

011700 (WS-CHANNEL-NM = SPACES OR LOW-VALUES) 03
011800 GO TO 9999-RETURN 02530003
011900 END-IF

012000

012100%* Get the SOLA Status container from that channel. The

012110%* contents of this container are described in COBOL copybook

012120%* SOLACUV2. This data structure will later be modified and

012130%* placed back into this container to communicated back to

012140%* SOLA the proper action to take (i.e. Throw a SOAP Response,

012150* a SOLA Fault, or a Custom Fault.

012200

012300 MOVE 'SOLA-STATUS' TO WS-STATUS-CONTAINER 03
012400 MOVE LENGTH OF SOLA-Status-Area TO WS-STATUS-LEN 02960000
012500

012600 EXEC CICS GET

012700 CONTAINER (WS-STATUS-CONTAINER) 03
012800 SET (WS-CONTAINER-PTR)

012900 FLENGTH (WS-STATUS-LEN)

013000 RESP (WS-RESP)

013100 RESP2 (WS-RESP2)

013200 END-EXEC

013300 46
013400 IF WS-RESP NOT = DFHRESP (NORMAL)

013500 GO TO 9999-RETURN 02530003
013600 END-IF

013700

013800 SET ADDRESS OF SOLA-Status—-Area TO WS-CONTAINER-PTR 02960000
013900 SET CU-Return-Normal TO TRUE

014000 MOVE SPACES TO CU-RETURN-MSG

014100 46
014200 CONTINUE. 10750046
014300 10760046
014400 0010-Exit. 10770046
014500 EXIT. 10780046
014600 10790046
014700* —————m e * 14978300
014800 0020-GET-SOAP-REQUEST.

014900*——————————— - * 14978300
015000 46
015010%* Retrieve the raw (unencrypted SOAP Request which was placed* 14978300
015011~ into this container by SOLA. Once retrieved, you may use * 14978300
015012%* any means you wish to interogate its contents (we suggest * 14978300
015013~* using the provided SOLA Soap Parser and API XMLPC112. * 14978300
015020 46
015100 EXEC CICS GET

015200 CONTAINER (CU-REQ-CONTAINER) 03
015300 SET (WS-CONTAINER-PTR)

015400 FLENGTH (CU-REQUEST-LEN)

015500 RESP (WS-RESP)

015600 RESP2 (WS-RESP2)

015700 END-EXEC

228

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

015800 46
015900 IF WS-RESP NOT = DFHRESP (NORMAL)

016000 SET CU-Throw-Fault TO TRUE

016100 MOVE WS-RESP TO WS-RESP-EDIT

016200 MOVE WS-RESP2 TO WS-RESP2-EDIT

016300 STRING 'Error getting SOAP Request container, RESP = '

016400 WS-RESP-EDIT

016500 ', RESP2 ="

016600 WS-RESP-EDIT

016700 DELIMITED BY SIZE

016800 INTO CU-RETURN-MSG

016900 END-STRING

017000 PERFORM 0300-PUT-SOLA-STATUS-AREA

017100 THRU 0300-EXIT

017200 GO TO 9999-RETURN 02530003
017300 END-IF

017400

017500 SET ADDRESS OF SOAP-REQ-RESP TO WS-CONTAINER-PTR 02960000
017600 46
017700 CONTINUE. 10750046
017800 10760046
017900 0020-Exit. 10770046
018000 EXIT. 10780046
018100 10790046
018200*——=————————— " * 14978300
018300 0030-PARSE-SOAP-REQUEST.

018400*——=————————— """ * 14978300
018500

018510%* In this case the program will used the SOLA provide parser * 14978300
018511~ and DOM API (XMLPC1l12). First the request must be parsed * 14978300
018512%* into the DOM Tree as follows: * 14978300
018520

018600 SET WS-DOM-PARSE TO TRUE 06203899
018700 SET WS-DOM-HANDLE TO NULL 06203999
018800 MOVE +0 TO WS-DOM-CONTROL 06204099
018900 MOVE CU-REQUEST-LEN TO WS-DOM-VALUE-LENGTH 06205099
019000 06206099
019100 CALL WS-DOM-API USING WS-DOM-RC 06208099
019200 , WS-DOM-MSG 06209099
019300 , WS-DOM-HANDLE 06210099
019400 , WS-DOM-FUNCTION 06220099
019500 , WS-DOM-CONTROL 06230099
019600 , WS-DOM-TAG-NAME 06240099
019700 , SOAP-REQ-RESP 02960000
019800 , WS-DOM-VALUE-LENGTH 18880099
019900 06270099
020000 IF WS-DOM-RC NOT = 0 06280099
020100 GO TO 9000-X-PROG-WITH-DOM-ERROR

020200 END-IF 06530199
020300 06530275
020400 SET WS-Dom-Ptr-Req TO WS-DOM-HANDLE 06530399
020500

020600 CONTINUE. 10750046
020700 10760046
020800 0030-Exit. 10770046
020900 EXIT. 10780046
021000 10790046
021100* === mm e * 14978300
021200 0100-PROCESS-SERVICE-REQUEST.

021300* ——=———————— * 14978300
021400 10790046
021410%* The following code shows an example of how to now use the * 14978300
021420%* SOLA DOM API to interogate the contents of the SOAP * 14978300

229

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

021430%* request. (See the sample SOAP request at the top of this * 14978300
021431~* program) * 14978300
021440

021500 SET WS-DOM-GET-ELEMENT-BYTAG TO TRUE 16354099
021600 MOVE 'helloWorld' TO WS-Dom-Parent 18850099
021700 MOVE 'Function' TO WS-DOM-TAG-NAME

021800

021900 PERFORM 6000-Call-Dom-Api 18730099
022000 THRU 6000-EXIT 18730099
022100

022200 IF TAG-NOT-FOUND OR NO-TAG-DATA 01270099
022300 SET CU-Throw-Fault TO TRUE

022400 MOVE 'Function not found' TO CU-RETURN-MSG

022500 PERFORM 0300-PUT-SOLA-STATUS-AREA

022600 THRU 0300-EXIT

022700 GO TO 9999-RETURN 02530003
022800 END-IF

022900

023000 MOVE WS-DOM-VALUE (1:WS-DOM-VALUE-LENGTH) TO WS-FUNCTION 20660099
023100

023200 EVALUATE WS-FUNCTION

023300 WHEN 'HW'

023400 PERFORM 1000-SAY-HELLO-WORLD

023500 THRU 1000-EXIT

023600

023700 WHEN 'HWE'

023710~ This is the easiest way to send a SOAP fault from

023720%* a custom program. Simply place the Fault message

023730%* you wish to comunicate in the CU-RETURN-MSG area

023740%* and set the CU-RETURN-CD to -1 (CU-Throw-Fault).

023750%* Then just place the status control block back into

023760%* the SOLA Status container and SOLA will do the rest.

023800 SET CU-Throw-Fault TO TRUE

023900 MOVE 'Sorry, World is offline' TO CU-RETURN-MSG

024000 PERFORM 0300-PUT-SOLA-STATUS-AREA

024100 THRU 0300-EXIT

024200 GO TO 9999-RETURN 02530003
024300

024400 WHEN 'HWCE'

024410%* This will demonstrate a technique for taking

024420%* complete control of the SOAP Fault that you will

024430%* send back to the requestor.

024500 GO TO 9100-THROW-HELLO-WORLD-FAULT

024700

024701 WHEN OTHER

024702 SET CU-Throw-Fault TO TRUE

024703 MOVE 'Invalid Function Code' TO CU-RETURN-MSG

024704 PERFORM 0300-PUT-SOLA-STATUS-AREA

024705 THRU 0300-EXIT

024706 GO TO 9999-RETURN 02530003
024707

024720

024800 END-EVALUATE

024900

025800 CONTINUE. 10750046
025900 10760046
026000 0100-Exit. 10770046
026100 EXIT. 10780046
026200 10790046
038600*———————— = * 14978300
038700 0200-PUT-SOAP-RESPONSE.

038800*%—————————— * 14978300
038900

230

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

038910%* This code will place the SOAP Response (built by this * 14978300
038920%* program into the CU-RESP-CONTAINER. In this case the * 14978300
038930%* CU-RETURN-CD should be set to zero (CU-RETURN-NORMAL) . * 14978300
038940~* It is this return code that will instruct SOLA to retrieve *

038941~ the contents of this container and deliver the SOAP *

038942~* Response back to the requestor. *

038970

039000 MOVE 'SOAP-RESPONSE ' TO CU-RESP-CONTAINER 03
039100 05620099
039200 EXEC CICS PUT

039300 CONTAINER (CU-RESP-CONTAINER) 03
039400 From (SOAP-Reg-Resp) 05617200
039500 FLENGTH (CU-RESPONSE-LEN) 05620099
039600 RESP (WS-RESP)

039700 RESP2 (WS-RESP2)

039800 END-EXEC

039900

040000 IF WS-RESP NOT = DFHRESP (NORMAL)

040100 SET CU-Throw-Fault TO TRUE

040200 MOVE WS-RESP TO WS-RESP-EDIT

040300 MOVE WS-RESP2 TO WS-RESP2-EDIT

040400 STRING 'Error putting SOAP Response container, RESP = '

040500 WS-RESP-EDIT

040600 ', RESP2 ="'

040700 WS-RESP-EDIT

040800 DELIMITED BY SIZE

040900 INTO CU-RETURN-MSG

041000 END-STRING

041100 PERFORM 0300-PUT-SOLA-STATUS-AREA

041200 THRU 0300-EXIT

041300 GO TO 9999-RETURN 02530003
041400 END-IF

041500

041600 CONTINUE. 10750046
041700 10760046
041800 0200-Exit. 10770046
041900 EXIT. 10780046
042000 10790046
042100*—==————————— = * 14978300
042200 0300-PUT-SOLA-STATUS-AREA.

042300* - === * 14978300
042400

042410~ The status control block (described in copybook SOLACUV2) * 14978300
042420%* MUST be placed back into the CU-STATUS-CONTAINER to let * 14978300
042430%* SOLA know what steps should be taken. * 14978300
042470

042500 EXEC CICS PUT

042600 CONTAINER (CU-STATUS-CONTAINER) 03
042700 From (SOLA-Status-Area) 00
042800 FLENGTH (CU-STATUS-LEN)

042900 RESP (WS-RESP)

043000 RESP2 (WS-RESP2)

043100 END-EXEC

043200

043300 IF WS-RESP NOT = DFHRESP (NORMAL)

043400 GO TO 9999-RETURN 02530003
043500 END-IF

043600

043700 CONTINUE. 10750046
043800 10760046
043900 0300-Exit. 10770046
044000 EXIT. 10780046
044100 10790046

231

Lifecycle Manager Integrated

~r' SOLA Developer 6.4.2 User’s Guide

0441 10* ————————m * 14978300
044120 1000-SAY-HELLO-WORLD.

044130 ———————— * 14978300
044140 20662899
044141~ Following is an example of how you could use the SOLA DOM * 14978300
044142~* API to build a complete SOAP Response to be deliverd back * 14978300
044143~ to the requestor. * 14978300
044144

044150 SET WS-DOM-CREATE-DOC TO TRUE 18280099
044160 MOVE SPACES TO WS-DOM-PARENT 18300099
044170 MOVE +0 TO WS-Dom-Rc 18310099
044180 , WS-Dom-Control 18320099
044190 , WS-DOM-VALUE-LENGTH 18330099
044191 , WS-DOM-PLACE-HOLDER

044192 MOVE 'soap:Envelope' TO WS-DOM-TAG-NAME 18392099
044193 SET WS-Dom-Handle TO NULL 18340099
044194 18350099
044195 PERFORM 6000-Call-Dom-Api 18730099
044196 THRU 6000-EXIT 18730099
044197 18350099
044198 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
044199 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
044200 MOVE 'xmlns:soap' TO WS-DOM-TAG-NAME 18860099
044201 MOVE WS-SOAP-NS TO WS-DOM-VALUE 18870099
044202 MOVE LENGTH OF WS-SOAP-NS TO WS-DOM-VALUE-LENGTH 18330099
044203 18350099
044204 PERFORM 6000-Call-Dom-Api 18730099
044205 THRU 6000-EXIT 18730099
044206 18350099
044207 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
044208 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
044209 MOVE 'soap:Body' TO WS-DOM-TAG-NAME 18860099
044210 MOVE SPACES TO WS-DOM-VALUE 18870099
044211 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
044212 18350099
044213 PERFORM 6000-Call-Dom-Api 18730099
044214 THRU 6000-EXIT 18730099
044215 18350099
044216 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
044217 MOVE 'soap:Body' TO WS-Dom-Parent 18350099
044218 MOVE 'helloWorldResponse' TO WS-DOM-TAG-NAME 18860099
044219 MOVE SPACES TO WS-DOM-VALUE 18870099
044220 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
044221 18350099
044222 PERFORM 6000-Call-Dom-Api 18730099
044223 THRU 6000-EXIT 18730099
044224 18350099
044225 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
044226 MOVE 'helloWorldResponse' TO WS-Dom-Parent 18350099
044227 MOVE 'xmlns' TO WS-DOM-TAG-NAME 18860099
044228 MOVE WS-METHOD-NS TO WS-DOM-VALUE 18870099
044229 MOVE LENGTH OF WS-METHOD-NS TO WS-DOM-VALUE-LENGTH 18330099
044230 18350099
044231 PERFORM 6000-Call-Dom-Api 18730099
044232 THRU 6000-EXIT 18730099
044233 18350099
044234 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
044235 MOVE 'helloWorldResponse' TO WS-Dom-Parent 18350099
044236 MOVE 'MessageToWorld' TO WS-DOM-TAG-NAME 18860099
044237 MOVE 'Hello World' TO WS-DOM-VALUE 03728701
044238 MOVE +11 TO WS-DOM-VALUE-LENGTH 18330099
044239 18350099
044240 PERFORM 6000-Call-Dom-Api 18730099

232

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

044241 THRU 6000-EXIT 18730099
044242 18350099
044243~ Finalize will retrieve a copy of the completed SOAP Response.

044244 18350099
044245 SET WS-DOM-FINALIZE TO TRUE 05614899
044246 MOVE +0 TO WS-DOM-VALUE-LENGTH 05614999
044247 05615099
044248 PERFORM 6000-CALL-DOM-API 05616099
044249 THRU 6000-EXIT 05617099
044250 05617199
044251 SET ADDRESS OF SOAP-Reg-Resp TO WS-DOM-VALUE-PTR 05617200
044252 MOVE WS-DOM-VALUE-LENGTH TO CU-RESPONSE-LEN 05620099
044253 05620099
044254 CONTINUE. 10750046
044255 10760046
044256 1000-Exit. 10770046
044257 EXIT. 10780046
044258 10790046
04442 9% —————m e * 18720099
044430 6000-Call-Dom-Api. 18730099
044440% —— === * 18740099
044500 18750099
044600 MOVE +0 TO WS-TAG-FOUND-SW 18770099
044700 18800099
044800 CALL WS-DOM-API USING WS-Dom-Rc 18810099
044900 , WS-Dom-Msg 18820099
045000 , WS-DOM-HANDLE 18830099
045100 , WS-Dom-Function 18840099
045200 , WS-Dom-Parent 18850099
045300 , WS-DOM-TAG-NAME 18860099
045400 , WS-DOM-VALUE 18870099
045500 , WS-Dom-VALUE-LenGTH 18880099
045600 18940099
045700 EVALUATE WS-DOM-RC 18950099
045800 WHEN +0 18960099
045900 IF WS-Dom-VALUE-LenGTH > +0 18970099
046000 SET Tag-Data-Found TO TRUE 18980099
046100 ELSE 18990099
046200 SET NO-TAG-DATA TO TRUE 19000099
046300 END-IF 19020099
046400 19030099
046500 WHEN +4 19040099
046600 SET Tag-Not-Found TO TRUE 19050099
046700 19060099
046800 WHEN OTHER 19070099
046900 GO TO 9000-X-PROG-WITH-DOM-ERROR

047000 19060099
047100 END-EVALUATE 19270099
047200 19280099
047300 CONTINUE. 19290099
047400 19300099
047500 6000-EXIT. 19310099
047600 EXIT. 19390099
047700 19400099
055800*——=———————— - * 14713189
055900 9000-X-PROG-WITH-DOM-ERROR.

056000*-—=——————————— - * 14713189
056100

056200 SET CU-Throw-Fault TO TRUE

056300 MOVE WS-DOM-RC TO WS-DOM-RC-EDIT 19110099
056400

056500 PERFORM VARYING WS-SUB FROM LENGTH OF WS-DOM-MSG BY -1

056600 UNTIL WS-SUB = +1

233

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

056700 OR WS-DOM-MSG (WS-SUB:1) > SPACES

056800 CONTINUE

056900 END-PERFORM

057000

057100 STRING 'Error in DOM API, RC = ' 19160099
057200 WS-DOM-RC-EDIT 19170099
057300 ', DOM MSG = ' 19190099
057400 WS-DOM-MSG (1 :WS-SUB) 19190099
057500 DELIMITED BY SIZE 19200099
057600 INTO CU-RETURN-MSG

057700 END-STRING 19240099
057800 20679999
057900 PERFORM 0300-PUT-SOLA-STATUS-AREA

058000 THRU 0300-EXIT

058100 20679999
058200 GO TO 9999-RETURN 02530003
058300 20679999
058400 CONTINUE. 20680099
058500 20680199
058600 9000-Exit. 20680299
058700 EXIT. 20681099
058800 20681199
0588l0*%———————————— * 18720099
058820 9100-THROW-HELLO-WORLD-FAULT.

058830*%——————————"————— * 18720099
058831 20681199
058832%* Following is an example of how you could use the SOLA DOM * 14978300
058833* API to build a complete SOAP Fault to be deliverd back to * 14978300
058834~ the requestor. Note that in order to instruct SOLA to send * 14978300
058835* this fault document back to the request you will need to * 14978300
058836* set the CU-Return-Cd to -2 in the SOLA Status area. * 14978300
058837

058854 SET WS-DOM-CREATE-DOC TO TRUE 18280099
058855 MOVE SPACES TO WS-DOM-PARENT 18300099
058860 MOVE +0 TO WS-Dom-Rc 18310099
058870 , WS-Dom-Control 18320099
058880 , WS-DOM-VALUE-LENGTH 18330099
058890 , WS-DOM-PLACE-HOLDER

058891 MOVE 'soap:Envelope' TO WS-DOM-TAG-NAME 18392099
058892 SET WS-Dom-Handle TO NULL 18340099
058893 18350099
058894 PERFORM 6000-Call-Dom-Api 18730099
058895 THRU 6000-EXIT 18730099
058896 18350099
058897 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
058898 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
058899 MOVE 'xmlns:soap' TO WS-DOM-TAG-NAME 18860099
058900 MOVE WS-SOAP-NS TO WS-DOM-VALUE 18870099
058901 MOVE LENGTH OF WS-SOAP-NS TO WS-DOM-VALUE-LENGTH 18330099
058902 18350099
058903 PERFORM 6000-Call-Dom-Api 18730099
058904 THRU 6000-EXIT 18730099
058905 18350099
058906 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058907 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
058908 MOVE 'soap:Body' TO WS-DOM-TAG-NAME 18860099
058909 MOVE SPACES TO WS-DOM-VALUE 18870099
058910 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
058911 18350099
058912 PERFORM 6000-Call-Dom-Api 18730099
058913 THRU 6000-EXIT 18730099
058914 18350099
058915 SET WS-DOM-APPEND-CHILD TO TRUE 06937099

234

Lifecycle Manager Integrated

‘ r' SOLA Developer 6.4.2 User’s Guide

058916 MOVE 'soap:Body' TO WS-Dom-Parent 18350099
058917 MOVE 'soap:Fault' TO WS-DOM-TAG-NAME 18860099
058918 MOVE SPACES TO WS-DOM-VALUE 18870099
058919 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
058920 18350099
058921 PERFORM 6000-Call-Dom-Api 18730099
058922 THRU 6000-EXIT 18730099
058923 18350099
058924 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058925 MOVE 'soap:Fault' TO WS-Dom-Parent 18350099
058926 MOVE 'faultcode' TO WS-DOM-TAG-NAME 18860099
058927 MOVE 'soap:Client' TO WS-DOM-VALUE 03728701
058928 MOVE +11 TO WS-DOM-VALUE-LENGTH 18330099
058929 18350099
058930 PERFORM 6000-Call-Dom-Api 18730099
058931 THRU 6000-EXIT 18730099
058932 18350099
058933 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058934 MOVE 'soap:Fault' TO WS-Dom-Parent 18350099
058935 MOVE 'faultstring' TO WS-DOM-TAG-NAME 18860099
058936 MOVE 'ERROR101-World Problem' TO WS-DOM-VALUE 03728701
058937 MOVE +24 TO WS-DOM-VALUE-LENGTH 18330099
058938 18350099
058939 PERFORM 6000-Call-Dom-Api 18730099
058940 THRU 6000-EXIT 18730099
058941 18350099
058942 05620099
058943 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058944 MOVE 'soap:Fault' TO WS-Dom-Parent 18350099
058945 MOVE 'detail' TO WS-DOM-TAG-NAME 18860099
058946 MOVE SPACES TO WS-DOM-VALUE 03728701
058947 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
058948 18350099
058949 PERFORM 6000-Call-Dom-Api 18730099
058950 THRU 6000-EXIT 18730099
058951 18350099
058952 18350099
058953 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058954 MOVE 'detail' TO WS-Dom-Parent 18350099
058955 MOVE 'e:message' TO WS-DOM-TAG-NAME 18860099
058956 MOVE 'Sorry, World is offline (My Fault)' TO WS-DOM-VALUE 03728701
058958 MOVE +34 TO WS-DOM-VALUE-LENGTH 18330099
058959 18350099
058960 PERFORM 6000-Call-Dom-Api 18730099
058961 THRU 6000-EXIT 18730099
058962 18350099
058963 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
058964 MOVE 'e:message' TO WS-Dom-Parent 18350099
058965 MOVE 'xmlns:e' TO WS-DOM-TAG-NAME 18860099
058966 MOVE 'http://www.dsd.ml.com/x4ml/fault' TO WS-DOM-VALUE 18870099
058967 MOVE +33 TO WS-DOM-VALUE-LENGTH 18330099
058968 18350099
058969 PERFORM 6000-Call-Dom-Api 18730099
058970 THRU 6000-EXIT 18730099
058971 18350099
058972* Finalize will retrieve a copy of the completed SOAP Fault.

058973 18350099
058974 SET WS-DOM-FINALIZE TO TRUE 05614899
058975 MOVE +0 TO WS-DOM-VALUE-LENGTH 05614999
058976 05615099
058977 PERFORM 6000-CALL-DOM-API 05616099
058978 THRU 6000-EXIT 05617099
058979 05617199

235

7

Lifecycle Manager Integrated

SOLA Developer 6.4.2 User’s Guide

058980 SET ADDRESS OF SOAP-Reg-Resp TO WS-DOM-VALUE-PTR 05617200
058982 SET CU-CUSTOM-FAULT TO TRUE

058983 MOVE 'SOAP-FAULT' TO CU-FAULT-CONTAINER 03
058984 MOVE WS-DOM-VALUE-LENGTH TO CU-FAULT-LEN 05620099
058985 20681199
058986* Place the completed fault into the CU-FAULT-CONTAINER.

058987 20681199
059006 EXEC CICS PUT

059007 CONTAINER (CU-FAULT-CONTAINER) 03
059011 From (SOAP-Reg-Resp) 05617200
059013 FLENGTH (CU-FAULT-LEN) 05620099
059014 RESP (WS-RESP)

059015 RESP2 (WS-RESP2)

059016 END-EXEC

059017

059018 IF WS-RESP NOT = DFHRESP (NORMAL)

059019 SET CU-Throw-Fault TO TRUE

059020 MOVE WS-RESP TO WS-RESP-EDIT

059021 MOVE WS-RESP2 TO WS-RESP2-EDIT

059022 STRING 'Error putting SOAP Fault container, RESP = '

059023 WS-RESP-EDIT

059024 ', RESP2 ="'

059025 WS-RESP-EDIT

059026 DELIMITED BY SIZE

059027 INTO CU-RETURN-MSG

059028 END-STRING

059032 END-IF

059033

059034~ Now place the proper status into the CU-STATUS-CONTAINER

059035

059036 PERFORM 0300-PUT-SOLA-STATUS-AREA

059037 THRU 0300-EXIT

059038 20679999
059039 GO TO 9999-RETURN 02530003
059040 20679999
059041 CONTINUE. 10750046
059042 10760046
059046 9100-Exit. 10770046
059047 EXIT. 10780046
059048 10790046
059182 ————mm * 14713189
059183 9999-HANDLE-ABEND. 14720003
0591 90* —————— * 14730003
059200 14740003
059300 EXEC CICS HANDLE ABEND 14750003
059400 CANCEL 14760003
059500 END-EXEC. 14770003
059600 14780003
059700 EXEC CICS ASSIGN 14790003
059800 ABCODE (WS-ABCODE) 14800003
059900 END-EXEC 14810003
060000 14820003
060100 SET CU-Throw-Fault TO TRUE

060200 MOVE WS-RESP TO WS-RESP-EDIT

060300 MOVE WS-RESP2 TO WS-RESP2-EDIT

060400 STRING 'Abend in program SOLACU24, Code = '

060500 WS-ABCODE 14800003
060600 DELIMITED BY SIZE

060700 INTO CU-RETURN-MSG

060800 END-STRING

060900 02750003
061000 PERFORM 0300-PUT-SOLA-STATUS-AREA

061100 THRU 0300-EXIT

236

Lifecycle Manager Integrated

‘ r‘ SOLA Developer 6.4.2 User’s Guide

061200 02750003
061300 GO TO 9999-RETURN 02530003
061400 14880003
061500 CONTINUE. 14890003
061600 14900003
061700 9999-HANDLE-ABEND-X. 14920003
061800 EXIT. 14930003
061900 14940003
062000*%———————————— " * 14950003
062100 9999-RETURN. 14960003
062200*%——————————— - * 14970003
062300 14980003
062400 EXEC CICS 14990003
062500 RETURN 15000003
062600 END-EXEC. 15010003

237

