akana

by Perforce

SOLA Developer
User’s Guide
Release 6.4.2

Support for Management
WS-Security architectural console &
Standards-based standards dashboard
security Global dictionary, SLA, monitoring,

enforcement &
management WSDL first logging & audit controls

High
performance Web 2.0
WS-Policy SOAP and development

Standards-based REST

policy
enforcement & API englne

management

environment

Change Orchestration Regist
ry
& release & microflows UDDI, WSRR
management

Version control,
backups & migration

Revision Date: August 2017

Copyright © 2020 by Perforce, Inc.

SOLA Developer User’s Guide

7

Contents
ABOUT SOLA DEVELOPERccuuiiitenieiienniertenneetennseetensseerenssesssnssesssnssesssnssessenssessenssesssnssssssnssssssnssessanssessanssessnnsssssnns 1
SOLA DEVELOPER BASICS.....cteuuiiiteetieteeenierernsierenssestesssssrensssssssssesssnsssssssssssssnsssssssssssssnssssssnssssssnsssssanssessanssssannssesenns 2
THE SOLA DEVELOPER WINDOW.......uuvnneneneen
LOGGING IN AND USER PROPERTIES
THE SOLA DIRECTORY PANEL.....ittttuuueeeeeieettttiieeeeeretetunaeseeeressrsneseessessssaaesessssssmsnetesesssssssmnesessssssssnmeseesssssssnmnesesssssssnnnns
RYO NN D] [d=Tor (o] VA (oo o KPP PP PPPPPPPPPTPPPRE 6
R O N D) [-Tol £ gV oL =] (TS 6
SOLA DirectOory DIQG QNG DIOP..........oeeeeeeeeeeeeeesieeee sttt e estea e sttt e e e sttt e esssaea e s tseaaeaasssaesassaaeassssaeassesessnsssensssssanas 8
SOLA Dir€CEOIY MENUS ...ttt ettt ettt et e sttt e s ettt e st e s sttt e s eaanneesanneasnanneeenas 9
CREATING A NEW PROJECT evvttiiiiieieieieieieeeeeeeteeeeeeeeeeeeeeeeeeseeeseeeeeeeeeeeeseerereseeesreerrerererereerereereererrrereereerrrrrrrrrrrrrrrrerrrrrerennn 22
VVORKING WITH TABS 1vvvvvuuuvuruuusssnsnsnsnsssnsnnsnnsnsnnnnn 23
SOLA DEVELOPER TOOLBAR.......citttiiittenieittnniettensisisnssisisnssestsssssssssssssssnssssssnssssssnssssssnssssssnssssssnsssssanssssssnssssssnssssss 24
QUICK SEARCH FIELD
5 U 0] V2 Y
USING SOLA DEVELOPER - POLICY MANAGEIMENTccccceiettteniertenniereenniereenssersensersnsssesssnssesssnssesssnssssssnssesssnssessnns 26
ASSIGNING AND DEPLOYING A POLICY ..uuvuuuuuuuuuuunnnueuuuuunuenunnnssesssenessnsssssnssnssnsssnnssnsnsssnnnnnnnnnnnnnnn 26
USING SOLA DEVELOPER — USER AUTHORITYuciiteiiiienniiiiennieiiennieiiensieisansieisansiessassssssssssessanssssssnssssssnssssssnssssanns 32
ASSIGNING USER ACCESS ..vvvvurvvurrsurusssnsssssssssnsnnsnnsnsnnnns
ADDING USERS TO A PROJECT ..uuuuuuuuuuururuuusnsunnsnsnnnsnnnnnnnsnsnnnssnnsssnsnsssnssnssssnsssssnsnsnnssnnssnsnsnsnnnsnsnsnsssnnnnnsnnnsnnnnnsnnnsnnnnnnnnnnnnnnn
ASSIGNING USERRIGHTS FOR USERACCESS. ...eeevvtuuieeeeerrrttuueeeeeerrssssuneeesessssssnnnesesessssssnnaeseesssssssnmaesessssssnsnseesessssssnsnesessesssses
CLONING USERACCESS ..uueeeerrttuuueeeseeerersnueseeessssssnnaseesssssssnnaesessssssssnasesessssssssnnsesessssssnsesesessssssnnnesessssssssnnaesesssssssnneeesees
DELETE USER AUTHORITY 1etttuueeeeertruuunaeeeeeesesssuneeesessssssnnnasesesssssssnnesessssssssnnseseesssssssnnseseesssssssnseseesssssnsnnsesessssssnnesesessssres
REMOVE USERS FROM PROJECT....eeettuuuueeeeeerersnuneesessssssnnnesesessssssnnnesesessssssnnseseesssssssnnsessesssssssnsesessssssssnnsesesssssssnnnsessssssses

ADDITIONAL USER AUTHORITY ACCESS FOR SOLA ADMINISTRATORS

USING SOLA DEVELOPER - COMIMAREAcccciiiiiiiinnnetiiiiiisinnseetiiissssssssessssssssssssssessssssssssssssssssssssssssssssssssssssnas 45
CREATING AN INBOUND WEB SERVICE FROM A COMMAREA PROGRAM — BOTTOM UP......uiiiiiiiiiiiiiiiiiriiecceeecee e 46
Step 1 — MAiNframe PreParGtiONSuueeecueeeseiieeeeeiiteeeeieeessteeeestttesesteaesasteasssteassasseessasseaasasssesessstsasssssees 46
Step 2 —Importing @ COMMOAIEQA PrOGIOMccevvveeeeeeeeieiiiiiiiiisesiseseeieisesesesessstssssssstssssssssssstsrstsrsrsrsrsrsrsrsrsrarernn 50
Step 3 — Creating Methods in @ COMMAIEA PrOGIAIMuueveeeeeeeciiiieieeeeeesecitteeaeeesesssssesaaesesesisssanssassesssnnes 56
CREATING AN INBOUND COMMAREA WEB SERVICE FROM A WSDL = TOP-DOWN ...cceieiiiiiiiiiiieeeeeriieeeee et e e 76
Step 1 — MaAiNframe PrePArGtiONc..ueeecueeeseiieeeectieeeeeeeesstteeestttesesaeaesastaasssteassasseassasssaasssssesessstsesssssees 76
StEP 2 = IMPOItING tRE WSDL ...ttt et e et e e ettt e e e et e e ettt e e e ettt e esnseaaeaasseasassesansssasanansees 77
Step 3 — Analyzing the WSDL to Create the COPYDOOK.uwevcueeeeeiieeeeeee e eeee e ea e e saa e e steaeesrtaa e s 80
CREATING AN INBOUND COMMAREA WEB SERVICE FROM A WSDL AND A PROGRAM— MEET-IN-THE-MIDDLEccvvverveerveeeneennne 82
Step 1 — Mainframe Preparation
Step 2 — Importing the WSDL
Step 3 — Matching the program to the WSDL
CREATING AN OUTBOUND WEB SERVICE
Step 1 — Mainframe Preparation
StEP 2 = IMPOItING tRE WSDL ..ottt e et e e ettt e e e et e e st e e e sttt e esanseaaeaassaasasssesansasaaansnsees
The Generated INtErface COPYDOOKueeeueieeeeee et et ee e e et e e e ettt e e st a e sttt e e s attaeesasteaessssesassaseeaenannees
1o 1o [0 1o BTSSP PP PP UPPPOPPRPN
Using SOLA to INVOKE OULDOUNT REGUESLSccceeeeeeeeieeeeeeeettee e ettt e e e e e et tteaa e e e eesstsaaaaaeeeassssssnaaaaeeaaas
Invoking an outbound SEIVICE frOM CICS..............ueeeeeeeeeeeeee et ee ettt e e et tee e et a e e et s e e e stsaaeestseseeaseas

SOLA Developer User’s Guide

7

Invoking an outbound service from Batch, IMS, DB2 Stored ProC, €tC.ccoueeecveeeesceieescieeeesireeassivrseeinnnns 105
Using WS-Security With OUEDOUNG FEQUESESeeeecueeeeeeiieeeescieeeesiteeeeseteeeeeteaeesisesaesstseaeesssasesssssaeasssesannnns 105
ANALYZER REFERENCEccuuuuuiisiss 113
ANGIYZEE BULEON BAT ...ttt ettt ettt ettt e s ittt e s e e st e st e st e soteenaseesaneesnee s 113
LEGACY ANA SCREIMA TIEES ...ttt ettt ettt ettt et et e sttt e sat e et e saneeastesaneeanes 114

TEEE IE@IMI IMIEIIUS ...tttk sttt sttt ssstsasssssbssssnns 118
ANGIYZET PrOPEITIESvveeeeeeeeeeeeeet ettt e et e e ettt e e s te e e ettt e e ettt e e s st e e sttt e eeassseesassssaeassesensssssesasssaesasssenannses 126
USING SOLA DEVELOPER — CALLABLE APIS AND CONTAINERSccootiiiiiiiiiiiiiiiiiiiinsssssssssssssssssssssssnnns 131
CALLABLE APIS ...ttt ettte ettt e sttt e sttt e e ettt e sttt e e e sabe e e s e sttt e sauseee s aabeeesaass e e e s ase e e e e aabeeesaaseeeesasseeeeanbeeesenbeeesnneeeeanbeeeeann 131
Step 1 — MQiNframe PreParGltiONceccueeeeeiueeeeeieeeeseteeeeeteaeesitteeeatetaesssteaasssasasssseaesanssasesssssasssssesessssees 131

Step 2 —Importing @ CallAbIE PrOGIOIMc..cooueieieeeieieee ettt ettt e e sineesaee e 132
CHANNELS AND CONTAINERS. ..ttt euuvteeesureeeesuresesssssesesseeesasssesesssseessssseesssssssssssssesssssseesssssssssssssssssssseesssssesssssssesssnssesssnns 134
Step 1 — Mainframe Preparationco.ceeeceeesueeeiueesiieeeieeeiee et siteeite st e et e st e e st e st e esstesieeesseesasseenseeeans 134

Step 2 —Importing @ CAANNEI/CONTAINGYc.eeeeueeeeeeeireeeieeeeeeeeeeesteeeeteesteeesteeestsseessestsseesssesssseesssesssasssssenes 135
SPECIfYING YOUIr CONTAINET NGIMESeveeeeeieeeeiee e eeeeee e et e e ettt e e et ette e e st s e e e etts e e et ttaaaeatbeaessssasasssanaaessssessssees 137
CREATING AN INBOUND CHANNEL AND CONTAINER WEB SERVICE FROM A WSDL AND A PROGRAM — MEET-IN-THE-MIDDLE 139
Step 1 — MAINFrAME PrEPOIALIONccccueevivveeiieeesiieeiiiesitteseieessttessttessteessstesstaesssessatssssssessssssssssssssssssssssssesssnsnss 139

Step 2 — Importing @ CAANNEI/CONTAINETc.occueeeeeeeeeeeereeseeeeeseeeteeseeeee et eeeeeseesse e e eseessesseesssesssessessenes 139
USING SOLA DEVELOPER — IMIS......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisississsnes 146
CREATING A WEB SERVICE FROM AN IIMS PROGRAM — BOTTOM UP....cciiuiiiiieiiiieciiieeesiieeesiiee e siteeeesiiaeessateesssnneeessneeesnnns 146
Step 1 — Mainframe Preparationco.ceoeceeesueeeiueesieeeieeeiee et st ette st e et e st e e saee st e esseesseeesaeessseeenseeeans 146

Step 2 — IMPOItinG tRE PrOGIGM...........c..uueeeeiiieeeeieeeeeeeeeeeteeeettea e et itte e e st e e e stttaa et saaasatsaaesssssasesssasasessesessssees 147

Step 3 — Creating Methods in AN IMS PrOGIQMueeecuueeeecieeeeeieeeeecieeeecteaeesiteaeaetteaeessaaeassaaassssssseesses 153
CREATING AN IMS WEB SERVICE- TOP DOWN AND MEET-IN-THE-IMIIDDLE ... ueteiieeeeeesiiireteeeseseiiereeeeeeeseinereeeeesssesnnreeeeas 157
Step 1 — MaiNframe PrEPAIGLIONeeeecuueeeeeiieeeeeieeesstieeeesteaeseee e e sttt e esesteeesssseaesaasteassasteasssssanassssssssssssees 157

SteP 2 = IMPOItING tRE WSDL ...ttt e e et e et e e e sttt e e st e e s sttaeseasteassanssasssssanasssesasnnsees 157

Step 3 — Analyzing the WSDL to Create the COPYDOOK..........oueecueeeeeiieeeeiiieeecieeeesee e et aeetea e estaaasssrtaaeenaeas 160
USING SOLA DEVELOPER — BIVIS 3270ccoiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiniiissimsisiisisimesssmesssiissssmssesssessssssssssesssssssssssssssnsenes 161
How SOLA CREATES WEB SERVICES FROM BIMS 3270 TRANSACTIONS «....uevveteeeeeesaniirteeresesaanereeeresssaannreeeeeessesannsenseeeesesns 161
CREATING A WEB SERVICE FROM A SIMPLE BIMS3270 USE CASEeeeiiitieeeeeiiietteee e e e sttt e e e e e s eeee e s e seneseeeeeessesnnreeeeas 162
Step 1 — MQiNframe PreparQtiOnccccueeeeeiueeeeiieeeesiteeeeeieeeesiseeeeatsaeeesataaaessasaeatsesesssssasesssasaesssssessssees 162

Step 2 — Importing and ANGlYZiNG the USE COSESueeeecueeeeeciieeseiieeessiieeeseteeessieeeessttaasseteassssseaesssessssseees 163
BMS3270 ANQIYZET REFEIENCEeeeeeeee ettt eee ettt a e et e e et e e st e e e s tteaesasstaessasseassssanassasesassnsees 174

121 Lo T = o | SO PPPPPPPPRRPP 176
WOrking With the GraPRICS VIEW............ueeeeeiiieeeiee ettt eetta e stte e e sttt e s stea e s stttaessttaesssteassssseassnsaeeesssees 177
WOrking With tRE FI@IAS VIEW........ccveeeeeeeeeeiee ettt e ettt aa e e e e sttt e e e e e e s et asbaeaaaesessssssanaaaasessnnees 190
ENVIFONMENTE SCEUD ..ottt ettt ettt ettt e e et et et et et e e et et e e et et e s aaatassssaasaeaeens 192
USING SOLA DEVELOPER — STORED PROCEDURESccooiiiiiiiiiiiiiiiiiininiiiiiiinssnns 194
How SOLA CREATES WEB SERVICES FROM STORED PROCEDURESceeeteeiuuetrtteeaeaaaaiiarteeeesesaaunreeeresssasnnreeeeeeesesaansnnseeeeaesan 194
CREATING A WEB SERVICE FROM A STORED PROCEDUREceeeuurtterureeesiureresanreeesanseeessuneresansseeesanseesssnnesessnnseeesanseesssnsesesanns 194
Step 1 — MGiNframe PrePAIGLIONueeeecueeeeeeiiseeseieeessteeeeetea e s teeesteeaesesteaesssseaasastsassasseasesssenassasssssssnsees 195

Step 2 — Verify StOred ProCEAUIE SYNTAXccceeueeeeeieeeesieeeeeeeeescteeestttaeeetea e st seaesssteaesasseassssseaassssssessnsees 196

Step 3 — Stored Procedure REGISTIALIONcceeeeuueeeeieeeeeeeiieeeee e ee ettt e e e e e ee ettt eaaaeesesssssesaaaesesssssssaaaaaeaias 197
USING SOLA DEVELOPER — AD-HOC SQLcoootiiiiiiiiiiiiiiiiniiiiiiiiiiiisiisiiisississsnns 204
How SOLA CREATES WEB SERVICES FROM AD-HOC SQL ..ceeiiiiiiitieeee ettt e e e e e ettt e e e e sttt e e e e sesnbeeeeeeesesanreneeeaeeenan 204
CREATING A WEB SERVICE FROM AD-HOC SQLeteiieieieeietee ettt e ettt e e e e e sttt e e e e e s eabee e e e e e e s nnebeeeeeeeseannreeeeas 205
Step 1 — MGQiNframe PrePAIGLIONeeeecuueeeeeiieeesiieeeseteeeeetta e s tte e e sttt e esasteaesssstaasasteaesasseasesssenassasssssnsnsees 205

SOLA Developer User’s Guide

7

R AR Yo | o Tl YO M=o [k 1 e 1 [o) DS 206
USING SOLA DEVELOPER — CUSTOM PROGRAIMIS........cttuieitennertennertensiertenssessensessanssessenssesssnssessansssssanssssssnssenss 208
CREATING A WEB SERVICE FROM A CUSTOM PROGRAM ...ccevviviiiiierereeerereeeeeeesesesesesesesesesesesssesesesesesssesesesesesesemesesemererm. 212
Step 1 — Mainframe Preparation/Coding CUSEOM PrOGramM..........c.ccccceeceeeeseesiesesiesesieeiieiesiesiessesiesseeseeneessenes 212

Step 2 - TSEING LNE PrOGITM ..ottt ettt ettt ettt et e e et e et e e saeeeanneenseeeans 213

S5tep 3 - IMPOIt CUSTOM PrOGIOIMccoueeiiiiiiiieiiie ettt ettt s sttt e s e st e s et e saaanees 215
TEST HARNESS ... eeeniiiennieitenniertensereenseerennseersnnsesssnsssessnssesssnssesssnssssssnssssssnssssssnssssssnssssssnsssssansssssanssessanssessanssenee 218
QUUICK TESTER eeeuttveeeiuureeaaureeesausseeesssseeeassesesasssesasssseesasssssesasssesssssssssanssssesssssssssssssssanssssesssssssssssssssenssssssssseessnssessnnns 219
LLCL=2 =3 AR 220

(T o Y= TR 221
FOUM VIBW oottt ettt ettt e e e e ettt e e e e e ettt ae e e e e e s s atae e e s e s s s aaaaaeea s s s s sstaaeeesssssassaeneessssses 222
TESEING the MELROU.ooeeeeeeieeee ettt et et et ettt et e ettt e sat e et e e steebseenaeeenes 222

RAW TESTER 1uutuuuuuuuunununnnsnssnssussnnssnsnssnssnnnnne 224
MONITORING AND LOGGING......cccctteeuerrennertennerrensereenssersenssessenssesssnssessenssesssnssssssnssesssnssesssnssssssnssssssnsssssanssses 226
TRANSACTION LOGS. . eeieiiieiiieieiiiiieiiieieieieieieieieteteteieieseessesesesssssesssesesseesesessesseeseseseseeeeens 226
ERROR LOGS ..uuuuuuuuuununununintneninunentnennnsnnnnnnnnnnnnnnsnsnsnsnsnsnsnsnnsnnsssssnssssssssssnnsssssnssssssnnsssssnsnsnnsssssnssnnsnsnsnsnnnnnsnnnnnnnnnnne 231
DATASET BROWSINGccucitteuirttenerteensertennertenssersenssessenssessenssessenssesssnssessenssesssnssssssnsssesssnssesssnsssessanssssssnssssanssenes 235
ORCHESTRATIONccuuuiiiiiieteenneeeeeeeeeenssseeeseeresnsssssssesessssnssssssssssssnnssssssssssssnnssssssssssssnnnsssssssssssnnnssssssssssnnnnssssssssanns 236
ADMINISTRATION.....ccittteeenneeeerreeeeennseeeeeeeenmnssseeessessssnssssssessssssnsssssssesssssnnssssssssssssnnsssssssssssssnnnssssssssssnnnnssssssssanns 237
AADMIN IMIENU 1vvvvvuvuvrruunsnsssesesssnsssssssssnnssnsnsssnsnnnnnnnne 238

2 1L e [(o] G 240
o o =14V Lo [{o] OO UPPUSOY 242

Yo Lo I K= N 245
DiCLIONGIY CONEIOIS.......veeeieeeeeieee ettt e ettt e e e e ettt e e e e e e e et atb e e e e e eeaaatssseaaaeessasssssesaaeesssssssasssassesssssses 246

LOGS & THOCES cccoveeeeieeee ettt e ettt e e e s sttt e e e e e s sttt e e e e e se sttt e e e e s ssssstatseaasessassstaeaassssssnssstensasssssnssses 251
(O o) ¢ Il 1 111 Lo TSP PUTRR 253

(O =To T (=3 1Y 10 ¢ 1 =1 £ SRR 255
INSTQIQTEION SECUITLY oottt ettt e et e ettt e e ettt e e st e e et e e s aasteeeasteaesasstaesanseaasansseassansesesnansees 257
AACCESS CONTROLS vvvvvuvuvuvuuususssusssnsasssnsssssssssnnssnsssssnnsnnnnnnnn 258

(0 T Yoo =Tl Y U 259

USEE ACTIVITY LOG «vvvvvvevivieiaiaisiaisisiaistasssnsssssssnns 261

Y L= 4 o Lo L (= | DTS PUPRN 263
APPENDICES.ccceuuiieieieeeeenneeeeeeeeennnsseeeseesesnnsssssessessssnssssssssesssssssssssssssssssnssssssssssssnnssssssssssssnnssssssssssssnnanssssssssanns 265
APPENDIX A: SCHEMA AND COPYBOOK GENERATIONceevttuuuureeerertuuunneseeerennsnnesasesesesssnnnesesersessnnnsesesersnssnnnnesessnsnnnnnseeseees 265
Datatype Mapping and COpybOOk GENEIratioN RUIESccueeeeeueieeeiieeeesiieeeecieeeeseaeeseaaeessaaassseeaeennes 265
Other RESEIICtIONS—INUMEIIC FOCETES ...ttt eee et et et et e e ee e e e e eeee e e e e e e eeeeeeeeseeeseseseseseseeeeaseneseees 270
(01 1= G 0T KX 1 4 1 1 2SS 270

(Ol Lo Tl TR A (ot 1 (o] KSR 270
APPENDIX B: REFRESHING TEMPLATES IN THE SOLA STC vttt s 271
Manually RefreSRING G TEMPIGLEooeeeeeeeeeieeeeeee e eee et e et e e et e e ettt e e e sttt e e s sttaeesstaassssseaasssseaennsees 271
Refreshing a Template Using the Web Service INTEIfACEcuuueeecuvieeeeieeeeeiieeeecieeeesteeesteeesstaaassirteaesnaes 271
APPENDIX C: OVERRIDING IMS CONNECT PARAMETERS ON THE SOAP:HEADER........uvuvieeieeeieiitireeeeeeeeeninnreeeeeeesessnsreeseesesensnnnns 273
APPENDIX D: SAMPLE CUSTOM PROGRAMuuuuuuuuuuuuuuuuunueuauensnssnsansassnasannsssnsassssaasassnnnsasnnnanannsnnannnnnannnnnnnnsannnanannnannnnnnnnnn 275

SOLA Developer User’s Guide

s

About SOLA Developer

The SOLA Developer is a browser based Integrated Development Environment that you can
use to create, manage, secure and test services.

The SOLA Developer can be deployed in any standard J2EE container (Tomcat, WebSphere
and Weblogic are recommended) and accessed using an internet browser (Microsoft Internet
Explorer version 7 or higher is recommended).

SOLA Developer features a rich graphical interface with advanced Web 2.0 capabilities, such as
tabbed workspaces and drag and drop.

SOLA Developer User’s Guide

e

SOLA Developer Basics

SOLA Developer is a powerful and easy to use web browser-based development tool with all of
the features and functionality of a windows application without the messy install, stringent
hardware requirements or resource hogging. Before you begin to learn how to create and
govern web services using SOLA Developer, please take a few minutes to become familiar with
the development tool and its basic functions.

The SOLA Developer Window

The SOLA Developer window is divided into several parts, illustrated in the figure below.

Cummat Uvan DIST2N
s les O

s -
h[J SOLA™ Developer _-Quick Search Button Bar
- et VIR T Mot St (Y G S [B vt (B domtens Bacuceen 0 B
SOA LO0E T Owaset " 7 tome ver - (DISIZM))
Dovesnmntyl TUST) * PROGRAM * Torw - Ve
3 I Owectory L4 e .
312 Aommen a
L3 e Workspace G Al B o>

318 P9G_CCMT16343

¥t ameusue Lrestel ner
912 sacnodas Oeicreten
#1L2 ndmiTest

Sven
#1072 s
3 2 AcCouneMancenande e 200304143426 08 NS
sk acosn e
815 Bofep IT9_Testng e 912318081 01 000001
#10 Slap_$18_Testng

’ i
o150 Balap 4101 Testeg nee Dot
31 Balep_819_Testng ran 20008300 54 22 53 60000
i Gt | Fapin EL TP
. Welcom h
35 Sig¥ierOome elcome to the o 20020516 90 121 G214
y v .

B Dotstienfost SOLA Development Studio A 2
2 DotsPrie1 19
=2 DetsTests . - nfpdsted
o2 ot sy
2ty e Creabe & Propect

oo SRS
2 EOOPrejet
o2 cunTest » Go to Adminestraton Console ctpectType e
212 IrswranceMdiest ek
#0 lraloma
o 13 IrslowaTrameng packagelsmtur
¥ IShrogect oty adr ¥
#18 wheTest ey Sy
o L3 Nonwralbropect g

SOLA Directory Panel plosirogte

12 Newpropect

g aTeoy
213 W
12 Orchestranen oot -
#13 PolcyTestCanen tgtiome [E= 0
Mo egat Ty,
#(3 QatesTven10 ‘
308 QaTEST V615 T |
¥R QaTEST VLY e [=sanl
#0 QATIST-VE.10 = - Wrone TROAGUN -

Som

Some of the panels in SOLA Developer can be minimized by using the minimize buttons ().
When working on lower resolution displays, minimizing panels can clear up work space.

SOLA Developer User’s Guide

e

The following illustration shows how much workspace can be cleared up by minimizing all side

panels.
™ Current User:
£y SOLA _
Service Oriented Legacy Architecture
Q- 2 New Project | W SOAP Test L'J\ Monitor Search -‘.'\'_L Error Search | [g] Browse Dataset £3F Admin Menu ﬁ Access Controls
» Home bl

7

Welcome to the
SOLA Development Studio

- Register
b= Create a Project

= Go to Administration Console

SOLA Developer User’s Guide

7

Logging In and User Properties

Most of the functionality of SOLA Developer is restricted to authorized users.
If you attempt to access a restricted function, you will be automatically
prompted to log in. Alternatively, you can log in at any time using the Log In
link on the top right of the SOLA Developer screen.

Current User:
Log In, Log Cut

Whether you elect to log in manually or are prompted to do so after attempting to access a
restricted feature, you will be presented with a log in prompt.

Enter your TSO username and password and
either press the Enter key or click the SignOn
UserName: dbvenka button. After you have logged in

successfully, your username will be displayed

User Signln b

RN sesas above the Log In / Log Out links on the top

right of the SOLA Developer window.
SignCn] [Cancel]

Clicking on your name will display your user-
level properties in the Properties panel.

User - { DBVENKA) »iEla S_OLA is highly customizable and so the properties

displayed here may not be what you see on your screen.
Mame = Value Check with a SOLA Administrator if you have questions
atternateld - about specific properties and their values.

createdTimestamp 2008-12-02-09.2... Users can change the values of their user properties by

createllser DEVENKA clicking on a value or an empty field in the Value column.

description The value being edited can be either a text field or a drop
down menu.

divizion zola

effective Z008-12-10-15.2... 3

email venkat. pilay@szo. ..

environiD

expires O0%0-12-31-01.0...

firsthm “enkat

grouplD Z008-12-02-09.2...

Io Z008-12-02-09.2...

lastm Pillaw

lastUpdated

loadDs SOLAEXT.TESTL..

majorRole =

SOLA Developer User’s Guide

7

The SOLA Directory Panel

The SOLA Directory is a central UDDI repository that allows for quick and easy discovery, reuse
and collaboration. This directory, and all SOLA projects in it, is located in a central location on
the SOLA server (mainframe).

<ot || uoor Il me || Dataset </ The SOLA Directory contains four tabs; SOLA, UDDI, File
- and Dataset.

Environments{ TEST} * PROGRAM ~
SOLA Tab: this tab is the default tab and displays the

=3 J 1 Y

20 Directory —1 SOLA UDDI directory where all projects are located
H V& .common

containing programs/services and methods/operations..

+ & .sandbox-tt-re110
1) PFG_CCM-716341 UDDI Tab: this tab has been deprecated in Version 6.2. It
H @ amexissue was used to view and interact with third party UDDI
#127 testofauth directories. UDDI data is now setup within the Admin
H & xdmlTest Menu.
H @z xd4MUanes
H & AccountMaintenance
H 12 ACORD

File Tab: this tab has been deprecated in
Version 6.2. This tab was used to browse
Environments{ TEST)} * PROGRAM ~ system files, such as Assembler.txt and
debugging.xml. You can now edit these files by

soLa || voot || File | Dataset ¢/ #! | Home

=" Fil 4)
:l-' ,'_Ef;stem selecting the Admin Menu tab from the Button

o = /assembler.txt Bar. The file will then appear in the workspace.
=] /debugain -
= IDyicki Edit
=]/Dictionan Dataset Tab: this tab is used to browse the
(] /Dictionary02.xmi logged in user’s datasets. If you are not logged
=]/Dictionary03.xml| on when you click this tab, you will be
=] /endpoints.xml presented with a login prompt.
=] findex.html
=]/indexpage.htmil The SOLA Directory functions in a manner very
=] /lobcard.brt similar to that of Windows Explorer. Projects
=] /promotelCL.txt are represented by folder icons (see legend
= /uddiClient.xml below) and contain programs, which in turn

contain methods. If a directory item such as a
project or a program has members (like files in a folder) then that item can be expanded by
clicking on the + icon next to it.

To refresh the SOLA Directory click the refresh button (1#).

SOLA Developer User’s Guide

7

SOLA Directory Icons

Each program type is represented by a distinct icon. The legend below shows a list of directory
items and their associated icons.

Directory root

i
L=

Project

Commarea program

IMS Program

Containers program

Callable API program

Outbound web service call program
BMS3270 — “Green Screen” program
Adhoc SQL program

Custom program

CE0@ORE®E S

Stored Procedure program
Orchestrated program

SOLA Directory Filters
The contents of the directory can be filtered by environment and program or service.

Environment names may vary due to SOLA’s customizable o | e e

nature, though SOLA is preconfigured with three | Environments(TEST} ~ | PROGRAM ~

environments; TEST, STAGE and PROD. 05} TEST =]
10) STAGE 6110

Select the desired environment from the Environments 15) QARel b 341

menu. Only programs belonging to that environment will 25) PROD

be displayed in the tree. For example, if you select the 30) PROD1

TEST environment, only projects that contain programs in 08 x4MLIanes

the TEST environment will appear in the SOLA Directory # (# AccountMaintenance

tree_ == ACORD

Within an Environment you are able to view the
contents of the Directory in either of two modes by

Environments{ TEST) * | PROGRAM ™ | selecting one of the following:

= ' Directory PROGRAM
V& .common

soLA || vont || Fle || Dataset *¢/1#|| K

Program: displays a list of Projects containing legacy
SERVICE programs and methods. Itis in this mode where most
" development will take place.

H 1@ .sandbox-tt-r

Service: displays a list of Projects containing classes referred to here as services, and all of
the operations or methods associated with the particular service(s). Itis in Service mode that
you will have access to the Service WSDL for all operations in that particular Service, and
access to the Operation WSDL associated with each operation/method for each service.

SOLA Developer User’s Guide

solA | oot | Fe | pataset “/®| | Home

Enviranments(TEST) ¥ SERVICE ¥

N o[Directory I
SOLA | UDDI | Fie | Datasst “/®|| Home 58 common
Environments{ TEST) ™ SERVICE ¥) Commonservices
: {3 inquireWidget/Bm
3 ?%re;t:nr:nm = {3 listWidgets/BM
.:'I%]CummonServices o View Operation Wsdl
2% inquireWidget/ View Service Wsle 4 ssnSearch/CA . e Ppereon T
% listidgets/BM o tempAndLenC.omrerm
4% nameSearch/CA @ ﬂ?emFICDﬂ.‘JEFSIDrI,"IM o
2% ssnSearch/C o] |InqmreW|dget.fWC
& tempAndLenConversi W4 lstidgets VC
4% tempConversion/IM |

¥ inquireWidget/WC
8 listWidgets/WC

7

SOLA Developer User’s Guide

SOLA UDDI File

Environments(TEST) ™

=, Directory

Datase |55/ #

2008-12-29_Release

LAIMPRC

£ JKENTO
#E JKENTL
[Y KENT2
[JKENT3
£ §MIKENORT
[+ SOLACAS0
[§soLAawcsi
[§soLAawcs2
[§soLAawcs3

#EJxBR

=@ 5.0.23.4_2008-08-02

=& AccountMaintenance
#=f JABCL
4 +|AT5XD000

Hhcp2

PX & (4] AT5XDO00O

SOLA Directory Drag and Drop

The SOLA Directory has drag and drop capability which
allows you to quickly and easily move programs between
projects. A program move from one project to another is
governed by following rules:

- User must be a SOLA Administrator or a project
administrator for both source and target projects

- The target project must not contain a program of the
same name as the one being moved.

To move a program, click on the program, hold down the
mouse button and drag the item to its target project.

In the example on the left, the Commarea program
AT5XDO000 is being moved from project
AccountMaintenance to project 2008-12-29 Release.

When a program is moved, all of its methods are moved
with it from all environments.

SOLA Developer User’s Guide

7

SOLA Directory Menus

Right clicking on an item in the directory tree will display a pop-up menu. Many common
operations performed in SOLA Developer are initiated using the directory tree menus.
Depending on which Directory mode you have selected, PROGRAM or SERVICE, operations
will be different.

Directory Menu

soLA | uopi | Fie || Dataset <2/ I create project: right clicking on the Directory
displays the create project menu and allows you to
create a new SOLA Developer project. For more
information, see page 22.

Environments(TEST) * PROGRAM
|
Create Project

= ' Directory

& .common
Z .sandbox-tt-r6110
7 .sandbox-tt-we-loop
2 PFG_CCM-716341
&l amexissue
= testofauth
2 x4mliTest

(R R E R E R F
B By B R

I+

Project Menu
The Project Menu is accessed by right clicking on the Project in the Directory tree.

Import Program: displays the import

SOLA | UDDI | Fle | Dataset “'? ' Home . .
ity panel, which can be used to import
Environments(TEST) * PROGRAM ¥ legacy programs and create web
3, Directory services. The import panel is the
2 (53] .analysis A gateway to creating web services
_.,";"A.aOemOPrO)eCt Import Program - fSr(cJ)rCAevery pl‘?gr?l._rﬂ. tydpe that t
4 4 CASEIXS0 Show Profect Hns\) » Supports. This documen
contains descriptions of the import
44 QACA991P Fliter by P i
o i ilter by Project and analysis process for every
User Authority b supported program. Refer to the
4 £ JSAMPLE . .
£ 3 SAMPLEOO Add WSOL Template table of contents to get information
2 £ JSAMPLEO! about the program type you are
. Delete Project interested in.
4k JSAMPLEO2

AW aum can

SOLA Developer User’s Guide

Show Project History: displays a list of changes to the project from the day it was created, with

date and time stamps for each change. See Figure 1 below:

SOLA | UDDI | File | Datasets | “'#/|| Home
Environments(TEST) * PROGRAM ¥
| 3, Directory
4 03).analysis | ALl "
o |53) -aDemoProject Import Program
4 [4 CASEIXS0 Show Project History
3 BQACA991P Filter by Project
£ qaca991m
£ JSAMPLEOO Add WSDL Template
@ E3SAMPLEOL Delete Project
@ £ 3SAMPLEO2 -
Figure 1:
Environments(TEST) * PROGRAM ~
=21 Directory E
[.common
2[5 totest-t-6.2
E[E LY, T re— _ _
@[qacaosp _
.:IEQAIMMF: Effectve Timestamp Expires Timestamp Change Remarks
@ [Joasroan 2013-11-11-14.43.47 043615 2013-11-15-10.12.16.969067 created

_'.'IEQASQMP 2 2013-11-15-10.12.17 969067 2013-11-15-10.13.05. 464381 projectMm changed from b
.:I Solabemo
_ﬂ[_EAaTesthim
_ﬂﬁ.ﬂ:e phed_te |

i o

| | M|

SOWA | UOD! | Fie | Dotasets | /2| home

Filter by Project: enables a user to view only a Environments{ TEST) * PROGRAM *
specific project and the programs or services within E -',;“‘W Al
the project, in the IDE directory tree. A user can share :}ajm'o,«, 1 Impoet Program
a Project specific URL within a team so developers n{'-iusuxsop |__ Show Project History
only see objects within the project when using that o |ty]
URL. An example of this would be: afJsaie [l =y, :

ok JsameLE0D Add WSDL Template

s E JsampLEOL Delete Project

2k sampLE02 -

http://<IDEHost>:<IDEPort>/sola/index.htm|?project=<ProjectName>

e

SOLA Developer User’s Guide

Not

(4’3

e: To clear the filtering criteria click on the refresh button
) as shown below:

SOLA™ Developer

SOLA | UDDI || Fie || Datasets «

Environments{ TEST) * PROGRAM ~

User Authority: Enables the management and assignment of the SOLA User’s access.
Clicking on User Authority will display the panel User Authority Manager after clicking on
the Show Tree View

option. User Authority sotA | ubor | Fie | patasets | [<)#|][Home
functionality is restricted Environments(TEST) * PROGRAM +
and must be gr_ar_lted by 5% Directory
the SOLA Administrator or [E3) -analysis ~
Project Administrator. For ﬂ@ét’em"miect {mport Program
H : -] CASEIX50 Show Project History
more detailed information S [HQrcasorp Fiter by Project
about SOLA Developer — £ qacas9im :
User Authority see page @ [JSAMPLE User Authority | showTree View
31 4 £ JsAmPLEOD Add WSDL Template e Talla Ve
o= ﬁ%ii:stiﬁ; Delete Project Assign ProjAdm

Show Table View: clicking on Show Table View for the Project displays a list of the access
Operation Type each User Name has been assigned for the selected Project/Resource Name
as seen in the illustration below:

Show L rs Aooeis - O/X
Greup Hadre Ukt Lier Marme Cperalon Type Resowee B Peaouice Namg Achon

o Faieciddmn J013-12-16-09 54 10 250003 LT MGRATION H14-01-22.72 71 10 BA163E Dot DESvea TeaShj Remave
o Proectddmin 1312-16-09.54. 10 250000 LA T PROGRANMER 2014-01-22-22 23 20681686 Dot DESveaTeawr Remiave
"M Proeciddmin 21 342-16-09.54.10 350000 LT PROFEATES 2014012222 23 20 681586 DotsDESvos Teadf Bemave
o« Reguiariars 201 3082402 10,28 330004 CRxm PROGRANMER 2014012222 10 20 681654 Doty DESvea Taasy) Reminve
T Reguisrmers 300 20- 10 02 07 551381 LKA DT P L) Brrgradea 0 310 DotsiDESyves Ty Refficnig
« Reguiariars 201 3:08: 2018 0917 35131 A PROGRANVER 2014012322 10 20 661656 Dot DESvia Taas) Remave
w2 Peguiatmery J013-08-20- 18 09 17 551381 L PROMOTE 014-01-22-23 13 20 BE16EE Dot DESve Toasyj Remave
43 SOLAA DM 2-05-16-10.14.21 €301 4 L5224 MEGRATION M14-01-22-22 23 1) 6E1636 Dot DES oA Teathry Remave
49 SOLAA B 012-05-16-10,14. 21 £3014 DRI PROPERTES M14-01-22-22 23 1) 6E 1638 CediDESwEA Toil) Remave

4 b

Assign ProjAdm: authorizes a user to work on the project as a Project Administrator. Only the
SOLA Administrator can grant this access.

11

SOLA Developer User’s Guide

Add WSDL Template: allows users to add a WSDL

® g

template containing data defining tags that will be Eovronmntal TEST) = PROGRAN -
included with all requests and responses sent by DR P ntegration =l
ithi i i1 1 [£8] QA TEST-PgmMoveT oPr,
programs within t_he project. Thl_s is us_ed to add data r4 gt
tags that are not included when importing a legacy 4 QaTEST-v6.1.11
H IS OATEST-VE. 1.5
program. WS QATEST-VS.1.7
o [N GATEST-WE. 1.8
. i i [E5] QATEST-WE.1.9 RN PR AR
Delete Project: deletes the selected project and all s QaTesT Ve 2.1 Show Project rstery
. . . ' TEST-ViKd
programs and methods in the project. There is no undo sEfgaTEsT-vezapy | U Froject
f . il [B9] QA TEST-08.2.2 Usar Authority
unCtIOI’]. o |25 RadRoad Show User Access
| 25) Regresshond B EUL e
| I RegressmionRenTin
4 [¥9] S ervica Template Add WSDL Template
4[] SolnClann Delate Praoject

dfSalaDeme

7

SOLA Developer User’s Guide

Program Menu

The Program Menu option is a context sensitive menu that varies according to the type of
plugin. Each menu option is described as follows:

Show Program Structure: displays the COBOL or PL/I structure of the program (it’s interface).
For IMS programs, CICS Container type programs and Callable programs with multiple
structures, this option shows all of the program’s structures using tabs to navigate from one to

the other. This option is valid forf< @ & @ EJ plugins.

N7lsoLA™ Developer

Q i Now Project | W SOAP Test | i Montor Search | % Q Brows
SOLA | UDD! || File | Datasets g Home
Environments(TEST) ¥ PROGRAM ¥ /Directory/..SOAP-REST- —lolx
= I, Directory /
= [E5] .. SOAP-REST-usecase 2 DFHCOMMAREA
= 3 Aamceo1 =] OFHCOMMAREA
s ([JJos2spHuB = [Operation 2
@ EINSTRUNC B selectCustomers
@4 Qacamice / [insertCustomer
s~ Qacasor o | updateCustomer
= A Qacnsop Show Prootam Struct [deleteCustomer
@[Qasroan Show Program History [selectOrdersWithinCustomer
Bh4RESTTSTL View Program Wsdl [l insertOrderwithinCustomer
@@ sem1234s s [updateorderwithinCustomer
ilter by Program
& 4 SOLACAD4 Y TXou |8l deleteOrderwithinCustomer
e] Dem port Program | selectOrderltemsWithinOrder
] -_-1‘ .aaaDemol Analyze New Method |l insertOrderitemWithinOrder
3 [5§] .analysis |l updateOrderitemwithinOrder
9 [53] -aDemoProject Rest API Designer

3] -2Exceed

153 -
@3 [6§] .ImSOLA_1029
3 [6§] .mikesTests
@ [G) .tt-r632-QTF

8 [£5] .AAE-885432-2
3 [£3] .AUTHPROJECT

| deleteOrderitemWithinOrder
[selectProductswithinOrder
[l selectProducts
Bl insertProducts
| updateProduct
B deleteproduct
= Bl WS-RETURN-CODE
| Normal-Completion
| system-Error
|l Sal-Error
|l Application-Error
|8l \/S-RETURN-MSG
B Ws-APPL-DATA
=] WS-selectCustomers
3 [l selectCustomers-IN
B customeriD v
- B selectCustomers-OT

Policy Management
Program Migration »
Delete Program

Show Program History: In the environment the user is currently working in, displays a list of
changes to the program from the day it was created in the environment, with effective and
expires date and time stamps for each change. Right click on Show Program History and all
history for the program will be displayed including remarks for all changes that have been made
to the program. This option is valid for all plugins.

Show History

Rowld

Effective Timestamp Expires Timestamp

2013-11-11-14.4516.545116 2013-11-11-14.45 38 626844

(= I B R

2013-11-11-14. 4539 626844
2013-11-26-13.17.22.167344
2013-11-26-13.18.32.174024
2013-11-26-14.21 .47 536731
2013-12-03-13.57 03257609

2013-11-22-13.47 23 899346
2013-11-26-13.18.31.174024
2013-11-26-14.21.46 536731
2013-12-03-13.57.02 257609
2013-12-03-14.03.52.025187

Change Remarks

created

description changed from null to namesearch

13

SOLA Developer User’s Guide

7

View Program WSDL: Use this option to generate Program WSDL that encapsulates all
methods/operations of the program into a single WSDL file. When the directory is in ‘Service’
View’ then you will see ‘View Service WSDL’ option that consolidates all operations under the
service into a single WSDL file. If multiple programs share the same service/class name then
service view provides an option to consolidate all operations across multiple programs that
share the same service hame into a single WSDL file.

This option is valid for [+ @ @ @ @ EY [plugins.

soLA || uont | Fle | patasets | “/#*!| Home

Environments(TEST }|* SERVICE ~

=" Directory
j@.camman
j%CDITIITIDHSEWiCES
#F inquireWidget
iF listwidgets View Service Wsdl

Filter by Service

1% nameSearch
¥ ssnSearch

Filter Program directory will only show the current program on which filter has been applied. To
clear the filtering criteria click on the refresh button (/#))

Re-Import Program: repeats the import process for the program. For Structure based plugins
H @@ Re-import is usually done to reflect changes to the structures of a program that
has already been captured in SOLA. Depending on the nature of changes to the structure the
existing methods/operations that are already captured under the program can become invalid.
SOLA automatically verifies the validity of methods based on a Reimport of a program and
marks the methods validity. This is visually reflected on the program and invalidated methods
with a ‘red’ underline as shown below

Jl=rRcomcavL
i testMethodl
3F testMethod2
4F testMethod3
iF testMethodd

To fix the methods that have been invalidated, reanalyze the method and adjust the schema
items and finalize. Reanalysis is explained in next section as a part of Method Menu
documentation. On successful reanalysis of all invalidated methods the Program will
automatically change to valid state and the ‘red’ underline shown below the Program and each
Method will be gone.

As a part of Method Menu, there is a ‘Mapping Report’ option available that can be used to
check the mapping of ‘Structure €<-> Input Schema’ and ‘Output Schema <-> Structure’. For
an invalid method this report gives more details on causes for invalidation. The Mapping report
is explained in next section as a part of Method Menu documentation.

SOLA Developer User’s Guide

7

For E3] plugins, Re-Import will re-capture Outbound, Custom or Stored-Procedure
analysis based on the plugin.

Analyze New Method: initiates analysis to create a method for the selected program.

Rest API Designer: Once a legacy Program is imported and a Method analyzed (created) and
tested based on the legacy program type, the Rest API Designer presents a single consistent
interface within SOLA requiring no additional tools other than command-line http tools such as
URI Objects (Resources) and HTTP methods (GET, POST, etc.) to design Representational
State Transfer (Rest-ful) API's. See the SOLA Rest User’s Guide for further information.

Policy Management: Enables the management and deployment of policies from within SOLA
Developer. Clicking on Policy Management will display a Policy Manager panel containing three
panes; Containers, Programs and Policies. Policy Management functionality is restricted and
must be granted by the SOLA Administrator. For more information about SOLA Developer —
Policy Management, see page 24. Policy Management option is valid for all plugins

Program Migration: Has following sub-menu to support Promote/Demote of program

Program Migration 3 Promote

Demote

Promote: promotes the program to the next environment in the environment hierarchy and
triggers a promotion JCL (if one exists, if not, you can create one using the File Editor). For
more information about environments and the environment hierarchy, see page 255.

Demote: demotes the program to the previous environment in the environment and triggers a
demotion JCL (if one exists, if not, you can create one using the File Editor). For more
information about environments and the environment hierarchy, see page 255.

Delete Program: deletes the program and all of the program’s methods (if it has any). This
cannot be undone.

SOLA Developer User’s Guide

7

Method Menu

The Method Menu option is a context sensitive menu that is displayed by right clicking on the
method / operation name and varies according to the type of plugin.

Each menu option is described as follows:

Show Method Schema: displays the input and output portions of the method’s schema (as
captured in method analysis). This option is valid for all plugins.

& ™
SOLA™ Developer
Q- 4 New Project | ¥ SOAP Test | g Monitor Search | Al Error Search [@] Browse Dataset £3r Admin Menu
soa || upot || File || patesets | [“#|] Home
Environments(TEST) * PROGRAM ¥ -
e RO iD_nrecturyiSolaDenm}BOAnsool,fnamejr x
#[E3] Regression] DEUISuite A~ Schema Input | Schema Output

1 [[3] RegressionRunTimeSuite
[ServiceTemplate
#(E3) SolaClass
=& selaDemo
@ b~ ACCOUNT
@[+ AMQPCESE0
@ =) aMwEBSQL
@ [+ BCNsSTOO
@ [BMsTEST
Y BNSFTSTO
= JBNSFL
=f+BoaBs001
4% nameSr
= i cASEIMD3
@ BB CASETMD4
m [J casewcso
wEJcaz2TEST
@ [+ cHECKPOL
@ Jcicsws
E2) CLIENTOR

Schema Inputs | Header

o € namesr
£ Ws-BOSS-ID
=) € WS5-SEARCH-TYPE
i searchByName
_| SearchBySSN
€ WS5-SEARCH-VALUE
= € WS-ACCESS-METHOD
L FcAccess
L MnamntAccess
LA FirmWideAccess

Show Method Schema
Show Method History
Show Method Activity
View Method Wsdl
Quick Test Harness

s cuenTot Rest API Designer
@ EJcryPTO

E2) CUSTPROF
@ || CUSTVIEW
@ Jcuszceo1
= Jowscaza

Re-Analyze Method
Mapping Report b

Delete Method

Show Method History: displays a list of changes to the method from the day it was created,
with date and time stamps for each change.

Show History
Row id Effective Timestamp Expires Timestamp Change Remarks Acticn
1 2014-02-07-00.51.01 31534 2014-02-11-01.43.23 490320 created Recover
2 2014-02-11-01.43 .24 490320 2014-02-12-01.49.15.745235 Recover
2014-02-12-01.49.16. 745235 2014-02-12-01.49.20.736719 Recover

The above screen has a ‘Recover’ action that can be clicked on any version to initiate a restore
of the method to the selected version. ‘Recover’ action is only supported for structure based

plugins [+ @ # 8

Note: Method versions that have only captured some changes to method properties without any
changes to underlying schema will throw a message ‘Method cannot be recovered’ as there is
no schema items changes that are specific o to that version.

Show Method Activity: displays a list of activity for the method with date and timestamps for
each event. This option is only supported for structure based plugins [+ @ @ &

16

SOLA Developer User’s Guide

7

View Method WSDL: Use this option to generate Method specific WSDL. . When the directory
is in ‘Service’ View’ then you will see “View Operation WSDL’ option that is exactly identical to
method WSDL. This option is valid for (< @ B & B E3 [J plugins.

Quick Test: opens the quick tester panel, which allows you to test the method by sending a
request to the legacy program. For more information on testing, see page 218.

Rest API Designer: Choosing the selected Method (previously created during program import
and Method analysis) and selecting the Rest API Designer will enable the creation of the REST
service. Here you will define the Resources and the HTTP protocol operations that will be
described in the SOLA Rest User’s Guide.

Re-Analyze Method: repeats the analysis process for the method, this time with all fields pre-
populated with their settings from the last analysis. This allows you to make changes to the
method by re-analyzing it with different settings, or to view the settings from the previous
analysis.

Note: Previously Re-Analysis of methods was allowed in all environments; with release of 6.2
Users are only able to develop services in development/test environments with the lowest
Sequence number.

=i {4 SolaDemo
@ -4 ACCOUNT
= [+ aMapcsso

For Custom Pluginf) methods, ‘Re-Analyze Method’ option will “Gomessa
.] BCN&STO00
show already captured method schema to enable users to adjust S Bensresr
datatypes, lengths and other attributes that are generated into oE3omemar| Show wethod schema
WSDL. There is a new option ‘Re-Create Method’ that needs to be o || T
selected if the user wants to recapture the method fresh. affcaseup) e Method e
] @CASEIMD Quick Test Harness
ﬂ@CASEWC- Rest API Designer
. P , @ [Jcaz2TES]
For BMS Plugin methods () methods, ‘Re-Analyze Method sl e vethos
g y
. . e Re-Create Method
option will show screens that have been already captured as a part j@ﬁ'jﬁ,‘.ﬁi e s
of BMS Method analysis to enable users to adjust the input/output sh-dcuientos

field selection as well as adjusting attributes of screen fields. There
is a new option ‘Re-Create Method’ that needs to be selected if the user wants to recapture the
screens fresh.

Re-Create Method: This option is only valid for Custom Plugin((£%nd BMS methods (&
Use this option to drive the application to recapture the Custom or BMS method fresh.

Delete Method: deletes the method. This cannot be undone.

Mapping Report: This option provides user to view the mapping of ‘Input Schema - Program
Structure’ and ‘Program Structure - Output Schema’ fields.

This option is valid for structure based plugins HeE s

Mapping report provides an overview of 2 reports:

- which input schema fields from a soap request are used to populate the programs input
structure fields

- which structure fields are used to populate output schema fields of a soap response.

17

SOLA Developer User’s Guide

e

This report has Summary and Expanded reporting options that can be rendered as HTML or
XLS format as shown below

Mapping Report [Summary | HTML
Expanded ¥LS

18

SOLA Developer User’s Guide

The Summary report just captures the mapping field names while Expanded report has the
complete xPath information captured for each field so the user knows the location of each field

in the structure and schema.

Sample summary report is shown below

Mapping Report = Project : .common Program : RCOMCA04 Method : nameSearch

Table 1: Input Schema Item = Structure Variable Mapping

Table 2: Structure Variable #» Output Schema Item Mapping

I‘ Input Schema Item Structure Variable ‘ ‘Structure Variable Output Schema Item ‘I
Y[Eossio WS-BOSS-ID | vws-reTurn-cone RetumCode | |
N[~ (defauiry WS- SEARCH-TYPE |W[ws-reTURN-MSG RetumMessage |
|[searchvalue WS- SEARCH-VALUE |W[ws-saL-cooe SqiCode |
N[AccessMethod WS- ACCESS-METHOD, |W[ws-cics-reTurn-cooe CICSRetumCode | |

Sample expanded report is shown below

Mapping Report = Project : .common Program : RCOMCA04 Method : nameSearch

Table 1: Input Schema Item - Structure Variable Mapping

Il Input Schema Item Structure Variable ‘I
)[/schema/Envelope/Body/namesearch [Bossto /DFHCOMMAREA WS-B0SS5-1D | |
1 'N' (default) /DFHCOMMAREA WS- SEARCH-TYPE | |
[/Schema/Envelope/Body/namesearch Searchvalue /DFHCOMMAREA. WS- SEARCH- VALUE | |
hf‘S(hemlEnveIupa,’Bﬂdy,’namSeamh AccessMethod /DFHCOMMAREA WS- ACCESS-METHOD ‘I
Table 2: Structure Variable » Output Schema Item Mapping
Il Structure Variable Output Schema Item ‘I
Il/‘DFHCOHHAREA WS-RETURN-CODE /Schema/Envelope/Body/nameSearchResponse/Dfhcommarea ReturmnCode ‘I
Il/’DFHCOMMAREA WS- RETURN-MSG /Schema/Envelope/Body/nameSearchResponse/Dfhcommarea RetumnMessage ‘I
Il_/‘DFHCOMMAREA WS-SQL-CODE /Schema/Envelope/Body/nameSearchResponse/Dfhcommarea SqlCode ‘I

When methods are marked as invalid then the mapping report shows the details of why the

method got invalidated as shown below.

Mapping Report = Project : .common Program : RCOMCAV1 Method : testMethod1

Table 1: Input Schema Item = Structure Variable Mapping

Table 2: Structure Variable » Output Schema Item Mapping

Input Schema Ttem |

Structure Variable ‘ |Structure Variable

Output Schema Ttem

'WS-FETCH-CNTR

WS5-BOS55-ID ‘ |WS*FEI'CH*CNTR
|WS*REI'URN* CODE

'WS5-RETURN-CODE

[ws-searcH-TYPE

‘ |WS-C[CS-REI'URN- CODE

\WS-CICS-RETURN-CODE

|L|<- CLNT-NM LK-CLNT-NM
WS-ACCESS-METHOD |WS*ACCESS*MI:THOD |LK*PRDR— D LK-PRDR-ID
|LK—CLNT—NUM LK-CLNT-NUM

19

SOLA Developer User’s Guide

7

Color coding (green or red) on report indicates validity of the methods.
Mapping Report also includes Input/Output conditions including the following: AllowTruncation,
StopArray, Excludelf, OccursDependingOn etc. are outlined below in red.

Alapping Report = Project : Balaji 622 Testing Program : R622CA04 Method : nameSearch

Tabile 1: Input Schema tem = Sructure Variable Mapping Table 2: Sructure Variable = Output Schema tem Mopping

o Ourtput u-n_u-
WS- BOSS- D | WS- RET URN- CODE | returncode
5 v
b [ws-reTURN- HSG | returntressage
W (detaul) WS- SEARCH-TYPE | e sar cone
WS- SEARCH-VALUE | | |F-Im_|mfm
. =
—_ [ws-cics-reTurn-cooe Jcicsrmumcode
WS- ACCESS-METHOD WS- ACCESS- METHOD [t Yromeres
d
|ws-ToTAL-cnTR |Totalcounter
|W‘S-FI:TCH-CMTR]mema_‘
& Eogudell Lowialuen
Chaentinfo Clart Info
me WE-FETCH-CHNTR I

ILK.-‘EL"'[] Clhent Mame
|- Proe- 10 =

(k- chT-hum | chentromber
(- promE- rams |Phenaturbar

20

e

SOLA Developer User’s Guide

File Tab Menu

soLa || upbor Dataset | %

Environments{ TEST) *
=22 Files
=& /system
=] /Azzembler.txt

= /de
= /Di Edit é
=] /Dictionary011 (1)l

=] /Dictionary011 (2).xml
[=]/Dictionary011l.xml

=] /Dictionary02.xml

=] /Dictionary03.xml

=] /fendpaints.xml

= /indexpage.html

m

Edit: allows you to edit the selected file in the workspace.

21

e

SOLA Developer User’s Guide

Creating a New Project

To create a new project, either click the Create Project button on button bar, or right click the
SOLA Directory root icon and select “Create Project”. This will display the Create Project panel
in the SOLA Developer workspace.

SDLA-DG?&MPN
[+

SOLA | UDOT | Fle | Datase %%

Environments{ TEST) ~

= I, Darectory pr

= (B 2008-12-25_Adease
2@ 5.0.23.4_2008-08-02
3 [AccountHaintenance
2 (@ InvestmentBanking 85
= [DEPTXYZ
B Foon
2 [Banking South
3 (@ InsuranceNorth
3 NewProject
B JcusTOMER
B HMLCHG
H[[JHLCHGD
afins
i POADOS
BEdROLES
A4 SOLACADS
34 soLase
| SOLAYYSD
a3 xneanTo
:IUN:BE ANTOZ
B XBEANTOS
B I XBEANTO4
[J XBEANTOS
B[I xeeANTOS
J,'Lj:-(umuru.r
H (B InsuranoeMadWest
3 [InsuranceTraming
2 [B InsuranceGroup
2B s0A
= (B SOLAS1_XCF_SOLAGD
3 B SWESSWE
3 (B SWES01Project
1 |33 SolaDema -

Current Usar: DBECREW

Lo ln. Log Out

b MewProjecs W S0P Test Y Monter Seaech | I Erer Sewen (] Evewsn Duset | (B dowin e Jl deessscomees.| B [

Home | Creale = Dinectory - | Drectory) # | &
Project Name: Sarnple Project Hame - WValue
:L‘:l‘:;;inn: A cample for the manusl :slumaleu
First Hamie: Mie byt IType Dhraclony
Last Name; Smith
Work Phone:

Cedll Phome: B-555-1 212
Home Phone: H01-555-1212
Email Address: ik Esan, com
Division: oL
CREATE
%
I Interne R0 -

Fill in all required fields and click the CREATE button. A confirmation dialog will appear to
indicate successful completion.

Project created

22

SOLA Developer User’s Guide

7

Working with Tabs

The SOLA Developer workspace is tab based; which means that it can contain several active
panels, each of which is represented by a tab. The illustration below shows six active tabs in
the workspace.

SOLA™ Developer

.:.+ New Project (BOAF Test lk Monitor Search '.'lL Error Search r__;l Browse Dataset ‘.:-3! Admin Menu ﬁ PAccess Gontrols

| &

soLA | uoo | Fie | Dataset /¥ | Home | S0PTester®/| Monitor Search *|| Browse Dataset || Admin *|| Access Controls | Error Search %
Environments(TEST) ¥ TOR EndPoint: |u1 PUBLIC TEOR(1445) -|
3.1 Directory 21| start Date: M30319 @ startTime: 00000 v
4|7 sandbox-tt
End Date: 20130319 3 End Time: 235059 v

#12 PFG_CCM-716341

{2/ amexissue Program Name: | Method Name: |

4|7 gatesting-tt-r619

3 tectofauth Program Type I_A|| Types- -I Request IP Addr: I

@/ xdmlTest TOR System ID: | AOR System ID: |

4 2 xdMUanes l— l_ I
412 AccountMaintenance rans ID: Result Type: SLLE
+ /@ ACORD SEARCH RESET

All six can be displayed at once. You can switch between active tabs at any time. This tab
based functionality provides several useful benefits, such as the ability to stop working on
something, and come back to it later, without having to start from scratch, and the ability to
troubleshoot (error search, etc.) without having to abandon what you are working on.

To close a tab, click on the X button in the tab’s top right corner.

Home SOAP Tester *

Binding EndPoint:
ADD USERNAME TOKEN

ENCRYPT BODY

FORMAT XML

00PUBLIC TEOP{ 1445) =]

23

SOLA Developer User’s Guide

7

SOLA Developer Toolbar

The SOLA Developer toolbar consists of the quick search field and the toolbar buttons.

Quick Search Field
Q- |

L+ New Project \/SOAP Test

Quick Search Field

SOLA
S50LA || UDDI

| Environments({T) = |

Q-

<

#

Button Bar

;& Monitor Search \‘lk Error Search L:\\ Browse Dataset ‘:_/" Admin Menu Ig Access Controls

To use the quick search field, type a complete or partial
name of the project, program or method you are looking
for or perhaps a wildcard character ‘%’ after the program
or method, then hit enter. Every item in the SOLA
Directory that matches your entry will be displayed. If the

=, Directory “ | matching item is a project or program, that item will be
=izl Accounts displayed with all child items visible. If the matching item
3[4 soLacony is one or more methods, then only matching methods will
& convTemp be visible in the tree.
=a[[Q)soLaspPo7 L
3% test To clear the search results and display the full directory
=& NewProject tree, click the refresh button (1#)).
=2+ soLacaos
nameSearch2 | = You can also specify wild card search criteria like
=& PFGroup %conv%’ to search project, program or method that has
= [soLacnos ‘conV’ in its name

¥ PfoContainer

ol ASPEOS

WP I Pl ¥

24

SOLA Developer User’s Guide

7

Button Bar
The button bar provides shortcuts and access to some of SOLA’s administrative and testing
functions.
o New Project Click this button to create a new SOLA project. You can also right click
- on the directory root icon and select “Create Project”. See page 22 for
details on how to create a project.
" SOAP Test Click this button to access the SOAP tester panel, used to test raw SOAP

requests. See page 224 for details on how to use the SOAP tester panel.

Click this button to access the Monitor Search panel, used to search
through all logged SOLA transactions. See page 226 for details on how
to use the transaction search panel.

‘_L Manitor Search

Wi Eror Search Click this button to access the Error Search panel, used to search through

— - all logged errors. See page 231 for details on how to use the error log.
Click this button to access the Browse Dataset panel, used to view
mainframe datasets. See page 235 for details on how to use the Browse
Dataset panel.

-
._]l Browse Dataset

(@ Admin Menu Click this button to access the SOLA Developer Administration Panel.
This panel contains various administration functions related to system
files, schemas, dictionary and monitoring. The Admin Panel is detailed
on page 238.

i, Access Controls Click this button to access the SOLA Developer User Controls panel.
This administration panel contains various functions related to user
access. The User Controls panel is detailed on page 257.

25

SOLA Developer User’s Guide

7

Using SOLA Developer - Policy Management
Assigning and Deploying a Policy

The SOLA Administrator must define Policy Management authority to a Project Administrator.
This is described in the Resource Manager Users Guide and is granted to a user by granting
PolicyAdmin Authority using Resource Manager. A SOLA Administrator serves a dual role as
SOLA administrator and Project Administrator; both can assign new user’s access to a Project.
A user that creates a project is automatically designated a Project Administrator for that project.
A Project Administrator has access to project, program and method-level administration
features, but cannot see policies on projects they do not have access to.

The Project Administrator, if authorized, can assign a policy to a program or method and deploy
them into target runtime time containers within an environment. This assignment is
accomplished by first right clicking on the program within the project to open the program menu.

soLA | upDl || File | Datasets | “/®!/ Home
Environments(TEST) * PROGRAM ~

e [ﬁ_j RegressionRunTimeSuite
o @ ServiceTemplate

¥ B3 SolaClass
2|3 SclaDemo
& -4 ACCOUNT
2+ AMQPC8s0 —
% ASDF Show Program Struct
gAMWEBSQL Show Program History
o BSCNSQTDO View Program Wsdl
3B emsTEST
L5 getIT Filter by Program
£ GSNSFFSTO Re-Import Program
0 BBNSF] Analyze New Method
[+ B0OABS001
) @CASEIMDJ Rest API Designer
] @CASEIMEM Policy Management .
ASEW . .
36(: SEWCS0 Program Migration 3
@ JcazzTesT
@ BCHECKPOL Delete Program
L PP I

26

SOLA Developer User’s Guide

7

After you select Policy Management the Policy Manager pop-up panel will be displayed in the
workspace. This panel can be used to manage policy at the Program or Method level.

" 2 Ner Project | SOAPTest | i Monior Search | i EvorSearch | [Browse Dataset (3% Admin Menu | & Access Contros | [|| [
e

S0A | o0l | Fie | Detaset %/2] | Home Program - (AMQPCBG0) 8
Environments(TEST) ™ Name & Vale
12 PolicyTestCases j Policy Manager(/TEST/SolaDemo/AHQPCEG0) =)0 channghame =

2 QATEST-V6.L.5

(3 QATEST-V6. LT Containers Programs(MSTR) Policies(MSTR) casshim Testtnum
4 RailRoad 9 Directory ¥ Directory 3 Directory 4 Commarea ASAPSII-PARS
RegressionIDEUISuite JETEST DETEST 2@ swb copyDs
82 RegressionRunTimeSuite 3@ TEST-SWB 3{2 SolaDemo endP-signl-encO-sign0-encl-uTok copylirary
112/ 5E8 TORE jBAMQPCEEU EncryptBodylnput
(351X Dema 3@ TesT-0003 4 ASDF SignBadylnpt restelser
Hiz/508 TORC EncryptBodyOutput description Test enumeratio
{2 SOLAS1_XCF_SOLAGD 3 |@ TesT-0004 SignBodyQutput effactive 2009-7-10-44.2..
12 S0LAIDE CICA & swhtestg .
82 SOLAPTF endP-signl-encO-sign0-encl-uTok
(3 SWBSI1Praject EncryptBodylnpLt endPuit
82 SWBProjectTemplate SignBodyInput environD 2008-03-04-06.0.
{112/ 5WB_BMS_Usecases EncryptBodyOutput errorContainer
@ ServiceTemplate SignBodyOutput P
3(3 SolaDemo 31 Aucit-IN-0UT-Hethod o i
- ACCOUNT Auditinput D 2000-01-08-235..
£ checkStatus AuditOutput mportedon
ﬂ@AGEORGEl 5 & Audit-IN-OUT-Program mporType
3f9amgacaso Auditinput
£ ASDF AuditOutput R
afamnessaL 3@ AuditPolicy inputContainer
alcNsaTo0 Auditinput ttams -
ﬂBEMSTEST AuditOutput
jobNumber
alyensr 38 AuditReqresp .
ﬂGCAZZTEST { — | LH language COBOL
ﬂBCASEWCSU lastUpdated

The SOLA Developer — Policy Manager Panel contains three panes; Containers, Programs and

Policies.
Policy Manager{ /[TEST /[QATEST-V6.1.5/QACADLP) — |3
Containers Programs(MSTR) TORE '®/|| TORC '®/(| CICA '* Policies(MSTR)
=" Directory =", Directory = Directory -
aETEsT =1= =& swb
=& TEST-SWB =& QATEST-V6.1.5 endP-zsignl-encO-signO-encl-uTok
TORE :IBQACADIP EncryptBodyInput
=9|& TEST-0003 L QACADLIML SignBodyInput
TORC EncryptBodyOutput
=)@ TEST-0004 SignBodyOutput
CICA 2| swbtestg

endP-zignl-encO-zign0O-encl-uTok

Containers: For ease of reference: HContainerGroups Containers

This tab represents the actual SOLA Runtime Containers. The Container Groups and
Containers are configured by the SOLA Admin using Resource Manager. Within the Containers

Panel is a tree of Container Groups and SOLA Containers represented by container icons (@
and o).

Whenever policies are assigned to a program or method, they are not in effect until they are
deployed to a Container Group.

27

SOLA Developer User’s Guide

7

The Directory tree in this example begins with the Contamers

Environment TEST, followed by three Container Groups S@TesT
defined as TEST-SWB, TEST-0003 and TEST-0004. Each 5Bl TEST-SWE
container group in this example has one Container each TORE
TORE, TORC and CICA. Containers will store Programs or =& TEST-0003

Methods within Projects (defined with this icon #). A Project . TE;:E‘;M
can be defined by the SOLA Administrator or Project CICA

Administrator.

= ' Directory

An example of a Container named TORC and its contents:

Policy Manager([TEST/QATEST-V6.1.5/QACADLF)

Containers Programs{ MSTR) || TORC '* .
= — Note: the new TAB that is opened
=1 Directory =" Directory .
o @ TeEST S @ TEST in the Programs(MSTR) panel.
= TEST-5WE = VE QATEST-VW6.1.5
TORE =l qacao1p
= & TEST-0003 5 QACADIML

TORC
=& TEST-0004
CICA

Programs or Methods: Are stored within each Project and in a Container(s) A program
or method can be moved to the Containers panel to have its policies deployed in a Container
group. All Containers within a Container Group are defined to the same Runtime database

{MSTR} When you deploy a program or method to a Container Group it is effectively deployed
to all Containers on the Master database.

First you must close out of all opened Container TABS | T8¢ * in the Programs(MSTR) panel by

clicking the * on each Container TAB, and then drag the program or method to a container group;
by doing so the program or method will be deployed and along with its policy(s) activated to every
container in that container’s group. See the following example:

Policy Manager([TEST/QATEST-VE.LS/QACADLP) -ox

Program QACAO1P has

s iy amee i o il 3 been deployed to Container
! 37 Directon 3 1 Direct ndP-signl-encO-sign0-encl-uTok .
st et e, Group TEST-0003, and all
(3 resT-swe 3 (1 QATEST-V6.1.5 SignBodylnput | Policies in Audit-IN-OUT-
TORE J[4ac0p EncryptBodyOutpat
3 TEST-0003 D qrcann) K3 AvditIN-OUT-Program ™t Pro.gram have been
TORC : - "Hethod assigned to program
J & TEST-0004 Audtinput

CICA

AudtOutpat

413 Audt-IN-OUT-Program
Audtinput
AudtOutput

2 3 AuditOutput
endP-encO
EncryptiodyOutput

453 AuditPoley
Audainput
AudtOutpat

4 &3 AvditRequestOnly

QACAO1P. The policies
now apply not only to the
program and/or method, but
also to every Container and
Container Group within the
Runtime database.

28

7

SOLA Developer User’s Guide

Policies: SOLA supports two types of policies, the default policy and the method-specific
policy. If a method-specific policy exists, it will always override the default policy. The default
policy, which can be enabled or disabled, comes into effect when a method does not have its
own policy (and the default policy is enabled).

Using Developer’s drag and drop capabilities enables a Policy to be dragged over to and
dropped into a Program or Method. The policy dropped onto a Program will be assigned to the
program and all of its methods as in the example below, the policy group Audit-IN-OUT-
Program has been assigned to program QACAO1P and all of its methods. Once deployed, the
program will use this policy group, overriding the container default policy, except where the
default policy defines a requirement set by the assigned policy.

Policy Manager(/TEST/QATEST-VELS/QACADLP) -0 X
Contamers Programs{ MSTR) Polcses(MSTR)
! 3 1 Dwectory 3 I Dwectory endP-signl-encO-signO-encl-uTok :J
s hdTesT b resy N Encrypt8odylrput
43 TEST-SWB 3 (8 QATEST-V6.L S4F SignBodylnput
TORE 214 QACADIP EncryptBodyOutput
DS TRST 0003 © QACAOIM: &3 3 Audit-N-OUT-Program P
TORC i -Method
4 &3 TEST-0004 Audtinput
CICA AudtOutput
3 &3 Auda-IN-OUT-Program
Auvdtinput
AudtOutput
3 &3 AvdtOutput
endP-encO I
EncryptBodyOutput
2 &3 Avdapoicy
Auvdtinput
Aud0utput

4 &3 AvdaRequestOnly i
« | »

The policy dropped onto a Method will be assigned to the method only as in the example below.

Once deployed, the method will use this policy group, overriding the container default policy,
except where the default policy defines a requirement set by the assigned policy.

 Policy Manager([TEST/QATEST-VE.LS/QACADLP) -0l
Contamers Programs{ MSTR) Policies(MSTR)
! 3 7 Directory 3 I Directory Syqr;odyo..'l!pal. A
4 RATEST J KA TEST 3 L swhtestq
v 3 2
3 &3 TesT-swB 3 QATEST-V6.1.5 endP-signl-encO-signO-enci-uTok
TORE i E4QACADIP EncryptBodylnput
3 &3 TEST-0003 O QaAr s w1 SignBodylrput
/b,
TORC 5 Output

] ¢ ns - -
o B TEST-0004 L3 Audit-IN our Mathod |

CICA 313 Audit-IN-OUT-Method
Audainput
AudtOutput
=2 &3 Audit-IN-OUT-Program
Audtinput
AudtOutpat

A dialog box will appear confirming the Policy attachment, Click OK to continue.

*

Policies have been successfully attached

29

7

SOLA Developer User’s Guide

&

When a Project Administrator has access to projects, programs and methods located in another
container group in the Directory tree they will CLICK on the container group and it will appear as
a new Icon in the Programs(MSTR) panel.

In this example, the project administrator needs to view the current policies assigned to program
QACAO2P. To do this you would first select the program in the SOLA environment and right
CLICK on Policy Management in the drop down menu.

SOLA uDoT File Dataset % £ Home

Environments{ TEST) ~
S Next select the Container the program is in and notice a new
=1 SolaDemo

TAB ' "™ " has been opened in the Programs(MSTR) panel.

o [} AGEORGE1 X X i
afdanarces oo m— The selected program QACAO2P is highlighted.
® =) aMwEBSQL Show Program History

= [<|BCNsOTOO
@ BMsT==

=E3enst policy Manager([TEST/QATEST-V6.1.5/QACAD2P)

View Service Wsdl

mEjcazz
3%2’3&‘ Containers 4= pgrams({ MSTR) || TORE '*
=k Jcrcs
wi¥com | ! Directory = I, Directory
jgiﬁ; = EdTeEST 2 E4TEST
=2|[@ TEST-SWE = QATEST-V6.1.5
TORE =+ gacaozp
=@ TEST-0003 £ QACA0ZM1
TORC
=/[@ TEST-0004
CICA

By double-clicking on QACAO02P a new TAB will appear in the Policies(MSTR) with the name of
the container the program is located in and the current Policy assigned to QACAO02P which in
this case is policy group Audit-IN-OUT-Method.

4 pgrams{ M5TR) | TORE '* Polides{ M5TR) || QACAD2P{ TORE) '*
= ' Directory = '\ Directory
= ES TEST =/ Audit-IN-OUT-Me_fid
=& QATEST-V¥6.1.5 Auditinput
=+ Qacaozp AuditOutput
£+ QACAD2ZMI

30

SOLA Developer User’s Guide

7

In this example, the project administrator is viewing their projects in container group CICA, and
they want to assign policy group Audit-IN-OUT-Program to program QACAO2P.

Policy Manager(JTEST [QATEST-V6.1.5/QACAD2P)

Containers 4| Programs(MsTR) || aca ®/|| Torc ®/| |4 | Polides{ MSTR)
=1 Directory =2 Directory endP-signl-encO-sign0-encl-uTok
JEJTEST = EFTEST EncryptBodyInput
=& TEST-5WB =& QATEST-V6.1.5 SignBodyInput
[/1ToRE =f=qacaozr EncryptBodyOutput
=/ TEST-0003 £ QACAD2ZM1 SignBodyQutput
[TorC =& Audit-IN-OUT-Method
= |[3 TEST-0004 Auditlnput
[flcica AuditQutput
= Audit-IN-OUT-Program
AuditInput

AuditOutput

=@ AuditDutput
endP-encO
EncryptBodyQutput

They will have to CLICK on the Programs(MSTR) tab to assign the policy to the program by
—— dragging and dropping the
Polcy Manager(/TEST/QATEST-V6.1.5/QACAGZP) policy group onto the

Containers +| Programs(MSTR) = CICA % TORC "4 Policies{ MSTR)

SRR program.

3 I Directory 4 I Directory SionBodyO
3 Test 2 Eresr ot gttt

. 3 &3 swhtestq
23 TEST-5WB 12 QATEST-VE.1.S . .
ToRe S QACAD2P EnéP: S0l D 800 enck ook Confirm the policy has

@ TesT © QACAD2MI EncryptBodyInput .
ey . O/ hudn e our rogam 801 been attached by Clicking
wereby ptBody Output .
SianBiodyOutpat OK to continue.

3 3 Auda-IN-OUT-Method
Auditinput
AudtOutput

< &3 Audn-IN-OUT-Program
Audtinpat
AudtOutput

4 &3 AudaOutpuat
endP-encO

23 TEST-0004
cica

Policies have been successfully attached

erevmoetroses

Then deploy the program by dragging and dropping it onto the target container group:

Policy Manager([TEST/QATEST-VE.LS/QACADZP)

Containers + Programs{ MSTR) CCA N TORC "=
3 I Directory 4 I Directory
3 ki rest 3 ki resy %
283 TEST-SWB 210 QATEST-VE.1.S
Program [/ Method has been successfully deployed
TORE Ji4qacaoze e ek
= &3 TEST-0003 © QacaozMa
TORC

=] &) M-OOOQ
{Mex
Wi QAaCAO2P

Confirm the policy has been attached by Clicking OK to continue.

31

SOLA Developer User’s Guide

s

Using SOLA Developer — User Authority

Assigning User Access

To create web services in SOLA a User must first have the proper access authorization. New
User access is assigned by the SOLA Administrator or Project Administrator. A SOLA
Administrator serves a dual role as SOLA administrator and Project Administrator; both can
assign new user’s access to a Project. The SOLA Administrator must define user access
authority first to a Project Administrator (this is described further in the Resource Manager
Users Guide.)

A user that creates a project is automatically designated a Project Administrator for that project
and the Project Administrator(s) has access to all User Authority for the project. User Authority
assignment is accomplished by first right clicking on the Project and selecting User Authority

and Show Tree View from the dropdown list as illustrated below:

SOLA | LD Fle | Dataseis e Lo Home
Crwirgrarental TEST) = PROGRAM =

8 [{5 My TontProjectny =]

1 [55 MaturalPragent

o[MewFraject

4 [E5 M

o [F8) Orchestrabion

[P Pokey Tadtl ases

#[EgrrG

#l [PRG_CCM-T 16341

2| 0N) PHEMegratan

2 |55 QATEST-FymMoveTon)

o |29 QATEST-¥6.1.10

B9 QaTEST-¥6.1,11

i [{H JATUET- 0. 1.5 Shew Pragect Hatery

Impart Progiam

o [E QATEST-¥6.1.7 Filber by Project
[QATEFT- 6. 1.0 =

[P GATEST.W6.1.9 |"~'5"r wathariy b Show Tree Wiew I
#[BN QATEST-¥6.2.1 " " T —

209 gaTEST-v6T

4 [P QATEST-V621-BM23

Deelets Project Assgn Progidm

The User Authority Manager panel is displayed in the SOLA workspace. The project name you
selected will always be displayed in parentheses as highlighted in red beside the panel title:

| tser muthority Manaper| foaTesT-vea0) | -0 =

Grpun Mg Ui M Geoup Hame Wbt Mame ApserRights
= I Directory
4 [PROJECTAGHMEN

LhorAgonts UserACtess

= I Diractary Al = Directory Py

S EmptyUserGrous <[QATEST-W&.1.10 d L) ll':h'-'ﬂl'-H-AHFEll

48 Progeceadmin = & Regulsricars ") & IMPORT
uQazr # [pisieas 3 [anaLYZE
UQas 4 WA d [mECOVER
uQas = @ SOLAAdman < [TesST

4 [RegularUsers #f Yoaszaza s [} PROPERTIES
CRXIHE o [UPDATE
CRMINZ = [MIGRATION
DIS1955 o [FROMOTE
DIS1982 4 [pemoTe
DIFI000
COTEZ A
QAITESTER
uQaAs
QAT .
uQad

= I8 SOLARdmwn
DBCARDY
(REFEETY
DIE2324
HALSTOD

QAa10S =1

SOLA Developer User’s Guide

7

The panel is further broken down with a filter bar above the first and second of three panes
described as follows:

B UserAgents: the left pane contains all Users defined within their specific groups. Users
can be dragged and dropped into a UserAccess group in the middle pane for the
selected project.

B UserAccess: listed in the middle pane are Projects containing the type of access
assigned to the User within each User Group. A user can be assigned to different

Access/Operation types on different Projects. UserAgents () are dragged and
dropped into the selected Project (i'~'-‘1), while UserRights(~) are dragged and dropped

into the Users () in the UserAccess pane.

® UserRights: the right pane lists Access/Operation types that define what type of access
a User is assigned to work on in the project. The operation type is assigned by the SOLA
Admin or Project Admin, depending on what authorization level is required.

UserRights(™) are dragged and dropped into the selected Users (-) in the
UserAccess pane. UserRights are organized in hierarchical order and users can be
either assigned individual leaf level authorities like ‘ANALYZE’, ‘TEST’, ‘PROMOTE’ or
parent level authorities like ‘PROGRAMMER’, ‘MIGRATION’, ‘PROJECTADMIN’ that
inherits all the underlying authorities grouped under that parent level authority.

The Filter bar located above the UserAgents and UserAccess panes is used to filter the
Directory contents of each pane by Group and/or User Name. An example of this can be seen
by typing the RegularUsers Group Name in the filter box; only the users in that group will be
listed. Further filtering of the users beginning with UQ can be done by typing UQ* in the User
Name filter box.

User Authorty Manager(/QATIST-VR.110) -0ix
Group Name Uset Name Group Name Uset Name DserRight's
UserAgentsy oy
)) PROJECTADMIN
) [mocaveonr
4 I peoRY
g [AMALYZE
d A RECOVER

) [} resy

J () morerTies
s [} wPOATE

Ut AAba 'y Mamagert /QATENT V110)

Uy Astharity Fansger(/QATIST VE.1.30)
R guintne s .
UnarAgents

) G2 Reguiertuers

33

N

SOLA Developer User’s Guide

v

Group Name ug= To filter out all other user's in the
m—— Userdcoess list for example, type
2 Dirsctory LI in the username filter box and
/15 QATEST-V6.1.10 press enter.
412 regulsrUsers
[" Di51982

A JQALTESTER

[UQad
4 SOLAAdmin
] DI52224

Group Name uw*

Userhccess
31 Directory
2[F QATEST-VE.1.10
2 i Requlariisers
8 UQa3

Show Table View: Another way to view User Access is to display and/or remove user access
using the Show Table View option in the User Authority drop down for a project. More
information can be found on this topic by clicking the following link that will take you to Page
232.

sotA | uoor | File | Datasets | €/®|| Home

Environments(TEST) * PROGRAM *
I e R e e
{3 PFG A
|33 PFG_CCM-716341
| 3] PMIntegration
|| QATEST-PgmMoveTaPrj
#[(3] QATEST-V6.1.10

1[0 QATEST-V6.1.11 e AR El
|| QATEST-V6.1.5 Show Project History

@[3 QATEST-V6.1.7

= Filter by Project
o [£3] QATEST-V6.1.8

|3 QATEST-V6.1.9 User Authority b Show Tree View
i[5 QATEST-v6.2.1 Add WSDL Template Show Table View
&[5 QATEST-V62 _ _ _

Delete Project Assign ProjAdm
/73 QATEST-621-Bld23

Assign ProjAdm: Used by the SOLA Admin to create the Project Admin when there are no
Users defined to the project.

Note: If you want to delete a User who is assigned as a Project Administrator you must first
assign another User as a Project Administrator for the project, and only then can you delete the
User from the project.

34

SOLA Developer User’s Guide

7

LT

Adding Users to a Project

Follow the steps below to add a User to a Project:

1. Select the project from the Directory tree that you want to add the User into.

2. Right click on the project and from the drop down select UserAuthority and Show User
Tree from the Directory tree drop down.

3. The User Authority Manager panel will be presented in the workspace.

4. Locate the User in the list of UserAgents (left pane).

5. Drag and drop the User from the UserAgents list onto the UserAccess project (middle
pane) you want the User to have access to. Dragging the mouse to the project, you will

see a greenicon () beside the UserAgent icon indicating a valid move operation.
6. The User will be created and placed in the tree in the UserAccess group within the
project you dropped the User onto.

The User QALTESTER has been dragged and dropped from the left to the right pane onto
Project QATEST-6.1.10 in the UserAccess pane. Note the green icon beside the
UserAgent icon and username indicating this is a valid move of the user into the project.

User Authority Manager(JQATEST-V6.1.10) -) 0 X

Group Name User Name Geoup Name User Name Userights
UserAgents UserAccess 3 I, Dwectory
4 I Dwectoey Atk T Deectory a3 [PROJECTADMIN
3 3 EmptyUserGroup 3 25 QATEST-v6.1.10 30 Tf;ﬂ:;’«i
. v 3
- 9v=:;:<~ﬂ { :’ * OF lqaimesten 3) ANALYZE
UQA3 . UQAS # [RECOVER
UQas 4 &3 SOtAAdmn 4 [vesy
3 & RegularUsers #! ‘0152224 4 [PROPERTIES
CrRxaN1 4 1 uPDATE
CRXN2 3 () MIGRATION
0I51956 4 £ prOMOTE
0151982 1 £ oemote
0152000
DOTE22UA
QAITESTER
UQAA
UQAZ
UQA3 o
3 &3 SOLAAdman
OBCARD)
0152224
0JX2224
MALS00O

SOLA Developer User’s Guide

e

The UserAccess list of Groups and Users is expanded out to list all of the UserRights
authorized for each User. All new users are assigned default user rights of TEST. As seen
below QA1TESTER will only be able to use QuickTest to test finalized Methods, until other user
rights are applied enabling the user to perform additional SOLA functions.

User Authosity Masager] [JATEST-6.2.2) - o
Werdgents Uhetheeess e ritaghts
a1 Directory &l 3 I Derectary 21 Dargctory

= @ emptyUserGroup o 5 gaTesT-6.2.2 2 [FROJECTADMIN

4 [Projectadmin 3L RegularUsers a [} FROGRAMMER
UGQAT = 1 oasz000 @ [1MPORT
uGas 4 PROFPERTIES 3 [anavrze
ugas [TEST < [} RECOVER

= & Begulariisers d| | DOTEIIUA = [TesT
CREIME [PROGRAMMER 4 [} FROPERTIES
CRXIMND i Y QAITESTER 4 [UPDATE
DIS1956 [TEST = [MIGRATION
[ERES R RS 2 F Tugaz 2 [PROMOTE
CIS2000 [PROJECTADMIN 2 [oemaTe
DOTEE I) ugal
QAITESTER A MIGRATION
UgAA 4 PROJECTADMIN
U [prOPERTIES
Qa3 3 [SoLAAdmin

=3 soLAsdmin af 1ossz2za
DECARD] L

LY PROMECTADMIN
DI52224

DIN2224
A LS00
QAIDS

. =

Right click on a Group, Project or ‘Directory’ nodes in UserAccess panel for options to
‘Show’ or ‘Hide’ user authorizations.
UserAccess
=" Directory
=3 QATEST-6.2.2
=\ RegularUsers

e 0152000 Show Authorizations
=l uQaz Hide Authorizations
] UQAZ

36

“I’ SOLA Developer User's Guide

Assigning UserRights for UserAccess

Once a user has been added to the Project then UserRights can be assigned to that user by

dragging and dropping it onto the User in the UserAccess pane (you will see = “*™™) In the
illustration below PROGRAMMER access was assigned to user QA1TESTER overriding the default
TEST automatically assigned when the user was created:

Uier Authcrity Mansger] [JATEST-VE.1.10 }

oup Wame Liser Ramae Group Mame UHed Nafme (HerRights
Uhrrigents Usericoess = ' Directory
d I Directory 2| 3 pirectory 3 [PROJECTADHIN
3| EmpbyUserGroup 1[5 QATEST-46.1.10 [} PROGRAMMER
4 |E8 Projectadmin 3 regularusers = [1MPORT
LAz # 1Dxs1982 [} ANALYZE
UQAB 40 1 QAITESTER 3 [} RECOVER
LA [ProGRAMMER 3 A Test
4 regularusers Hf Tugad 4 [FROPERTIES
CREIN 23 soLAsdmin 3 [} UPDATE
CRXINZ o [ekuprrd] o [MIGRATION
DS 1956 4 [} FROHOTE
CESIEE2 3 [GEMOTE
DS 2000
COTEIIUA
AITESTER
LA
Az

Uigad
23 SoLAsdmin
DBCARD]
D524
(e]
HALSO00

GAIDS =

ProjectAdmin: grants full access to the project, which includes the ability to delete the project,
add or remove users and all other actions including promote/demote.

Programmer: grants User access to the project to any or all of the following three:
Import, Analyze, Recover and QuickTest.

Import: allows the User to import programs.

Analyze: allows the User to create methods.

Recover: allows the user to recover a method from the method history screen
QuickTest: allows the User to test methods using the SOLA test harness

Properties:
Update: allows the User to update properties for the project and its programs and
methods
Migration:

Promote: allows the User to promote (move to a higher ranked environment, e.g.
promote from STAGE to PROD) programs in the project.

Demote: allows the User to demote (move to a lower ranked environment, e.g. demote
from STAGE to TEST) programs in the project.

Note: The SOLA Administrator will need to grant RACF access to the User for any
legacy/mainframe datasets used during the importing of a program.

37

~¢I’ SOLA Developer User's Guide

Note: Assigning PROGRAMMER authority provides the user with all four lower level accesses,
IMPORT, ANALYZE, RECOVER and TEST. If you try to drag and drop one of the four lower level
accesses onto QA1TESTER you will get an error ‘Could not insert user authority into Database’.
This is because the user already has access as PROGRAMMER. All higher levels of access i.e.
PROJECTADMIN has authority to every access beneath it, while a user assigned only with
MIGRATION can only access the lower level functions beneath it.

When you see following error then click on
‘Show Details’ to see the soap fault having Message Display X
Could not insert user authority within database
Message Display

SOAP Fault || StackTrace

F 34, >=<50a3p.B00y><50ap :Fall ><TallCoae =50aps
codes<faultstring=S0AY5995-Sola System
Error</faultstring=<detail=<e:message
¥mins:e=8#34;:http:/ fwww.dsd.ml.com/x4ml/faulte [
gready has this

Access</e:message></detal></soap:Fault =< /508p:buuy > <504

p:Envelope = j

A
~

0K [Show Details]

detailed error message

| ok || kideDetais |

The SOLA Administrator can grant access to Policy Admin or Tester Admin SOAP Test (RAW
TESTER) and restricted endpoints, to any Project Admin or Programmer via the Resource
Manager Users/Policies tab (see the Resource Manager Users Guide for further information on
administering PolicyAdmin & TesterAdmin authority).

The following access matrix illustrates the access to QuickTest and Raw Soap-Test screens
and types of end-points that user has access to depending on user role and access to Tester

Admin role. (see the Resource Manager Users Guide for further information on administering
Testeradmin authority).

Project Admin | Tester Admin Ouick Test Raw Soap-Test
Open End-points Restricted End-points Open End-points Restricted End-points
Y Y Y Y Y Y
Y H L H H H
N Y Y N Y Y
H H Y H H H

38

SOLA Developer User’s Guide

7

Cloning UserAccess

Cloning a user access allows you to quickly copy access rights of one SOLA user to another.
Cloning of user access can be done on users either within a project or across two projects.
UserRights can be cloned between user from one project to user in another.

To clone the UserAccess for a User into another project you will need to first locate the project
containing the User you want to clone, right click on User Authority and Show User Tree. The User
Authority Manager panel (Figure 1) will appear in the workspace for the project you have
selected.

Figure 1:

SOLA™ Developer

Q- o Now Project| ¥'SOAP Tost | Montor Search | 4 Enor Sewrch | [Browne Dataset | (3 Admintians | fR Access Convos | [7l

oA | w0t | Fe | Datasets | /| Home Project - (QATEST-

Environments(TEST) ¥ PROGRAM * Name &

g s .
BPFG 4 User Authority Manager([QATEST-V6.110) ~Tolx

ﬂ@PFG'CCMJmM Group Name User Name Group Name User Name UserRights comrLanary
[PMIntegration ‘

4[5 QATEST-PomMoveToPrj UserAgents UserAccess 51 Directory -
ﬂ@ QATEST-V6.1.10 o |Directory | 91 Directory ad ??OJECTADMIN descrlin
[0 QATEST-V8 111 2/ EmptyUserGroup S[B oaTESTV.1.10 3 (FROGRAMMER divsion
ﬂ@QATEST'VE'LE 2|3 ProjectAdmin 3|2 RegularUsers 3 g IMPORT
slgjoaresTv6.1.7 uqa? | | pisteg 3 () anarvae
73 QATEST-V6.1.8 Uosa 4 QATTESTER] ﬁ RECOVER
[0 QATESTV6.1.9 Ugds @ Tugas afest
slgjorestvea 31 Regulrtsers 5/ soLandmin 3 PROPERTIES sres
a[goATesTvE2 CRXINL] " p1saze] uppate firsthm
[[3 QATEST-V621-BId23 CRYINZ 4) MiGRATION
[QATEST6.2.2 DI51956 2 A rroMoTE
3y RaiRoad DI51952 36 oenore
ﬂRagrassmnIDEUISu\ta DIS2000 Jasim
ﬂf‘ﬂ] RegressionRunTimeSuite DOTE22UA vy
ﬂ@SamcaTamp\ata QAITESTER
[SolaClass UgAA

@[3 SolaDema a2 LMntegratedhiode
|03 Solalnstall uga3 ~ loadDs
ﬁ@smunnmsts [soLardmin o

[SolaUDDITests DECARD]
2[ojsep DIs2224
[s1x Deme DIX2224 prokstin
#[gs0a HAL3000 fagare
ﬂ_@sou\m QA1DS o —
3[E|s0LAPTF

§[f4 50LA51_KCF_S0LAG0 WorkPhone
[l swe_BMS_Usecases wsdlenplate
[sweProjectTemplate

41[E3] SWBS01Project

ﬂf"jﬂasmfauth

) @Testtases
il P8 TastHPSPronarhy j

celPhone

createdTimestamp

effeciive
emal

exclude_leveidd

homeFhone

D

ImGroupUn

priPackageD

39

SOLA Developer User’s Guide

e

Next, locate the project in the SOLA Directory tree containing the User you want to become
cloned; right click User Authority and Show User Tree. The next User Authority Manager
panel (Figure 2) will be presented in the workspace underneath the first panel containing the
user to be cloned.

L] SOLA™ Daveioper
[- -+"'Immmpu1.v.m'ruun I =
e T = o Mame [ry e —— Froget - [gATE
LR . Unatriaferals Wrrhaveis Y e——)
abywa 4 reooECTADMIN
Fl ;r!' LI i I Dernciery al 4 F Dwectory '] I i - .
-5; £EH TpEaay 4 Bl Erptpler-iroe a B qatesTom L0 sin |.|.1I|q- ..,.m..,,..
b :5=-:w-l‘ r.<:| 3 [Peashnhdran 4 [Frgplariaany J-I :--.-s-:_ s
. ;\;\A.rl-s' Pgr Koy Ty wgar 2l Tosisas " RALYTE R —
::5;\“--:' :: 1w . #F T QaITEsTIR: 3 [i oeen
] :-:;ur:-s'w-e_-. 11 Py At by Flasager] [QANTHI-61.3 o :_ﬂ""‘“
A P SATEST R 3| e Ko Lipe Marma S Mot — P
S TR LT —— —— I — —
-l i [wecb Tusan
r af i ! carnctay 1 p—
4 D ATEST 5 8 3 1 Darectory g e,
; Wil] Ay TStz 4 £ mocaon e
& Propectismn Epgdarust 4 [ot el
S K 2 [Projeciade ig . -
@ B ATEST wuaa A ugAT @l e i [sy
et B s 3 [v ——
2 OATEST 400 Uy #f e s Brace
A ot o i proeeRTEs ¢
5 Segrmuncal (A Susky [Fargparinan a ! u”:
CRaN =
i N Aegrruncalie T er St H ™ ;N-
7§ SereceTormgiatn LRI 3 [MGRATIoN -
: niS155E B — ectn
5 7% ket i ¥
27 Salalimsy LRSS 3 A Dewore .
3 9% fada rarall R Ve ek
A . BTEEN
5 S0 Tats ' ’:ll__m
0 SO0 T ritd GQLITERTIR -
afgsee A .
2SI Dy Loz || H*: i
a5 - Uy
o 0 souaxe 3 4 S e =
5 sOuAETr AR
P SOUAS1_NCF_SOUAS LRSSl -
d 5 swe_ems_Lnemases OB .
5 9% S T pla e HALBODE Ty
& 0 Sl v a10s =

3 78 Titafanen
3 T8 Tt anet
e Al

Note: You will need to click on each panel to drag and drop it into the proper position in the
workspace which will enable you to locate the user’s you will be working with.

In Figure 1 above, User QAITESTER assigned to project QATEST-V6.1.10 contains UserRights
we will be cloning for User DJs2000 working in project QATEST-V6.2.2 in Figure 2. After each
panel is positioned and each user is visible you can drag and drop QA1TESTER onto DJS2000 as
seen in Figure 3 below:

40

7

SOLA Developer User’s Guide

User QALTESTER has PROJECTADMIN access and after the cloning operation is completed user
DJS2000 will also have the same access. Below in Figure 3 you will see the UserRights that user
DJS2000 had before the cloning began.

Figure 3:

ﬂih‘»-.im[nmw
e B e Feets Tek e
¢ @ b ety -

o]

B e & T & L R S 6] e U

SOLA'W

E|

AT
asnstwin
S L
2R
sy
sy
AN
FEEN S

3 N ATET 1)
#4GATIST A2

5% Caa

3 25 ep rmn SO St
W tagrmcntanTmeiaty

- g N et Name

Unrhpeats.

| nar Aathaty Pamegord FORTEST ¥W.118)

4 I Orecry N
B
2@ romaasmn

21 3 1 tweury
slycaresta
3 rendainers
27 153000

Progect - (QATEST 422 58
o -
g
ooy
eCreay Mresete TN I
- LT
e
L] WANLT DN 1
—
novoe et .
o 00512 2020 11 24 300000
e out
- ox B
© 242640 0D INE
=t s
et
e
() et .
)
- -
rhuapC
e e
e cAwsTall
L]
«renre oo
e]

UD ISOBIFED g

User DJS2000 now has PROJECTADMIN UserRights as seen below in Figure 4:

Figure 4:

| User ¥ w JQA v6.1.10)

* | Geoup Name User Name Group Name
Urerkgents UserAccess
= £, Owectory 21 5 ¢ Owectery

2 §8 EmptyUserGroup

4 &3 Projectadmin

EFluqar
uQas
uQAY

= &3 Regularusers
CRXINL
cRxaN
051956
0351982
©¥52000
DOTE22UA

= [QATESTVE.1.10
2 B RegudarUsers
al “orsies2
20 fQaiTESTER
) prOJECTADMIN
Al TuQas
= 3 soLaadmin
af Yors2224

User Authorty Masager(/QATIST 6.2.2)

| Group Name

UserAgents
28| 3 I, Oicectory

User Name Group Name

UserAccess

=} o I Oirestory

2 &3 tmptyUserGross 2 B QATEST-6,2.2

2 & Projectadmin
UQAT
F lugas
F fugqas
S &3 Regularusers
F icrxing
CRXINZ
051956
F Toisise2

= 3 RegularUsers
[Toirszoo0

{4 PROJECTADMIN

#F TugQaz
#) Tugas

Usar Name UserRights
| 3 2, Owectory
“ = L3 prOJECTADMIN
= [} PROGRAMMER
= £ PORT
&) AnaLYZE
=) recover
=) Tesr
= £y sroPERTIES
o [} wwoaTE
3 3 miGRATION
&) prOMOTE
=) DEMOTE

User Name Userftghts
| @ I Directory
o [PROJECTADMUN

=) PROGRAMMER
=2) 1eoRT
2) AnaLYZE
@ () mecoven
=) vesy

= () PROPERTIES
[J uPDATE

o () MGRATION
= [} srOMOTE
= {3 oemoTe

41

N1

N

SOLA Developer User’s Guide

Delete User Authority

To delete user authority right click on the authority of the user to be deleted and select ‘Delete
Authority’ option as shown below

User Authority Manager(/QATEST-6.2.2)

Group Name User Name Group Name User Name UserRights
UserAgents UserAccess c] _.‘Horirectory
= ', Directory | =1 Directory 20 ??OJECTADMIN
=& EmptyUserGroup =[] QATEST-6.2.2 20 TOGRAMMER
2 & ProjectAdmin /@ RegularUsers 3 3 IMPORT
UQA7 23| | QAITESTER = (3 ANALYZE
UQAS) ANALYZE = () RECOVER
UQA9 5 IMPORT 3 (& TEST
2 RegularUsers B RECOVER [: g = () PROPERTIES
CRXIN1 A TesT Delete Authority :j £ UPDATE
CRXIN2 @l Tuqaz 3 (3 MIGRATION
D1S1956 @) uqas = (3 PROMOTE
Di51982 = () DEMOTE
D152000
DOT622UA
QAI1TESTER
UQAA
UQA2 I
UQA3
2 |& soLaAdmin
DBCARD]
D152224
DIX2224
HAL9S000
QA1DS ~|

Deleting the last authority of user will restore ‘TEST’ authority as no users can be assigned to a
project without a role.

If a user with ‘PROJECTADMIN’ authority is being removed then SOLA checks to ensure there
are alternate user(s) of project who have been assigned ‘PROJECTADMIN'’ role. If there is no
other user assigned as project administrator then the ‘Delete Authority’ function will fail and will
indicate that the user is the only the project administrator and so the authority cannot be
removed.

42

7

SOLA Developer User’s Guide

Remove Users from project

To remove authorized users from a project right click on the user to be removed and select
‘Remove Authorized User’ option as shown below

User Authority Manager(/QATEST-6.2.2)

I Group Name

User Name Group Name User Name UserRights
| UserAgents UserAccess = I, Directory
, =t Directory 2] 38, Directory E| ‘_J, TS;EOCGTR?:;:R
=& EmptyUserGroup 2|1 QATEST-6.2.2 S0P
=& ProjectAdmin 3|& RegularUsers g = L::?_S;E
Laa7 BL JQALTESTER Remove Authorized User j ﬁ RECOVER
UQAS {3 AnALYZH a
UQA9 £ IMPORT 2 & TesT
=& RegularUsers t‘j RECOVER 28 SROPERTIES
CRXINI 3 TEST = £ upDATE
CRXINZ @ Tugaz = £ MIGRATION
D151956 al lugas = 4 PROMOTE
DI51982 ' = 7 DEMOTE
DJS2000
DOT622UA
QAITESTER
UQAA
uQa2]
UQA3
=@ soLaAdmin
DBCARD]
DIS2224
DIX2224
HALS000
0A1DS ~|

If a user with ‘PROJECTADMIN’ authority is being removed then SOLA checks to ensure there
are alternate user(s) of project who have been assigned ‘PROJECTADMIN’ role. If there is no
other user assigned as project administrator then the ‘Delete Authority’ function will fail and will

indicate that the user is the only the project administrator and so the authority cannot be

removed.

43

SOLA Developer User’s Guide

e

Additional User Authority Access for SOLA Administrators

SOLA Administrators have an additional access to the global user access tree across projects
by right clicking on the ‘Directory’ node on project tree and select ‘User Authority’ option as
shown below

SOLA™ Developer

I Q- 24 Ne
SOLA | UDDI | Fie | Datasets JIC3 |

Environments(TEST) ¥ PROGRAM ~

Create Project

User Authority

_ﬂ@.aDemo
#[Ml.common

User Authority Manager({ } _olix
c: Group Name User Name Project Name Group Name User Name UserRights
: UserAgents UserAccess :l._L[ZirECtUrv
| @ Directory +| @7 Directory = :IE"I:\OJECTADMIN
=& EmptyUserGroup j@.analysls El | EDGRAMMER
2| Projectadmin =@ Regularusers = ‘; IMPORT
UQAT @] | CRXINL = 5 ANALYZE
UQAg =) L uQaA =] @ RECOVER
uQAg @ uQaz =28 TEsT
=& RegularUsers | UQA3 =28 PROPERTIES
CRXIN1 =& DefaultUsers f‘) UPDATE
CRXIMNZ] TESTUSR 2 ﬂ I“_'I.IGRATION
0151956 =3 ProjectAdmin = @ PROMOTE
0151982 = uQaz = () DEMOTE
0152000 H| UQAs
DOTGZZUA 2/ soLAAdmin
QAITESTER = UsSWB
UQAL j[zg__l.aDemoProject
ugaz 1 =/ soLAAdmin
UQA3 = CBCARD]
=& soLaadmin =@ Regularusers
CBCARD] = CJ52000
0152224 2B .common
D1X2224 =@ Regularusers
HALS000 H 0151982
0A1DS ~| =] T ugas ~|

SOLA Administrator has additional capability to filter based on Project Names.

44

SOLA Developer User’s Guide

7

Using SOLA Developer - Commarea

SOLA can create web services in which the mainframe acts as a server (inbound), and as a
client (outbound).

® |nbound (mainframe as server):

Bottom-up: start with a Commarea program and create a WSDL, metadata
template, test harness and UDDI entry by analyzing the program’s interface.

Meet-in-the-Middle: start with a WSDL and a copybook, and create a metadata
template, test harness and UDDI entry by merging the WSDL and copybook.

Top-down (WSDL-First): start with a WSDL and create a COBOL or PL/I copybook.

B Qutbound (mainframe as client):

Top-down (WSDL-First): start with a WSDL and create a COBOL or PL/I copybook
that will be used as the interface between SOLA and an outbound web service.

Note: SOLA uses the terms ‘Class’to refer to a web service and ‘Method’ to refer to a web
service operation.

45

SOLA Developer User’s Guide

7

Creating an Inbound Web Service from a Commarea Program
— Bottom Up

This section will describe the steps necessary to create a web service from a COBOL or PL/I
commarea program using “bottom up” methodology. Bottom up means that you will be starting
with either a compile listing or a copybook and using SOLA Developer to import the program
and create methods from the program’s various functions. The end result will be a WSDL,
metadata template, test harness and a UDDI entry.

Creating a web service from a commarea program is a two-step process:

1. Import the program and create a Class
2. Analyze the Class to create Methods

The Import procedure is a single step operation that consumes the program (or copybook) and
documents it in the SOLA Directory as a Class. No other artifacts are produced.

The Analysis procedure takes a Class and creates a Method (web service operation). It also
creates four artifacts:

Run Time metadata (called a Template)
Test Harness

WSDL

SOLA Directory entries for the method

PR

You can import a commarea program from the following sources:

B Compile Listing: the preferred import method. Importing from a saved compile listing
allows SOLA to determine information about the program being imported, such as field
types (input, output, etc.), usage and more.

B Job Name and Number: if the compile listing is in the JES output queue, you can
import the program using the job name and number. This gives the same benefits as
importing a saved compile listing. In order to import from a job name and number, your
sysout files must be routed to your installation-defined held output queue.

B Copybook: although programs can be imported from copy books, SOLA will not be able
to automatically configure the program as it can with the other two methods.

B Multiple Datasets: you can also import from more than one copybook (all copybooks
are concatenated into a single WSDL).

Step 1 — Mainframe Preparations

Depending on your CICS installation, you may need to create a PPT entry for the Run Time
metadata and a PPT entry to dispatch DPL requests for your program from the SOLA Web
Owning region to your Application Owning region.

Compiler Options

46

SOLA Developer User’s Guide

7

The imported program will need to be compiled with the MAP compiler option. Here is an
example of some Compiler options that can be used to compile a program for use with SOLA:

IKJ56250I JOB DBSOLAA (JOB16902) SUBMITTED
kK

The SOLA Import process only needs the Compile listing, there is no need to link-edit the
program to create a new load module.

Once the program has been compiled, it can be imported either directly from the JES output
gueue or from a dataset that the compiler output is saved in.

Alternatively, you can Import a COBOL copybook. This method, although effective, doesn’t
allow SOLA to determine the inputs and outputs for the program.

Note: If you Import a compile listing and you use Intertest for debugging, then you shouldn’t use
the Intertest CUTPRINT option because this option can eliminate parts of the compile listing that
are used by SOLA’s Import process.

Environment Setup

Before you are able to use a web service created with SOLA, you will need to perform some
setup operations for the SOLA Run-time.

To understand why this is necessary, it may help to understand the SOLA Run-Time
architecture. SOLA is built using MRO (Multiple Region Operation). In an MRO environment,
there are a minimum of two CICS regions that are involved in performing work — a Terminal
Owning Region (TOR) and an Application Owning Region (AOR). Because SOLA uses the
CICS Web Support features we refer to the TOR as a WOR (Web Owning Region).

47

SOLA Developer User’s Guide

MRO (or Multiple Region Operation) is the term used to describe a set of
inter-linked CICS regions. Each region usually performs a different function,
and requests pertaining to those functions are routed to the appropriate
region.

7

SOLA™

TECH TIP

In MRO, the Endpoint SOAP URL points to the WOR. The WOR accepts work and forwards it
to the appropriate AOR. Commarea programs are run in an AOR. The following is a diagram of
the architecture for commarea programs.

-- Namespace -
MQ Queue xmins="http://<namespace uri>/CATGADPO47/TR#D001"
Program
gacy emplate
Soap megmm Name
Response Mame
"
o Common Driver)
® Program «——p WS Security
Soap Request Legacy Program
via MQ

Soa A
Response
A (7 < Data Format
= £ Converter
7]

I CICS Document

Response
Soap SOLA Plug-infor DPL COMMAREA
COMMAREA
Response
Po Programs
Client Requestor Soap
Request %.
arsed a%%
DOM Y
XML Parser Tree | Template | RCT
I CICS / System Components SOLA Provider Code
*#|P Port can be shared across multiple

Legacy Program Metadata CICS Regions running in a single LPAR

(Generated by SOLA) I Legacy Program

MVS TCP/IP Support

SOA Enabling Commarea Programs with SOLA

The conversion of SOAP messages into and out of a commarea is done in the WOR. To perform
the conversion, SOLA references the template in the WOR and links to the legacy program in the
AOR (this is known as a DPL, or Distributed Program Link).

Before you can execute the new web service, you will need to set up some CICS table entries.
In the WOR you need PPT entries, one for the template and one for the legacy program,
specifying it as remote. In the AOR you need one PCT entry to accept the link from the WOR.

The table below lists sample entries based on a program hamed CONVERT and its template,
named CONVDO0O1. The program CONVERT, which you will be using for the examples in this

48

SOLA Developer User’s Guide

7

section, is a sample program that is shipped with SOLA and can be found in the SAMPLIB

library.
WOR AOR
DEFINE PROGRAM (CONVD0O01) DEFINE TRANSACTION (CON#)
GROUP (SOLAGRP) GROUP (SOLAGRP)
LANG (ASSEMBLER) PROGRAM (DFHMIRS)

STATUS (ENABLED)

DEFINE PROGRAM (CONVERT)
GROUP (SOLAGRP)
LANG (LE)
REMOTESYSTEM (aorx)
TRANID (CON#)

The final required setup step is to issue a new copy command in the WOR region for the legacy
program’s template.

49

SOLA Developer User’s Guide

7

Step 2 — Importing a Commarea Program

=[] QATEST-V6.3.6 Select the project you wish to import to and right-click it.
8(4A13 mport Program From the pop-up menu, select Import Program. If you wish
jgg:: Show Project History to import the program to a new project, first follow the steps
wfNcon Filter by Project for creating a new project on page 22.
HENEMSZ User Authority b)])
sidoad In order to import a program into a project, you must be an

emplate . . .

(4 Qad _ authorized user of that project. Once the program is
ﬂBQAC Delete Project im
b1 ported, you can drag and drop the program from one

project to another. However, you must also be an authorized
user of the project you wish to move the program into.

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

Home Import '*

Importing Commarea - Bottom Up Producer B Other Import Types ~

Project:

Program Name: |Please enter a program name.

Override Name: |Optional, Usually same as program Name

Language: COBOL N

Host Code Page: (037(Default Code Page) v
Enumerations: v
Environment: TEST w

Program Description: |

Structure Name: |Please enter a structure name.

Class Name: |Please enter a class name.

Dataset/Listing Name: |Please enter a listing or dataset name.

IMPORT RESET
Browse Datasets and Listings

Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS

Enter a dataset prefix: D152224

4 _1D1s2224

The default program type is commarea bottom-up, though you can change that by using the
Other Import Types menu.

The Import panel consists of a series of fields used to provide information about the source
program and the destination SOLA program that will be created.

50

SOLA Developer User’s Guide

7

Fields outlined in red are required. The red outline disappears when the field is populated.

B Project: this field is pre-populated and contains the name of the project into which the
program is being imported. Although it cannot be changed during import, you can drag
the program into a different project after it has been imported.

® Program Name: the name of the SOLA program that you will create. This name does
not have to match the name of the source program, but if it does not, then the Override
Name must do so. The program name is limited to eight characters, whether it matches
the target program name or not.

Program Name can be used for program versioning if you need multiple versions of the
same program in use at the same time (as opposed to existing only in history).
Assigning alternate (in this case version based) hames in this field will create programs
that occupy distinct namespaces within the WSDL generated by SOLA. For example, if
we import the same program and use two different program names, myProgV1 and
myProgV2, they will have different namespaces:

http://searchByName.ClientFinder.x4ml.soa.com/CA/SOLACA04/MYPROGV1
http://searchByName.ClientFinder.x4ml.soa.com/CA/SOLACA04/MYPROGV2

Both versions will call the same legacy program, but because SOLA treats them as
distinct programs there are no restrictions regarding method names or method
functionality (e.g. the programs can have the same exact methods, methods with the
same names but different functionality, methods with different names, or any
combination thereof).

When using Program Name for versioning, the Override Name field must contain the
actual eight character name of the target legacy program.

B Override Name: The name of a target program to execute. Use this field when the
target name differs from the program name (for example, when using the Program Name
field for versioning).

B [anguage: the language the source program is written in. Choices are COBOL, PL/I or
Natural.

B Host Code Page: values entered by the Administrator into the Admin Menu / Property
File — codepage.xml that enable user to choose code page conversion to and from
UTF8 are displayed here. The default is EBCDIC code page 37; CCSID 1140 is
supported and is the Euro currency update of code page CCSID 37. In that code page,
the "&" (currency sign) character at code point 9F is replaced with the "€" (Euro sign)
character.

Note: Code page values stored in codepage.xml and selected during IMPORT are

validated when the service is executed. It is important to make sure the code
page you are using during IMPORT is valid.

51

http://en.wikipedia.org/wiki/Currency_sign_(typography)
http://en.wikipedia.org/wiki/Euro_sign

SOLA Developer User’s Guide

Changing FROM: Default Code Page:

Home Import *
Importing Commarea - Bottom Up Producer | -4

Project:
Program Name:

Override Name: QACA99P

Language: COBOL v
Host Code Pade: 037(Default Code Page) >
EnutllcralloLwngmlmm_e’—l
Environment: 1140(US Canada EUR)

1141(Russia)
Program Description: 1ES|ENcoding

Structure Name: QACA99C-INPUT

Class Name:

Dataset/Listing Name: SOLAEXT.QA.LISTING(QACA99P)

IMPORT RESET

TO: Host Code Page 1140(US Canada EUR):
Homee Tnngort =
Imnpesrting Commaresa - Boltom Up Producer § =

Project:

Program Name:

Override Name: | QACASSP

Lamdguadge: | COBR0L b

Host Code Page:]| 1140(U5 Canada EUR)
Enumerations: | Includs s
Environment: TEST 25

Program Descriplion: 'I'ES'I'EH-:l}dW
Structurs Name: | QACASHC-INPUT

Class Name:

Dataset/ Listing Name: | SOLAEXT.QALISTING(QACAT9R)

IMPORT RESET

When selecting a Host Code Page other than the default code page 37, the soapAction
generated in the WSDL will contain the Client Code Page (CCP) and Host Code Page
(HCP). This can be seen in the example below:

- =hinding name="CLASS_QACA991PBindingName" type="tns:CLASS_QACA991PPortTypeName" >
<soap:binding transport="http: f fschemas.xmlsoap.org/soap/http” style="document”/>
- <pperation name="QACAS91M">

<soap:operation style="docu men1‘ soaphction="/ CA/QACAS9P /QACAS91T/CCP:UTF-8/HCP: 11407/ >

- <input>
<soap:body use="literal™/>
<finput>

52

SOLA Developer User’s Guide

7

B Enumerations: If enumerations (viz. 88 level items in COBOL) needs to be imported or
not. Choices are Include or Exclude

HoaTue Ermprort =
Importing Commarca - Bottom Up Producer |~ Other Import Types =

Project:

Program Hame: | Please enter a progranmn nane

Owerride Mame: | Optiona Fsnazalhy e A proorarm Mame

Lamguiage: COBOL =
Host Code Page: | 037(Default Code Page) e
I Enumerations: ot I
Environment: TEST -
Program Description:
STrwclure NMame: | Plos

|
[

Class Mame: [Please enter a class name
[

Dataset) Listing NMamwe: ||

IMPORT RESET
Browse Datasets amnd Listings

Select Souros DATASET OB NMAME & NUMBER MULTIPLE DATASETS

Enter a dataset prefix: DIS22249
& DIS2224

® Environment: the created program’s environment. The environment is a custom
property in SOLA and available environments will depend on your particular installation.
Some examples of environments are “Test”, “QA” and “Production”.

B Program Description: a brief free-form description of the program.

B Structure Name: the 01 level COBOL structure that describes the interface that your
program exposes. This is typically named “DFHCOMMAREA”, though the name may
vary. If you are unsure of what the structure is called in the program you are importing,
you can use the Browse Dataset feature described on page 235, or look at the program
in TSO.

B Class Name: when you expose a program as a web service, its operations will be
exposed as methods. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program.

B Dataset / Listing Name: the input source. As mentioned previously, SOLA can import
a commarea program from a compile listing (either saved or from the JES output queue)
or from one or more copybooks. A compile listing is preferred because it allows SOLA to
attempt to categorize the interface fields, saving you work during analysis.

At the bottom of the Import panel is the Browse Dataset and Listings panel. This panel allows

you to pick the input source from a list without having to manually enter it into the
Dataset/Listing Name field.

53

SOLA Developer User’s Guide

7

Browse Datasets and Listings -
Select Source DATASET JOB MAME & NUMBER MULTIPLE DATASETS

Enter a dataset prefix: |DEVENKA

=5 DBVENKA
DEVENKA.BIND.COMPARE
DEVENKA.BOS24

& DEVENKA.DB2.1CL

& DEVENKA.DDIR

& DBVENKA.DDIR.D

& DBVENKA.DDIR.I
DEVENKA.DITPROF
DEVENKA.DOMOS01.LOADLIE. XMI
DEVENKA.DOMOS01.SAMPLIE. XMI

MRV ERIL A FS RTR

(IR R R

To use this panel, select from one of the three available source types by clicking on the
appropriate button tab.

Select Source DATASET JOB NAME L}NUMBER MULTIPLE DATASETS

The Dataset option includes both saved compile listings and copybooks. You can change your
default dataset prefix by entering a new value in the Enter a dataset prefix: field. Your default
dataset prefix is a user-level custom property that can be set in your user properties (page 4).

=5 DEVENKA Once you have located the dataset or listing you want to
DEVENKA.BIND.COMPARE import from, double click the dataset/ listing name to
DEVENKA.BOS populate the Dataset/Listing Name field with your selection.
B (Z DB‘-.FENKA.DBJ%L

If you select Multiple Datasets, you will not be presented
with a directory tree. Instead, you will be given five blank
fields that you can use to specify up to five copybooks.

H V& DEVENKA.DDIR

IMPORT RESET

Browse Multiple Datasets and Listings -
Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS
Additional copybooks: |Enter an additional copybook to import.
Optionally enter a futher copybook name
Optionally enter a futher copybook names
Optionally enter a futher copybook names
Optionally enter a futher copybook names

54

“I’ SOLA Developer User's Guide

When you have filled in all required fields and are ready to import, click the IMPORT button.

Upon successful import, a confirmation message will be displayed. The newly created program
will appear in the SOLA directory under the
project you chose to import it into. Once the

program is created, you can drag and drop it
The import reguest of program SOLACA11 into any project you wish.
into project SolaDemo succeeded.

Import Succeeded 3

When importing commarea programs, the

creation of methods is a separate step from
the importing of the program. The following
section will detail the creation of a commarea
method.

55

SOLA Developer User’s Guide

7

Step 3 — Creating Methods in a Commarea Program

Once a Commarea program has been imported, you can create methods by isolating individual
functions within a program. Creating a method is known as Analysis. A Commarea program
can support a complicated set of requests and responses, while a method is typically a subset
of that functionality, sometimes even a single request/response operation. Therefore, a
program with complex functionality may require the creation of several methods to expose the
full range of its capabilities as web services.

For example, let’s take a simple program

Environments(TEST) ~ PROGRAM ~ that converts either temperature (from
= I Directory Fahrenheit to Celsius) or length (from
5 [E SolaDemo inches to centimeters). When the
=4 pEMOCAD4 Show Program Struct program is execuf[ed, it expects the user
to provide a function code for temperature

% nameSea . .
Show Program History conversion or length conversion.

View Program Wsdl Depending on the function code, the

Filter by Program program assumes the input provided is a
temperature or a length, and will perform
the necessary conversion. When creating
Analyze New Method | methods from this program, you would
typically create two separate methods,
S one to convert Fahrenheit to Celsius and
Program Migration b | the other to convert inches to centimeters.

Delete Program

Re-Import Program

Policy Management

When creating methods, keep in mind
which environment you are currently
working in. Typically, only test environments allow for the creation of methods, though this is
configurable.

To create a method, right click the program in the SOLA Directory and select Analyze New
Method. This will open the SOLA Analysis panel in the workspace.

SOLA Developer User’s Guide

PreAnalysis

Method Name: | |

Description:

Template Name: | |

Encoding:

EndPoint: |Pu'ar.5&r‘u'er V|
Schema Type: | Data Type Onby V|
Target Namespace: http://<%=0operatior

Template Dataset: | |

Leoad Dataset: | |

ANALYZE

The Analysis panel consists of a series of fields used to configure the method. Fields outlined in
red are required. The red outline disappears when the field is populated.

PrefAnalysis

Method Name: TESTMETHOD
Description:

Template Name:

Encoding:

EndPoint: | 1 PUBLIC CICA{ 1443) |+ |

Schema Type: | Data Type Only | » |

Target Namespace: http://nameSearch.C

Template Dataset: SOLAEXT.TEST.ASM

Load Dataset: SOLAEXT.TEST.LOAL
ANALYZE

B Method Name: the name of the method being created. The method name will be used
in the WSDL as the operation name, and will also appear in UDDI searches.

B Description: a brief description of the method.

B Template Name: the name of the template (run-time metadata) that will be created for
this method. The template name must be unique and must conform to Partitioned Data
Set (PDS) member naming conventions. The template tells SOLA how to convert a

57

SOLA Developer User’s Guide

SOAP request into a legacy commarea, and how to convert the legacy commarea into a
SOAP response. A template will be assembled by SOLA into an Assembler Data Only
Load Module.

Encoding: the data format that SOLA will deliver to your program when executing the
method. Options are EBCDIC (default) or ASCII. This option is provided for programs
that were originally coded to accept ASCII data, and which internally convert the ASCII
data to EBCDIC and vice versa.

End Point: the location of the SOLA SOAP server. Options will vary based on your
installation.

Schema Type: when you analyze a method one of the artifacts that you're creating is
WSDL. The WSDL will contain a schema, which is a description of the input and output
messages used by this web service. SOLA supports the most descriptive version that
includes ‘All Attributes’ to describe the schema items.

Target Namespace: the URI of the defined operation (method). This can be adjusted
to match your company’s namespace standards.

Template Dataset & Load Dataset: these fields are used to tell SOLA where you want
the template source and the assembled/link-edited template to be stored. The source of
the template will be stored as a member in the Partitioned Data Set (PDS) named in the
Template Dataset field. The SOLA Analyzer will automatically assemble and link-edit
the template into the Load Library specified in the Load Dataset field.

Note: Duplicate program and template names will cause the following error to be
displayed:

1 Message Display *®
| Could not retrieve information
I
1 3
1
ok || showDetais
b
PreAnalysis
Method Nan Message Display *
Description || SoAP Fault || StadcTrace ¥
Template N ;l
B T FaukCode = SOAP-ENV:Server
ncoding: FaultReason = Processing Error
EndPoint: FaultMessage = Generated On 2012-07-06-09.39.20.000591 -
New Template QACAD6T1 is already used by Method
Schema Ty| QACA06MI in Program QACAQGP LI
T t Nai
roet v

Template D}

58

7

SOLA Developer User’s Guide

Fill in the required fields, then click anaLYZE -~ the button. This will display the
Commarea Analyzer.
PreAnalysis Analysis |*
Prefix: APPLY DICTIONARY
DFHCOMMAREA Schema Inputs Header

= B DFHCOMMAREA,
I[El ws-RETURN-CODE
Bl Ws-RETURN-MSG
B ws-FROGRAM-VERSION
B ws-sqL-coDE
Bl ws-CICS-RETURN-CODE
Bl vs-50s5s5-1D
= [l WS-SEARCH-TYPE
[sEARCHBYNAME
[EE sE2RcCHBYSSN
Bl vs-SEARCH-VALUE

-

m

= € nameSearch
£ ws-B0s5-1D
= € WS-SEARCH-TYPE

L SEARCHBYNAME
L SEARCHBYSSN

€ WS-SEARCH-VALUE

€ WsS-ACCESS-METHOD

E WS FETrH-"NTE

Schema Outputs Header

= E nameSearchResponse
= £ DFHCOMMAREA

m

= [l Ws-ACCESS-METHOD
B Fcaccess
B vvGMNTACCESS
B FirMWIDEACCESS

u HostSysid
Wl ws-ToTAl -CNTR

m

— WS-RETURMN-CODE

— WS-RETURMN-MS5G

— W3-3QL-CODE

— WS-CICS-RETURM-CODE

L HostSysid
WIS _TMT Al T

Using the Commarea Analyzer

When you analyze a commarea method, what you are doing is creating a template (the runtime
metadata), a test harness, directory entries and WSDL, which describes the interface to the
program; the input and output fields. A web service is a way for a service consumer to call the
legacy program; the consumer gives SOLA one or more inputs, which SOLA passes to the
legacy program and receives a response, which it then passes to the consumer. What happens
inside the legacy program is not relevant to SOLA or the consumer; either a correct response
will be generated, or it will not. Therefore, even if a legacy program changes, as long as its
interface remains the same, the web service does not need to change.

When analyzing a commarea program to create a method, you have to do the following:

Isolate the functionality you want to use in your web service

Determine what inputs the program needs to carry out that functionality

Determine what outputs the program generates that are relevant to that functionality
Add those inputs and outputs to the schema tree and configure them

The Legacy Tree

The legacy tree (located on the left in bottom-up analysis) represents the legacy data structure;
the commarea. The schema tree (located on the right in bottom-up analysis) represents the
WSDL that you are going to create. If you compare the Analyzer's legacy tree to the program’s
commarea you will see that they are a very close match.

59

SOLA Developer User’s Guide

= [WS-CONVERT-LINKAGE 01 WS-CONVERT-LINKAGE.

= [l in-TvPE 05 IN-TYPE PIC X(01).
[E TEMPERATURE-CONVERT 88 TEMPERATURE-CONVERT VALUE 'T'.
[LEnGTH-CONVERT 88 LENGTH-CONVERT VALUE 'L'.

= B LENGTH-AREA 05 LENGTH-AREA.
[rn-FEET 10 IN-FEET PIC 53(04) COMP-4.
B v-ncHEs 10 IN-INCHES PIC 53(04) COMP-4.
[l oUT-CENTIMETERS 10 OUT-CENTIMETERS PIC 53(11)V99 COMP-3.

= B TEMPERATURE-AREA 05 TEMPERATURE-AREL REDEFINES LENGTH-AREA.
[1v-FAHRENHETT 10 IN-FAHRENHEIT PIC 59(04) COMP-4.
[ElouT-ceLsius 10 CUT-CELSIUS PIC 59(11)V93 COMP-3.

Items displayed in the legacy tree are called Citems, and each Citem is represented by an icon.
The following icons can appear in a legacy tree:

Input

= Output

Input/Output (both)

= Excluded

25 88 Level (enumeration)

In the legacy tree shown above, the fields are identified as being 88 levels, input, output or both.
This is because this program was imported from a compile listing. When you import a compile
listing SOLA evaluates the procedural code of the program (COBOL only) to determine which
fields in the commarea are input, which are output, which are both input and output and which
are excluded. This can save the user a lot of time, particularly when the commarea contains a
lot of fields. If the program was imported from a copybook most of the items in the legacy tree
would be represented with an X icon (excluded) and it would be up to you to determine which
field is what.

The icons represent the nature of the variable in the original commarea, not necessarily their
value in the WSDL. Dragging an item into either the input or output portion of the schema tree
will override the original variable type. Be careful when doing so, however, as you may render
the web service inoperable. Regardless of how you arrange the WSDL, the legacy program still
requires certain inputs and provides specific outputs.

When analyzing a bottom-up method (starting with copybook or compile listing), the legacy tree
cannot be changed. If you were doing one of the other analysis types (top-down, meet-in-the-
middle, etc.), then the opposite might be true.

Each item on both the legacy and schema trees is represented by a unique identifier. You can
view the identifier by looking at an item’s ID property in the property panel (properties are
described later in this section).

The Schema Tree

The schema tree represents the structure of a WSDL, either one you are creating (in bottom-up
analysis) or one you are working from (other analysis types). The tree is divided into two
sections, Schema Inputs and Schema Outputs.

60

7

SOLA Developer User’s Guide

Schema Inputs
E test

Input Container

Schema Outputs
E testResponse

Output Container

If you import from a compile listing, SOLA will
attempt to populate these sections with the
appropriate items from the legacy tree.
However, if you import from a copybook,
these sections will contain only upper level
tree items (shown in the illustration on the
left).

These items represent XML tags that will be
present in the WSDL, and the inputs and
outputs that the web service will use belong
under (are child elements of) these items.

All items displayed in the Schema tree are
called Sitems, and each Sitem is represented
by an icon. The following icons appear in the
schema tree:

€ Element, input

e Element, output

a Attribute, input

a Attribute, output

(R Restriction (enumeration)
Default

Each item on both the legacy and schema trees is represented by a unique identifier. You can
view the identifier by looking at an item’s ID property in the property panel.

61

SOLA Developer User’s Guide

7

The Properties Panel

SItem - (temperature- »||B&

convert)

Name = Value The properties panel is used extensively during analysis. It
activity = - contains a host of properties for each item (variable) in the
createdTimestamp 2008-01-07-17 5. analyzer, both in the legacy tree and the schema tree. The
cteSnstivelD 2009-01-07-17 5. pangl serves two purposes, obtaining information and
customEx - configuring tree items. You can use the panel to get such
sataType iring information as the value of an enumeration item or the
satarvoeta o ; minoccurs / maxoccurs value of an array item. Many of the

ata -] DWW W30 - . .

P i properties can be changed, thereby allowing some fairly
dependD detailed configuration of tree items. The individual properties
description are detailed in the Commarea Analyzer Reference section on
editCheckCode page 113.
environiD 2008-12-01-15.1...
excludelful Some of the property fields are text boxes, others are menus.
fromiD The nature of any particular item will be apparent when you
D click on it. If the item is a text box, a blink cursor will appear
0 | and you will be able to make changes (unless that particular
stlipdote value cannot be changed). If the item is a menu, clicking on the

item will reveal the menu with valid values for the item.

An enhancement to Analysis has been made in release 6.3.4; User can now change to any
other compatible datatype during analysis and retain it, and if not compatible the datatype will
be overridden with defaults. The default is for Numeric {short, int, long} based on precision, and
the user can change to Decimal.

If you make changes to a property and want to save them, click the &/ button. To reset all
changes, click the &/ button.

62

SOLA Developer User’s Guide

7

Analyzing the Method

To analyze a bottom-up inbound method, all you have to do is drag the input items you want
from the legacy tree to the schema tree input container, then drag the output items you want
from the legacy tree to the schema tree output container. Or, if you imported a compile listing,
the input and output trees should already be populated. In that case, all you'll need to do is
validate the schemas to be sure that they are correct and perhaps make some adjustments
such as removing an item or adding a stop array (we’ll review these later).

The more you know about COBOL or PL/I programs, the easier it is to perform an analysis. If
you understand the program that was imported, and you know what you want the web service to

do, analyzing a method is a very simple process, regardless of how complex the program may
be.

Let’s take a look at a simple analysis.

Preanalysis Analysis *

Prefix: APPLY DICTIONARY FINALIZE

dthcommarea Schema Inputs | Header

jﬂdfhcnmmarea € convertTemp
jﬂin-tvpe
Etemperature-:nnvert
Elength-cunvert
jﬂlength-area
Hin-Feet
Ein-inches
Euut-centimetres
= Etemperatu re-ares Schema Outputs | Header

EII‘I-'FEIhrEI'IhEIt E convertTempResponse

Hu:uut-u:elsius.

This sample program (Convert) is part of the SOLA installation, and can be found in the
SAMPLIB library that was shipped with SOLA. In this example, the program was imported from
a copybook so SOLA couldn’t identify the legacy tree items as input or output, so most of the
items are represented by the X (excluded) icon. Since 88 levels are clearly identified in the
code, these have been picked up by SOLA and are represented by the appropriate icon.

The program converts either length or temperature units from one system of measurement to
another. It can convert feet or inches to centimeters or it can convert Fahrenheit to Celsius.

The user specifies an input type (variable in-type), and the appropriate input, and the program
returns the converted value.

63

SOLA Developer User’s Guide

7

Looking at the copybook (see page 59), you can see that the input variable in-type has two 88
levels, which are represented in the legacy tree. Clicking on each in turn, you can see that their
values are shown in the Properties panel as being T and L.

B TEMPERATURE-CONVERT value T

B LENGTH-CONVERT value L

This indicates that in-type can have one of two values, T for temperature or L for length. The
copybook also indicates that the temperature area redefines the length area, which means that
you can only have one or the other, and the value of in-type determines which of those it is.

Redefines are common in legacy programs as they save memory, but they do limit us in terms
of what kind of methods we can create. Had the temperature and length areas not been
redefines, we could have created a single method that accepted in-type, IN-FEET, IN-INCHES
and in-fahrenheit and performed the conversion based on in-type, returning OUT-
CENTIMETERS and out-celsius. However, as those variable groups redefine each other, and
only one can exist at any one time, this type of web service is impractical. In either case, it is
more efficient to create two methods from this program, one to convert length, and one to
convert temperature.

In this example, we are going to choose temperature. To convert temperature, the program will
require two inputs; variable in-type with a fixed value of T, and in-fahrenheit. The program will
then provide an output, out-celsius. We will need to configure our schema tree to reflect this.

First, drag in-type from the legacy tree and deposit it in your input area under the convertTemp

node. This is like dragging a file from one folder into another. The destination folder, or in our
case schema tree item, is “ConvertTemp” in the input container panel (Schema Inputs).

64

7

SOLA Developer User’s Guide

PreAnalysis Analysis *

dfhcommarea

=| dehcnmmarea
;lHin-tvpe

Htemperature-cnnvert
ﬂlength-:nnver‘t

;lulength-area

Hin-feet
Hin-inches

H out-centimetres

= Etemperature-area

Hin-fahrenheit
Huut-celsius

Prefisx:

APPLY DICTIONARY FINALIZE

Schema Inputs Header

) E in-type

Schema Outputs Header

F_ convertTempResponse

If you hold down the CTRL key when you click and drag, you will be presented with a menu of
options.

Schema Inputs Header

@ cormicnctTomn

= @ppend Legacy Item
Append Default Ttem
As=zociate Legacy Item
DependingCn Legacy Item
Redefine Legacy Item

sch Cancel Operation
E convertTempResponse

The first choice, Append Legacy ltem, is the
default drag and drop operation (what happens
when you drag and drop without using the
CTRL key). The options not used in this
example are described in the Commarea
Analyzer Reference section on page 113.

To continue with the example, either do not use

the CTRL key or select Append Legacy Item
from the menu. The result will be the same.

Once you’ve moved in-type to the schema tree,
the tree will look like this:

65

SOLA Developer User’s Guide

7

Preanalysis Analysis '*

Prefix: APPLY DICTIONARY FINALLZE
dfhcommarea Schema Inputs Header
:Iudfhcu:ummarea = € convertTemp
= B in-tvpe = € in-type
Htemperature-conuert _Jtemperature—u:-:unvert
Hlength-convert __|Iength--:|:|nvert
;lnlength-area
Ein-feet
Ein-inches
Bl out-centimetres
:Iuternperature—area Schema OQutputs Header
Ein-fahrenheit E convertTempResponse
Eout-celsius

Note that if you click on in-type in the legacy tree and look in the properties panel for its 10 type,
it will be X (for excluded). However, once you drag in-type into the input section of the schema
tree, it's 10 type (in the schema tree only) will be set to | (for input).

in-type has two enumerations/restrictions _J in the schema tree, which were derived from 88
levels in the COBOL data structure. This means it has two possible values, T or L. Since you
have to pass a set value to the program, you should eliminate one of those values. To do so,
use the Enumeration panel. You can use this panel to not only delete existing enumerations,
but to add additional enumerations, change the values of existing enumerations and provide a
description for each enumeration. This description will appear in the WSDL and may assist the
distributed programmer in incorporating your WSDL into the front end user interface.

The following sample WSDL outlines the description as annotated documentation for each
enumeration:

- =element name="WS-ACCESS-METHOD" minOccurs="0" maxOccurs="1">
— <simpleType>
- <restriction base="string"=
— <enumeration value="F">
- =annotation=
—documentation=FIRMWIDEACCESS </documentation>
</annotation=
<fenumeration=
— <enumeration value="N">
- <annotation=
zdocumentation=MMNGMNTACCESS </documentation=
=fannotation=
=fenumeration=
— <enumeration value="Y">
- <annotation=>
zdocumentation=FCACCESS</documentation=
=fannotation>=
</enumeration>
=/restriction>
=/simpleType>
=felement =

P ——

66

7

SOLA Developer User’s Guide

Enumeration for IN-TYPE *
e e en———————— To use the Enumeration panel, right-click in-
T @ type and select Define Enumeration from the
I @ pop-up menu. The enumeration panel contains
all the existing enumerations of the item you
clicked on. If there are no enumerations, the
panel will be blank.

You can create new enumerations by clicking
the icon and delete existing enumerations
by clicking the M icon next to the enumeration you wish to delete. To delete the L enumeration,

click on its associated M icon. This will remove the tree item LENGTH-CONVERT, leaving us
with only one possible value for in-type, “T”.

Deleting one of the enumerations will still require the web service consumer to send the value
“T” for variable in-type, and while doing it this way is a good way to introduce you to how SOLA
Developer handles enumerations, it is not a very efficient way to create this web service.

The general rule of default values vs. enumerations is as follows:

® Enumerations: restrict possible values but still require a value to be passed by the web
service consumer. Most WSDL consumption tools will restrict that input so that the
consumer can only enter a value that is present in the enumeration. There is no set limit
for how many enumerations an item can have.

= Default Values: an item can have only one default value, and the web service will not
require that the consumer pass this value, instead SOLA will pass this value to the
legacy program.

The most efficient way to create this web service is to exclude in-type from the schema; there is
no reason for the web service consumer, who will be accessing a program that converts only
temperature to pass the conversion type. However, the legacy program, which converts both
temperature and length, will still require a value to be passed for in-type. To accommodate both
the consumer and the legacy program, you will need to assign a default value for in-type. Once
a default value is assigned, the web service consumer will not see in-type in the schema, but
SOLA will automatically pass the default value

to the program.
Schema Inputs

There are two ways to assign a default value. € =

The first, used before the item is transferred to Append Legacy Item

the schema tree, is to use the CTRL key when Append Default Ttem \[b
dragging and dropping. From the menu that

pops up, chose Append Default Item. Associate Legacy Item

Dependingdn Legacy Item
If the item is already in the schema tree, right
click on the item, and select Node Operations,
followed by Current Node -> Default. Cancel Operation

Redefine Legacy Item

67

SOLA Developer User’s Guide

Edit Schema Name
Display Table view
Define Enumeration
Apply Dictionary
Remove Association
Custom Exit
Transformation [

EditCheck b

Node Operations 3 Append Child Node

Insert Node Before
Delete This Node
Attrs -> Elems
Elems -= Attrs

Current Node -= Attr

{b Current Node -> Default

This will convert the selected node into a default node (a node with a set value that will not be
present in the schema).

A default node cannot have enumerations, so if you placed it in the schema tree without using
the CTRL key and then convert it to a default node, the enumerations will disappear.

Schema Inputs

= € convertTemp
in-type

In either case, you will need to set the default node’s default value in the properties panel.
Select the default node, and then find the “value” field in the properties panel. Click anywhere in
the empty value column for that field and enter a value of “T".

68

SOLA Developer User’s Guide

7

Home || Analysis '* SItem - (in-type) edll= =]
PreAnalysis Analysis '#* Mame « Walue
o
Prefix: APPLY DICTIONARY FINALIZE nodeType g
NSalias
Schema Inputs | Header
ERhCndM e > objectType Shem
F = &
J-dfhcommarea =5 D"_'VE”:TE”"D pattern
:luin-tvpe in-type —
Htemperature—conver‘t precision !
Hlength—conver‘t proceszingCode
= [Edlength-area programiD 2009-01-07-17.5...
E!n—feet refld
Eln—mches
uout—centimetres rowhum ooao2
= Etemperature-area Schema Qutputs || Header scale 0
[in-fahrenheit £ convertTempRespanse schemalim in-type
Hout—celsius
specialCond
stopArraylfNull r
tolD
transformCode
value 'I'| -

Click the H! button to save your changes. The default value for in-type has now been set and
you are ready to proceed with the rest of the analysis.

The next step is to drag the temperature conversion input, in-fahrenheit, to the input section.
Drag it into the input container under the convertTemp node, just as you dragged in-type. All
inputs go under ConvertTemp (or that same item with a different name in different programs),
just as all output items go under convertTempResponse. Do not drag in-fahrenheit to in-type
(so that it becomes a child of in-type), because that will indicate that in-type is a group and in-
fahrenheit is a member of that group.

The schema tree will now look like this:

69

7

SOLA Developer User’s Guide

PreAnalysis Analysis |*

dfhcommarea

;ludfhcurnmarea

;lHin-typE
Etemperature-convert
Hlength-cunvert

;lulength-area
Hin-feet
Hin—inches
Enut-centimetres

jutemperature—area
Ein-Fahrenheit
Hu:uut-u:elsius.

Prefix:

APPLY DICTIONARY FINALIZE

Schema Inputs Header

= € convertTemp
in-type
€ in-fahrenheit

Schema Outputs Header

E convertTempResponse

If you click on in-fahrenheit on the schema tree and look in the Properties panel, you will notice
that it’s 1O type is also set to | (for input), just as in-type’s was, as it was also dragged into the
input section. The second thing to notice is that the value of in-fahrenheit is empty. This is
because this input variable is not meant to have a fixed value like in-type is. By leaving the
input value empty, the WSDL will indicate that the program expects this value to be provided by
the web service consumer, and that the value can be anything (unrestricted).

To provide a visual ‘schema-to-structure’ mapping you can click on any schema field on the
analysis screen and the corresponding legacy structure field will flash providing a visual cue to
the developer about the field mapping.

PreAnalysis Analysis *

DFHCOMMAREA

= B DFHCOMMAREA
EdReturncode
. ReturnMsg
:i. InventoryRequested
- RequestDate
= Bl Dealers
- DealerName
;l- Locations
B state
Bl streetaddress
= B Manufacturers
4 Manufacturer
-Country
= B Modelsin
. ModelName

.o Cinncr

APPLY DICTIONARY FIl

Prefix:

| ——
Schema Inputs Header
€ HequestDate
= € Dealers
€ DealerName
=) € Locations
€ State
€ StreetAddress
L€ _Manufacturers
€ Mmanufacturer

€ Country
. AP aa

Schema Outputs Header

= ,e_ getlnventoryResponse
£ ReturnCode
g, ReturnMsg
=] .e_ InventoryAvailable
£ RequestDate

70

SOLA Developer User’s Guide

7

Now that we are finished working with the input section of our web service, it’s time to configure
the output section. In our simple web service, there is only one output variable, out-celsius.
Drag out-celsius from the legacy tree to the output section of the schema tree, under
ConvertTempResponse.

The schema tree should look like this:

PreAnalysis Analysis '#

Prefix: APPLY DICTIONARY FINALIZE
dfhcommarea Schema Inputs Header
;lﬂdfhc:n:-mrnarea = € convertTemp
;luin-t',rpe in-type
ntemperature-cnnver‘t € in-fahrenheit
Elength-cnnvert
:lﬂlength-area
Ein-feet
Hin-inches
Hnut-centimetres
;Iutemperature-area Schema Outputs | Header
B in-fahrenheit = € convertTempResponse
B out-celsius € out-celsius

Technically, our web service is finished. However, there is one more thing we can do to it in
order to make our WSDL a bit more user friendly. SOLA Developer is equipped with a powerful
global dictionary, and the principal function of the dictionary is to translate cryptic COBOL or
PL/I names into human readable names. You can, of course, do this manually for each
individual field.

Double click on a field name to display a = € ConvertTemp
cursor (just like changing a file or folder name € IN-TYPE
in Windows), then enter the item’s new name. € | INFahrenehe]

I's much easier, however, using the SOLA
dictionary, which allows you to click one button and change every name in the schema tree.

Click the | APPLY DICTIONARY
more user-friendly names.

button to translate all COBOL names in this web service to

"

SOLA Developer User’s Guide

N

v

PreAnalysis Analysis #

Prefix: APPLY @CTIO MNARY FINALIZE
dfhcommarea Schema Inputs | Header
;l.dfhc:n:nmrnarea = ﬂ convertTemp
;l.in-t',.rpe InType
.temperature-cnnvert ‘_3, InFahrenheit
.Iength-cnnver‘t
:l.length-area
.in-feet
.in-in:hes
.Dut-centimetres
;l.temperature-area Schema Outputs | Header
.in-fahrenheit = £ convertTempResponse
B cut-celsius € outCelsius

Now our web service is fully configured, the field names have been translated and we’re ready
to conclude the analysis.

Click | FINALIZE 5 complete the analysis. You will be presented with a confirmation dialog.

Analysis Successful

72

SOLA Developer User’s Guide

7

The SOLA plugin has been enhanced to additionally generate SOLA Override fields in the
WSDL as part of soap:Header. To generate the optional header fields and/or operation changes
use these switches as follows:

http:/fnjstage-gx980:8618 sala/wsd| /TEST/Balaji IE9 Testing/RE1ACANA nameSearchTwsse=true

Using wsse=true will result in the Security elements being included in the soap header as in the
following example:

- <element name="Security">
- <complexType>
- <sequence>
- <element name="UsernameToken">
- <complexType=
- dsequence>
- =element name="Username">
- <simpleTypa>
<restriction base="string" />
<fsimpleTypa>
<felement>=
- =element name="Password">
- <simpleTypa>
<restriction base="string" /=
<fsimpleType>
<felement>=
<fsequence>
<attribute ref="wsu:Id" />
<fcomplexType>
</element>
<fsequence>
</complexTypa>
</ element>

Note: excluding wsse=true is the equivalent of wsse=false and will not produce the security
fields in the soap header.

Using unqualified=true will result in the elementFormDefault in the wsdl being unqualified for all
operations within the schema as seen below:

http:/fnjstage-gx980:1445//50la/wsd /TEST/Balaji 619 Testing/RE19CANA nameSearchTunoualified=true

<?xml version="1.0" encoding="UTF-8"?>
- <definitions xmins="http://schemas.xmlsoap.org/wsdl/" xmins:wsdl="http:/ fschemas.xmlsoap.org/wsdl/" xmins:xsd="1
xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/" xmins:http="http:/ fschemas.xmlsoap.org/wsdl/http/" xmins:tr
targetNamespace="http://R616ca04NameSearch.x4ml.soa.com/CA/SOLACAD4" xmIns:tns01="http:/ /nameSearch.R616

- <types>
- <schema xmins="http://www.w3.0rg/ 2001 /XMLSchema" xmlins:xsd="http:/ /www.w3.0rg/2001/XMLSchema" t|
attributeFormDefault="unqualified" slementFormDefault="ungualified" xmlns:tns01="http://nameSearch.R616cal4r
- <element name="nameSearch">
- zcomplexType mixed="false">
- <sequence>
- <element name="BossId" max0Occurs="1" minOccurs="0">
- «simpleType>
- <restriction base="string">
<minLength value="0"/>
<maxLength value="8"/>
< /restriction>
</simpleType=
</element>
- <element name="SearchValue" maxOccurs="1" minOccurs="0">
- «<simpleType>
- <restriction base="string">

73

SOLA Developer User’s Guide

7

A sample WSDL using the imsheader=true in the URL will include an IMS Header in the
schema (this is also discussed further in the IMS Plugin section):

|@ httpe/fnjstage-gx980: 1445 s alafmes dl AL Libyprogram,/TEST faaaazaalemo/S0LACANd hameSearchfimsheader=true

<7xmi version="1.0" encoding="utf-8" 7>
- <definitions targetNamespace="http:/ /ClientFinder.x4ml.soa.com /CA/SOLACAQ4" xmins:tns="http:/ / ClientFinder.x4ml.s0a.com /CA/SOLACAQ4" xmins: APIDD001="http:/ / h.ClientFinder.x4ml. CA/SOLACAD4/API#D001"
xmins: http="http:/ /schemas.xmlsoap.org/wsdi/http/" xmins:soap="http: / /schemas.xmisoap.org /wsdl/soap/" xmins:mime="http:/ /schemas.xmlsoap.org/wsdl/mime/" xmins:imsh="http:/ / schema.sola.s0a.com /header/ims"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmins:wsdl="http://schemas.xmlsoap.org/wsdl/" xmins="http://schemas.xmlsoap.org/wsdl/">
- <types>
- <schema targetNamespace="http://schema.sola.s0a.com/header/ims" xmins:imsh="http:/ /schema.sola.50a.com/header/ims” xmins="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified" attributeF ormDefault="unqualified ">
- <element name="IMSConnectParm">
- <complexType>
- <sequence>
- <element name="IMSCDataStoreID">
- <simpleType>
- <restriction base="string">
<minLength value="0" />
<maxLength value="8"/>
</restriction>
</simpleType>
</element >
- <element name="IMSCfqdn’>
- <simpleType>
- <restriction base="string">
<minLength value="0" />
<maxLength value="256" />
</restriction>
</simpleType>
</element >
- <element name="IMSCIPaddress">
- <simpleType>
- <restriction base="string">
<minLength value="0" />
<maxLength value="15"/>
<[restriction:>

Note: elementFormDefault is set to ‘qualified’ as the default when not coded on the URL.

A consumer of WSDL'’s generated by SOLAG6 IDE (ProgramLevel or MethodLevel) can choose
to use the following combination of parameters to adjust a wsdl:

The consumer can pick the style of WSDL(v5 or v6) as in the following example:

http:/injstage-gx980:1445/solatwsdliv1.1ibyprogram/TESTi.aaaaaaaDemolSOLACAQdIname Search?style=v5

In addition a consumer of a wsdl will be able to specify whether they want constraint meta-data
for simple types within the WSDL as in the following example:

http:injstage-gx980:1445/solafwsdlivi. 1/byprogram/TES Tl.aaaaaaaDemoiSOLACAQA hameSearch?terse=true

"I’ SOLA Developer User's Guide

And the consumer may also want to specify whether the enumeration definitions are
represented as comments or not by specifying the parameter in the example below:

http:filocal.com:1445/solaiwsdliv1.1/byprogramiTESTIGATEST -V8.3IQACAG32P?enums=documentation

With enums=documentation - all enumerations will be displayed in the wsdl with their
enumeration values as comments.

- <element name="WS-SEARCH-TYPE" maxOccurs="1" minOccurs="0">
- <simpleType=
- <restriction base="string"=
<!-- <enumeration value="N"> <annotation> <documentation>SEARCHBYNAME </documentation> </annotation </enumerationz
< /annotation</enumeration> —>
< [restrictions
</simpleType>
<felement>

Without enums=documentation — all enumerations will be displayed in the wsdl as documentation:

zelement name="WS-SEARCH-TYPE" maxOccurs="1" minOccurs="0"=
- <simpleType=
- <restriction base="string">
- <enumeration value="N">
- <annotation=

<documentation>SEARCHBYNAME = /documentation=
=< /annotation=

< fenumeration>
- <enumeration value="5"=
- =annotation=

<documentation>=SEARCHBYSSN </documentation=
=fannotation=

< fenumeration=
< frestriction=
=/simpleType=>
<felement>

These instructions have only given you a bare overview of the functions and capabilities of the
commarea analyzer. At the end of this chapter there’s a reference guide that will help you to
understand some of the more advanced features. Classroom training is also available from
Akana Professional Services — SOLA Support Group.

75

SOLA Developer User’s Guide

7

Creating an Inbound Commarea Web Service from a WSDL -
Top-Down

It is often the case that your corporate architects want you to conform to a standard service
architecture, and they’ll expect you to do so with a WSDL that they provide. Typically you won’t
have a mainframe program that exactly matches their requirements, and so you’ll have to create
one. SOLA supports this development paradigm by allowing you to generate a mainframe
copybook (either COBOL or PL/I) from a WSDL file. You will write a program that uses that
copybook as its interface, and your corporate architect will be able to call that program through
SOLA.

Step 1 — Mainframe Preparation

The only mainframe preparation required with the top-down approach is for you to identify a
PDS dataset for it to store the generated copybook (make sure that it is LRECL=80). You'll then
write a program that incorporates that copybook, and you'll put it in a library that allows the
SOLA runtime to call that program.

76

7

SOLA Developer User’s Guide

1

SOLA | UDDI || File | Datasets g

Environments{ TEST} * PROGRAM

=2 I Directory -

il i W T

= Import Program

e

I

= w User Access

(E3R =Y

Add User Access

£

Show Project History

I

= Delete Project

(E3R =Y

Add WSDL Template

£

2 AccountMaintenance
ZACORD

(E3R =Y

Step 2 — Importing the WSDL

Top down analysis is identical to that of inbound
bottom-up Commarea programs (see page 45), but
the import process is different, since you're importing
a WSDL instead of a compile listing or copybook

To get to the top down import panel, select the project
you wish to import into and right-click it. From the
pop-up menu, select Import. If you wish to import the
program to a new project, first follow the steps for
creating a new project on page 22.

After you select Import, the Import panel will be
displayed under a tab in the workspace. This panel
can be used to import any program type that SOLA
supports.

The default program type is commarea bottom-up, so use the Other Import Types menu to

select commarea top down.

Home Import '*

Importing Commarea - Bottom Up Producer B

| Other Import Types ™ |

) 4 commarea 3 Top Down
Project: | SolaDemo Gl _
i Container b Meet InThe Middle
Program Name: |Please enter a pro i@ Callable b Bottom U
ottom Up
Override Name: |\When override is b @ IMS Message B
Language: COBQOL G Outbound
Environment: | TEST E BMS 3270
Program Description: |Sola Demonstratior m Stored Procedure
Structure Name: |Please enter a stru @ Adhocsql
Class Name: ‘F‘Iease enter a clas E Ccustom
L A=d BPEL
Dataset/Listing Name: ‘F‘Iease enter a listin .
IMPORT RESET
Browse Datasets and Listings =
Select Source DATASET JOB NAME & MUMBER MULTIPLE DATASETS

Enter a dataset prefix: | DBCREW

4[] DBCREW

The Import panel will change to display the WSDL import panel.

SOLA Developer User’s Guide

N

v

Importing Commarea - Top annad Other Import Types *

@ WsDL Imported From PC) wsDL Imported From URL
Upload WSDL file from local
e
UPLOAD
Upload ZIP file from local drives
UPLOAD

ZIP files must be uncompressed and must contain 2 WSDL file of the same name as the ZIP file.

This panel provides the means to import a WSDL file into SOLA from a location on the
Internet/Intranet or on your local machine. To import a WSDL file from your local machine,
either type the full path to the WSDL in the Upload WSDL file from local drives field or click
the Browse... button to locate the WSDL using Windows Explorer.

To import a ZIP file, follow the same process described above, but use the Upload ZIP file
from local drives field instead. SOLA doesn’t support compressed ZIP files, so make sure the
ZIP file you are uploading is uncompressed. This option is for the importing of WSDL files that
utilize external references. The ZIP file must contain a WSDL file of the same name as the ZIP
file and all files referenced by the WSDL.

For example, if the ZIP file is called abc123.zip, then it must contain a WSDL file called
abc123.wsdl and all files referenced by abc123.wsdl.

Once you have made your selection, click. YPEOAD " Make sure you are clicking the
correct Upload button (there are two).

If you want to upload the WSDL from a URL (internet/intranet) click - wsbpL Imported Frem URL,
Either way, you will be taken to the following panel.

Importing Commarea - Top Down G Other Import Types ~

~) WSDL Imported From PC @ WsSDL Imported From URL

Import WSDL From: file://D\Deslktopwaork b
SOLA Project Name: Accourts Copybook Mame:
Service Description:

Copybook DataSet:

IMPORT RETURMN

Fill in the fields as required:

78

SOLA Developer User’s Guide

® |mport WSDL From: the address (URL) of the WSDL file being imported. If you chose
to import from the local machine, the path of the local file will be displayed there. If you
chose to upload from a URL, copy and paste (or manually enter) the URL into this field.

m SOLA Project Name: the name of the project under which the WSDL file will be
imported. This is pre-populated and cannot be changed.

m CopyBook Name: the SOLA interface description for this call is placed in the specified
Copybook Member.

m Service Description: a brief description of the service that will be created from the
WSDL file.

®m Copybook DataSet: the SOLA interface description for this call is placed in the
Copybook Dataset you specify within the specified Copybook Member.

When you are ready to continue, click =~ [MPORT

To return to the previous panel, click =~ RETURN

SOLA Developer User’s Guide

7

Step 3 - Analyzing the WSDL to Create the Copybook

Unlike bottom-up Commarea, clicking the Import button takes you right into analysis.

Home Analysis %!\ Import |

Define the method's properties, then click Analyze to continue.

PreAnalysis
Method Name: nameSearch
Description: Sola Demonstrations

Template Name: |

EndPoint: HTTP://MAINFRAME.L

Target Namespace: hittp://nameSearch.Cl

Template Dataset: | |

Load Dataset: | |

Copybook/Program Member: testtd

Copybook/Program Dataset: test zola testd

Analysis Type: Provider -
Language: COBOL -
ANALYZE

Fill in the required fields:
= Method Name: the name of the method being created.
m Description: a brief description of the method.

m Template Name: the name of the template (run-time metadata) that will be created for
this method. The template name must be unique. The template tells SOLA how to
facilitate communications between a legacy application and a distributed client or server.
A template is an Assembler Data Only Load Module.

® End Point: the location of the SOLA SOAP server. Options will vary based on your
installation.

m Target Namespace: the URI of the defined operation (Method).

B Template Dataset & Load Dataset: these fields are used to tell SOLA where you want
the template source and the assembled and link-edited template to be stored. The
source of the template will be stored as a member in the Partitioned Data Set (PDS)

80

SOLA Developer User’s Guide

named in the Template Dataset field. The SOLA Analyzer will automatically assemble
and link-edit the template into the Load Library specified in the Load Dataset field.

m Copybook/Program Member: this is the name of the copybook that will be created as a
result of the analysis.

= Copybook/Program Dataset: this is the location where the new copybook will be stored
(PDS name).

= Analysis Type: options are “Consumer” and “Provider”. Consumer means that the
legacy program will act as a client to a distributed server (outbound) and Provider means
that the legacy program will act as a server to a distributed client. For inbound
commarea top-down analysis, the option must be set to Provider.

® | anguage: the language that will be used to create the copybook. Options are COBOL
and PL/I.

When you have filled out the required fields, click the ANALYZE button.

The top down analyzer is identical to the bottom-up analyzer, except that the Schema tree is
now on the left, and is the source of the analysis. The Legacy tree is on the right and is the
target of the analysis.

The Legacy tree will represent SOLA’s determination of how the copybook should be structured,
based on the WSDL. You may, or may not, have to make adjustments.

To learn how to use the analyzer, read the commarea bottom-up example (page 56) and the
commarea reference section (page 113).

Note: The provided WSDL must contain a SOLA compliant soap action as seen in the example
below. Only include the codepage if other than the default codepage 37 is used.

<hinding name="CLASS_QACA991PBindingName" type="tns:CLASS_QACA991PPortTypeName" >
<soap:binding transport="http: f fschemas.xmlsoap.org/soap/http” style="document”/>
<operation name="QACASI1M"> :
<soap:operation style ="do-cumen1' soapAction="CASQACASIP/QACAS9IT /CCP:UTF-8/HCP:1140"/ >
< II1F:|I.11 >
<soap:body use="literal”/>
<finput>

81

SOLA Developer User’s Guide

7

Creating an Inbound Commarea Web Service from a WSDL
and a Program- Meet-in-the-Middle

It is often the case that your corporate architects want you to conform to a standard service
architecture, and they’ll expect you to do so with a WSDL that they provide. When you have a
program that fairly closely matches their requirements you can merge the WSDL and the
program using SOLA’s Meet-in-the-Middle approach, allowing your existing program to interact
using the WSDL service definition.

Step 1 — Mainframe Preparation

The only mainframe preparation required with the meet-in-the-middle approach is for you to
identify a copybook that describes the program’s interface (typically DFHCOMMAREA). By
using SOLA’s heuristic dictionary, SOLA will map the WSDL fields to the copybook fields and
will create a template containing those mapping rules.

82

e

SOLA Developer User’s Guide

1

SOLA | UDDI || File | Datasets g

Environments{ TEST} * PROGRAM

=2 I Directory -

il A ot oW e n Wt n

HE Import Program

= () Show User Access

il r~J

Add User Access
a3
Bl Show Project History

=) Delete Project

il r~J
Add WSDL Template

el -

H @ AccountMaintenance
=& ACORD

Step 2 — Importing the WSDL

Meet-in-the-middle analysis is similar to that of top-
down analysis (see page76), but the import process
is different, since you're importing a WSDL and a
copybook

To get to the meet-in-the-middle import panel, select
the project you wish to import to and right-click it.
From the pop-up menu, select Import. If you wish to
import the program to a new project, first follow the
steps for creating a new project on page 22.

After you select Import, the Import panel will be
displayed under a tab in the workspace. This panel
can be used to import any program type that SOLA
supports.

The default program type is commarea bottom-up, so use the Other Import Types menu to

select commarea “Meet-in-the-Middle”.

Home Import *

Importing Commarea - Bottom Up Producer B | Other Import Types * |

. U Commarea b Top Down
Project: — =
| B8l Container b Meet InThe Middle
Program Name: SOLADEMO | @ callable > Bottom Up
Override Name: Optional, Usually ¢ E‘ IMS Message b1
Language: COBOL Q Outbound
Host Code Page: 037(Default Code BMS 3270
Enumerations: Include | O Stored Procedure
Environment: TEST | & Adhocsal
Program Description: SOLA Demonstrat; B Custom
Structure Name: | b4 Orchestration
Class Name: [?‘ea;e enter a class name.]
Dataset/Listing Name: [F ease enter a listing or dataset I
IMPORT RESET
Browse Datasets and Listings
Select Source DATASET “JOB NAME & NUMBER MULTIPLE DATASETS

Enter a dataset prefix: D)S2224
H(_1D)S2224

The Import panel will change to display the WSDL import panel.

SOLA Developer User’s Guide

N

v

Importing Commarea - Meet in Midlllel‘—%ﬁ Other Import Types

@ wsDL Imported From PC) WsDL Imported From URL
Upload WSDL file from local
it
UPLOAD
Upload ZIP file from local drives
UPLOAD

ZIP files must be uncompressed and must contain 8 WSDL file of the same name as the ZIP file.

This panel provides the means to import a WSDL file into SOLA from a location on the
Internet/Intranet or on your local machine. To import a WSDL file from your local machine,
either type the full path to the WSDL in the Upload WSDL file from local drives field or click
the Browse... button to locate the WSDL using Windows Explorer.

To import a ZIP file, follow the same process described above, but use the Upload ZIP file
from local drives field instead. SOLA does not support compressed ZIP files, so make sure
the ZIP file you are uploading is uncompressed. This option is for the importing of WSDL files
that utilize external references. The ZIP file must contain a WSDL file of the same name as the
ZIP file and all files referenced by the WSDL.

For example, if the ZIP file is called abc123.zip, then it must contain a WSDL file called
abc123.wsdl and all files referenced by abc123.wsdl.

Once you have made your selection, click UPLOAD " Make sure you are clicking the
correct Upload button (there are two).

If you want to upload the WSDL from a URL (internet/intranet) click WSDL Imported From URL,
Either way, you will be taken to the following panel.

Importing Commarea - Meet in Hiddle" Other Import Types ™

() wsSDL Imported From PC (®) wsDL Imported From URL
Import WSDL From:
SOLA Project Name: | Testproject Copybook Name:

Service Description:
Copybook DataSet:

IMPORT RETURN

84

SOLA Developer User’s Guide

7

Fill in the fields as required:

Home | Import *

Importing Commarea - Meet InThe Middle B Qther Import Types ™

() WSDL Imported From PC ® WsDL Imported From URL
Impart WSDL From: ﬁ\e:-'fD.AEAEWMI.EGTeﬂ.\
SOLA Project ame: QATEST 1 Copybook Name: EEEE
Service Description: [TEST WiEDL.-COPYEDOK FOR MY
Copybook DataSe: [SOLAEXT QACOECOFY

IMPORT - RETURN

m |mport WSDL From: the address (URL) of the WSDL file being imported. If you chose
to import from the local machine, the path of the local file will be displayed there. If you
chose to upload from a URL, copy and paste (or manually enter) the URL into this field.

Note: The provided WSDL must contain a SOLA compliant soap action as seen in the
example below. Only include the codepage if other than the default codepage 37 is
used.

<hbinding name="CLASS_QACA991PBindingName" type="tns:CLASS_QACA991PPortTypeName” >
=soap:binding transport="http:/ f schemas.xmlsoap.org/soap/http” style="document”/ >
- <pperation name="QACA991M">

<soap:operation style ="do-cumen1' soaphAction="/CA/QACAS9P/QACAS91T/CCP:UTF-8/HCP:1140"/ >
<Input>

<soap:body use="literal™/>
<finput>

m SOLA Project Name: the name of the project under which the WSDL file will be
imported. This is pre-populated and cannot be changed.

m CopyBook Name: specify the member name where SOLA is to find the interface
definition (copybook) for your program.

m Service Description: a brief description of the service that will be created from the
WSDL file.

m Copybook DataSet: specify the Copybook DataSet (a PDS) where SOLA will find the
interface definition (copybook) for your program.

When you are ready to continue, click ~ IMPORT

To return to the previous panel, click ~ RETURN

85

SOLA Developer User’s Guide

7

Step 3 — Matching the program to the WSDL

Unlike bottom-up commarea, clicking the Import button takes you into analysis.

Home Import '®/{| Analysis '*

PreAnalysis
Method Name: QACATIM1
Method Descr: TEST W5DL - COPYBOC
Template Name: QAC343TS
EndPoint: | 01 PUBLIC TEOP(1443)
Target Namespace: http://CLASS _QACADLP
Template Dataset: SOLAEXT.QAASMTELO
Load Dataset: SOLAEXT.QALOADLIB

Copybook/Program Member: |2Ac343CE
Copybook/Program Dataset: |E-5‘|-'f'-|5?‘i'|'-'1'5'--'3'3'5'3'1:“:"I

Program Override: |eacasacs

Program Struciture: Im

Analysis Type:

Language:
ANALYZE

Fill in the required fields:

® Method Name: choose the method name from the drop down list. The list is built from
the operations in your WSDL.

® Method Description: a brief description of the method.

m Template Name: the name of the template (run-time metadata) that will be created for
this method. The template name must be unique. The template tells SOLA how to
facilitate the translation between SOAP and legacy data structures. A template is an
Assembler Data Only Load Module.

B End Point: the location of the SOLA SOAP server. Options will vary based on your
installation.

m Target Namespace: the URI of the defined operation (Method)

B Template Dataset & Load Dataset: these fields are used to tell SOLA where you want
the template source and the assembled (load) and link-edited template to be stored.
The source of the template will be stored as a member in the Partitioned Data Set (PDS)

86

SOLA Developer User’s Guide

named in the Template Dataset field. The SOLA Analyzer will automatically assemble
and link-edit the template into the Load Library specified in the Load Dataset field.

m Copybook/Program Member: this is the name of the copybook that describes your
program interface.

= Copybook/Program Dataset: this is the location of your copybook.

B Program Override: The name of a target program to execute. Use this field when the
target name differs from the program name (for example, when using the Program Name
field for versioning).

® Program Structure: displays the COBOL or PL/I structure of the program (it’s interface).
For programs with multiple structures, this option shows all of the program’s structures
using tabs to navigate from one to the other.

m Analysis Type: options are “Consumer”, “Provider” and “Meet in the Middle”.

® | anguage: the language that will be used to create the copybook. Options are COBOL
and PL/I.

When you have filled out the required fields, click the ANALYZE button.

The meet-in-the-middle analyzer is identical to the bottom-up analyzer, the Schema tree is on
the right, and the Legacy tree is on the left.

Your task is to match the elements in each tree, so that SOLA can perform the necessary
transformations between the two structures. To do so, you must link every component in each
tree to a matching item in the other tree by dragging and dropping each data element to the
schema input and output.

In the following illustration we have begun by dragging each input or request element on the left

legacy side of the workspace to its matching schema item on the right. You will continue with
the output or response elements and linking them to the schema output also.

87

SOLA Developer User’'s Guide

Wome | Import & | Amalysis X

Prefnafysis Analysis *

CUSTOMER-RECORD
3 [l CUSTOMER-RECORD
[CUSTOMER-INFUTS
3 NHE-1ED

Prefix: I APPLY DICTIONARY FINALLZE
Init Storage: [Fe %] Hex Char: X([T)

Schema lnputs | Fesder

3 € QACIIsM

3 € CUSTOMER-INFUTS
= € HAME-IKFO

>

[HHE-FIRST
Hrme-LasT
o [AD0RESS-INFO
[Hconess-STREET
[-ooress-ay
< Bl EASTERN-STATE-INFO
EsTeny
Esmae-cT
[EsTaTE
= [EASTERN-CTY-VOTING-INFO
3 [EsSTERN-COMNTIES
[COuNTY-HUDSON
[counTy-BERGEN
[counTy-MoRRIS
3 [EASTERN-VOTING-CIST
[vominG-5cHD
[vOTING-5CHOSS
[oTNG-5CHoS6L
[l voTinNG-ScHoss2
[voTiNG-5CH0SS3
[VoTING-5CHOS54
[vomiNG-SCHOSSS
[vominG-5CHOSSS
[EASTERR-VOTING-DIST2
[vomtie-seHa
[voTinNG-5cHB
[vOTING-SCH

£ NAME-FIRST|

€ NaEaag]

£ ADDRESS-STREET
£ KDDRESS-CITY
3 € EASTERN-STATE-INFO
L Enm-1
L Eneam-2

L Eruam-3

3 € EASTERN-COUNTIES
Schema Outputs | Header

o € EASTERN-CTY-VOTING-INFD o

3 £ QACI4IEHResponse
3 £ CUSTOMER-OUTPUT
3 & IDENTITY-TOKEN
2 PROGRAM-NAME
3 & HAME-INFO
£ NAME-FIRST
€ NAME-LAST
2 £ ADDRESS-INFO
8 ADDRESS-STREET
£ ADDRESS-CITY
8 ADDRESS-STATE
£ ADDRESS-COUNTY-DNFD
£ ADDRESS-VOTING-DIST
€ ADDRESS-VOTING-DIST2

Note: The green circle with the element name will appear as you drag/drop the element to the
correct schema element on the right side in the workspace.

88

7

SOLA Developer User’s Guide

Also, as you move along associating items to each other you will notice by clicking on a
previously associated item in either side of the workspace, the item is automatically located and

To provide a visual ‘schema-to-structure” mapping you can click on any schema field on the
analysis screen and the comresponding legacy structure field will flash providing a visual cue to

the developer about the field mapping.

Frefnalyss | Analysis =

DFHCOMMAREA

= [l oFHC OMMAREA
B returncode
-R.erurnM:g
= [fl inventoryRequested
Bl requesthate
= Elcealers
HEoealertiame
;I-Lm:atmns
Bl suate
Strestaddress
[Manwiacturers]
Manufacturer
-Cuunl:nr
= [l Modelsin
B edeltame

L

Click | FINALIZE " {5 complete the analysis.
indicating the analysis was successful.

Prefix: l ARPLY DICTIONARY Fli
—r
Schema Inputs | Header
a £ HequestUate
= = g Dealers

E Dealerdame
3 € Locations
2 state

£ Manufacturer
€ Country
- s

Schema Outputs | Header

= & getinventoryResponse
£ ReturnCode
g ReturnMsg
2 £ Inventoryavailable
£ RequestDate

You will be presented with a confirmation dialog

To learn how to use the analyzer further, read the commarea bottom-up example (page 56) and

the commarea reference section (page 113).

89

SOLA Developer User’s Guide

7

Creating an Outbound Web Service

SOLA is capable of bi-directional integration, meaning that the mainframe can be a server to a
distributed client (as with all web services discussed previously), or the mainframe can be a
client to a distributed server. This type of web service, where the legacy program is a client
instead of a server, is called an “outbound” web service.

Like inbound top-down, you start with a WSDL and end up with a copybook. You will typically

have to write a legacy program using that copybook, and invoke a SOLA program that will
handle the outbound web service call and retrieve responses through the interface copybook.

Step 1 — Mainframe Preparation

The only mainframe preparation required while creating an outbound web service is for you to
provide SOLA with the names of three PDS files:

1. Copybook Dataset: A PDS to store the generated COPYBOOK.

2. Template Dataset: A PDS to store the generated metadata.

3. Load Dataset: A PDS to store the assembled and link-edited template (this
dataset should be in your CICS region’s DFHRPL
concatenation).

After the analysis, you will need to write a program that incorporates that copybook and put it in
a library that allows the SOLA runtime to call it.

90

SOLA Developer User’s Guide

7

Step 2 — Importing the WSDL

Outbound analysis is similar to that of inbound top-down program (see page 45).

#| To getto the outbound import panel, select the

project you wish to import to and right-click it. From
Environments{ TEST) * PROGRAM ¥ the pop-up menu, select Import Program. If you
wish to import the program to a new project, first
follow the steps for creating a new project on page
22.

SOLA | UDDI || File || Datasets g

= I Directory
|3 ,comman
|Irr||:u:|rt Program

Show Project History After you select Import Program, the Import panel
will be displayed under a tab in the workspace. This
panel can be used to import any program type that
Show User Access SOLA supports.

Add User Access

Filter by Project

Add WSDL Template The default program type is “Commarea Bottom-Up”,

Delete Project so use the Other Import Types menu to select
Outbound.

Home Import *

Importing Commarea - Bottom Up Producer B | Other Import Types ™ |

) 4 Commarea b

Project: | Soabemo Container B

Program Name: |Please enter a pro E Callable b

Override Name: |\When override is b @ IMS Message B
Language: | COBOL g3 outbound

Environment: TEST B BMS 3270 @

Program Description: |Sola Demonstratiorl (L) Stored Procedure

Structure Name: |Please enter a stru Adhocsql

Custom
Class Name: |P‘Iea5e enter a clas a
k-4 BPEL

Dataset/Listing Name: |P‘Iea5e enter a listin

IMPORT RESET

The Import panel will change to display the WSDL import panel, as shown below. Enter the
location of your WSDL file and click the Upload button. If the WSDL refers to included schemas
you will need to zip them all together in an uncompressed zip file, and in that case you would
enter the information in the “Upload Zip file from...” field.

SOLA Developer User’s Guide

e

Home Import '*

Importing Outbound - Top Down Consumer B Other Import Types ™

(® wsDL Imported From PC (O wsDL Imported From URL

Upload WSDL file from local |

drives | (Browse—]

UPLOAD

Upload ZIP file from local drives | | (Browse...]
UPLOAD

ZIP files must be uncompressed and must contain a WSDL file of the same name as the ZIP file.

SOLA will read the WSDL file to determine its validity, and will then prompt you for the PDS and
member name for the copybook that will be generated.

Home Import '*

Importing Outbound - Top Down Consumer G Other Import Types *
(O wsbDL Imported From PC ® wsDL Imported From URL

Import WSDL From:
SOLA Project Name: Copybook Name:

Service Description: |0utb0und call to Namesearch service |
Copybook DataSet: |SOLA.TEST.COBCOPY# |

This is mandatory for IMS Program but optional for the rest of the

programs

IMPORT RETURN

Transaction:

Enter the information requested and press the Import button to Import the WSDL.

At this point SOLA will determine the operations that the WSDL describes, and will present the
PreAnalysis screen:

7

SOLA Developer User’s Guide

Home Analysis *

PreAnalysis
Method Name: QAZICAMT | s
Method Descr: NEEDED FOR SCREENSI
Template Name: QOBO1T1
EndPoint: | WSOL EncFoint L]
Target Namespace: http:f/CLASS_QA23CAD
Template Dataset: SOLAEXT.QA.ASMTBLO
Load Dataset: SOLAEXT.QA.LOADLIB

Copybook/Program Member: mel
Copybook/Program Dataset: me

Document Usage:
Analysis Type: Consumer e
Language: COBOL| w |

ANALYZE

Choose the Operation (called Method by SOLA) and then enter the following non-case
sensitive data:

Template Name: The PDS member where SOLA will store the metadata source.
Template Dataset: The PDS where SOLA will store the metadata source.

Load Dataset: The PDS where SOLA will store the runtime metadata.
Copybook/Program Member: The name of the mainframe copybook that will be created.

Copybook/Program Dataset: The name of the mainframe library/PDS where the
copybook will be located.

Document Usage:
Two choices defined as follows:

Selecting ‘LITERAL’ the request will only contain namespace referenced and no
xsitype information.

Selecting ‘ENCODED’ the request will contain both namespace referenced and
xsitype information.

Method - »|B(2
(GetProfileDetailsForAccount)

The Document Usage choice is stored in the Property Panel on Nome - Value

the right in property ‘doclnstanceUsage’ : - IR
docinstancelsage \ ENCODED
effective 2015-03-31-13.18.1...

Note: See example of WSDL containing Document Usage below: e e

expires 9999-12-31-01.01.0...

D 2015-03-31-14.16.5

93

~¢|’ SOLA Developer User's Guide

- <wsdl:operation name="GetVisibilityInfo">
<s0apl2:operation style="document" so.
- <wsdl:input=
<s0apl2:body use="literal"/ =
</wsdl:input>
- <wsdl:output>
<s0apl2:body use="literal"/ -
</wsdl:output=
- <wsdl:fault name="MLIFServiceFaultFa
<soapl2:fault name="MLIFServiceF:
=/wsdl:fault=
</wsdl:operation>
- <wsdl:operation name="GetProfileDetailsFc
<s0apl2:operation style="document” so.
- <wsdl:input>
<spapl2:body use="encoded"/>
</wsdl:input=
- <wsdl:output>
<50apl2:body use="encoded"/>
</wsdl:output=

In the following screen captures, Example 1: you will note a Request generated using
Document Usage ‘LITERAL’ and in Example 2: a Request generated using Document
Usage ‘ENCODED’:

Example 1:

TR e T e
“urn: GetProfilelDetailsForbiccount Bequest Version="7" Rest
= --Opkiomal: ——->
“urnl:Busines=Fayloads=
=) ——Opticomal:—-—-=

“urnl:iccountHEeyLists

T--L& DEr L b
“urnl:iccountFeyhata txType="7"=

=T 1oz

“urngcbhccountIds=? <= arng Aoecount Td=-
=/ -—-Optiopal:——>=
SurngchAccountMunber =7 < fuarng D AccountMunber =

=/ -—-Opticopmal:——>

Example 2:

- e = e R e -

“BusinessPayload xz=si:type="urn:GecProfileletailsForicctRegBusPayload
=/ -—Optical:-—-F

=hcocountFeylist usi:type="urn:AcctEeyListDatalype"=

'(=hcocountFeyData wsictype="urnl:iccountHeyDataType" twIype="1"

S ==UpE Y ST

“hocountId xsittype="xsdistcring"=?= Aoc
=/ -—Opticpnal: -—-F
=hcoountihamber xsi-type="uxsd:string' =7 Accountanber =

= ==k aral - ——

94

SOLA Developer User’s Guide

7

Analysis Type: When creating an outbound method Analysis Type must be set to
“Consumer”.
Language: Choose COBOL, PL/1 or Natural.

Once the information has been entered press the Analyze button to go to the Analysis screen.

In the example below we’re analyzing the nameSearch operation that’s described in the
SOLACAO04 WSDL file. This operation accepts two inputs and returns an array of data. The
inputs are BossID and SearchValue and the output is return information and a bounded array of
300 Clients. The Analysis screen shows the input and output schemas on the left side of the
screen and the equivalent mainframe structure on the right side.

Home || Import '®'|| Analysis '*

PreAnalysis | Analysis *

Prefix: [| "APPLY DICTIONARY FINALIZE

Schema Inputs Header WSC-XMLPC103-AREA
= € nameSearch = B WSC-XMLPC103-AREA
€ possID = [llinput-Request
€ searchvalue = [Jllnamesearch
[l eossID

-SearchVaIue
=l .Output- Response

= [EnamesearchResponse
= [l ofhcommarea
[BlReturncode
BlReturnmsg
.Sequel(:ode
[Bl c1csRreturncode
Schema Outputs Header)
[BlHostsysid
= E nameSearchResponse e .Totalcounter
= € Dfhcommarea [BlFetchcounter
~ ReturnCode = [l Clientinfo
£ ReturnMsg Bl clientname
£ sequelCode Bl ProduceriD
£ cICsReturnCode B ClientNumber
. HostSysid [Bl PhoneNumber

. TotalCounter
. FetchCounter
= € ClientInfo
€ ClientName 7

Note: SOLA Outbound plugin can now consume WSDLs where element names are bigger than
50 characters.

SOLA Developer User’s Guide

7

Clicking the Finalize button will create a mainframe copybook in the language you chose, a
template (runtime metadata), directory (UDDI) entries and a test harness.

Sometimes the WSDL you’re using isn’'t complete, and may only have the basic minimum
information on the fields within it. For example, a field may be defined as a string datatype, but
the WSDL doesn’t say how long the field is. This is acceptable on distributed platforms, which
use null terminated strings, but it isn’t enough to build a mainframe copybook.

If no information is available in the WSDL, then by default SOLA will generate the legacy
copybook as follows:

B String datatypes will be generated as PIC X(01).

® Double datatype will be generated as PIC S9(13)V9(4) COMP-3
® Unbounded arrays will be generated as OCCURS 9.
|

All other datatypes will be generated according to their standard specifications, such as
date, long, etc.

If the WSDL you’re using lacks information then you'’ll have to tell SOLA about the fields, and
you can do that by choosing “Display Table View” for the Legacy structure, as follows:

WSC-XMLPC103-AREA . .
Right click on the Legacy Structure and choose

JE:E;E;:TLRF: Edit Legacy Name “Display Table View” from the pop-up menu.
= [l names Birslansiollo oy _Thls will display the fields in the Legacy structure
Bl co: L in a columnar format.
Apply Dictionary
|1 B _
3 .Output-F Matching Report
:I.nameSearchResponse
:I. Dfhcommarea
. ReturnCode

SOLA will display a floating pop-up window where you'll be able to adjust the field metadata that
will be generated into the legacy copybook.

Schema Inputs Header WSC-XMLPC103-AREA

-1 € nameSearch — I wsc-¥MILPC1N3-AREA
TableView =

XPath: fWSC-XMLPC103-AREA

Rowld Column Name Precision Scale le] Data Type Edit Check Code = Transfor
1 WSC-XMLPC103-AREA B e
2 Input-Request 4] 0 | X
3 nameSearch 256 |
4 BossID 8 0 |
] SearchValue 25 0 |
6 Output-Response 0 0 o] X
7 nameSearchResponse 256 0
8 Dfhcommarea 256 0 b/
< >
: S———
&~ ReturnMsg @l clientName

96

SOLA Developer User’s Guide

7

Overtype the “Precision” field to modify the length of a character field. Modify the number of
occurs by overtyping the Occurs field.

Note: With newer releases of SOLA the Commarea structure item (Cltem) column named Data
Type will no longer contain a value. This has been deprecated for commarea structures.

97

SOLA Developer User’s Guide

7

The Generated Interface Copybook

WARNING: Do not modify the generated copybook. Any modification can result in
unpredictable behavior. If you need to make changes, do so by re-analyzing the method and
make the necessary changes using the SOLA Analyzer.

WARNING: When including the copybook in your COBOL program DO NOT use the SYNC
option as this will force full word alignment and possibly cause the address of copybook
variables to no longer match the displacements recorded in the template metadata.

The copybook that SOLA generates has three sections, a protocol section, an input section and
an output section. Because the copybook is generated you shouldn’t modify it when overriding
parameters, instead move the new values in your program prior to the call to SOLA. In the
example above the protocol section of the COBOL copybook would look as follows:

* 01 WSC-XMLPC103-LINKAGE.
02 WSC-INPUT-DATA.

03 WSC-ENVIRONMENT PIC X(01l) VALUE 'O'.
88 CICSINTERFACE VALUE 'O' 'C'.
88 CICSCONTAINER VALUE 'C'.
88 BATCHINTERFACE VALUE 'B'.
03 WSC-METHOD-NAME PIC X (35)
VALUE 'TestLargeComplexData'.
03 WSC-TEMPLATE-NAME PIC X (08)
VALUE 'QWCTO0601'.
03 WSC-TRANSPORT-PROT PIC X(01) VALUE 'H'.
88 HTTPPROTOCOL VALUE 'H'.
88 MQPROTOCOL VALUE 'M'.
03 WSC-ENDPOINT-DATA.
04 WSC-SSL-IND PIC X(01) VALUE 'N'.
88 USE-SSL VALUE 'Y'.
88 AT-TLS VALUE 'A'.
88 NO-SSL VALUE 'N'.
04 WSC-NODE-1 PIC 9(03) VALUE 000.
04 WSC-NODE-2 PIC 9(03) VALUE 000.
04 WSC-NODE-3 PIC 9(03) VALUE 000.
04 WSC-NODE-4 PIC 9(03) VALUE 000.
04 WSC-PORT PIC 9(05) VALUE 80.
04 WSC-FQDN PIC X (128)
VALUE 'inside.test.principal.com'.
04 WSC-FILE-PATH PIC X (128)
VALUE '/SolaOutboundTesting/services/SolaOutboundTestingSer
- 'vice'
04 WSC-PROXY PIC X (122) VALUE SPACE.
04 WSC-PROXY-PORT PIC 9(05) VALUE O.
03 WSC-MQ-MANAGER-DATA REDEFINES WSC-ENDPOINT-DATA.
04 WSC-CONVERS-TYPE PIC X (01).
88 DATAGRAM VALUE 'D'.
88 REQUESTREPLY VALUE 'R'.
88 REPLYTO VALUE 'T'.
04 WSC-MANAGER-NAME PIC X (4).
04 WSC-QUEUE-NAME PIC X (4
04 WSC-REPLY-TO-QUEUE PIC X (4 .
04 FILLER PIC X(129

98

SOLA Developer User’s Guide

04 WSC-MSG-EXPIRY PIC 9(9).
04 WSC-MSG-PRIORITY PIC 9(9).
04 WSC-DATAGRAM-SYNCPOINT-CTL.
06 WSC-SYNCPOINT-CTL-FLG PIC 9.
88 MQSYNC-APPL-CONTROLLED VALUE 1.
06 WSC-MQCONN-HANDLE PIC S9(9) BINARY.
04 WSC-MQGET-DATA-CONVERSION PIC 9.
88 MQGET-CONVERT-DATA VALUE 1.
02 WSC-OUTPUT-DATA.
03 WSC-RETURN-CD PIC S9(04) BINARY VALUE +0.
88 NORMAL-COMPLETION VALUE +00.
88 ARRAY-OVERFLOW VALUE +01.
88 DATA-TRUNCATED VALUE +02.
88 OVERFLOW-AND-TRUNC VALUE +03.
88 INVALID-CALL VALUE -01.
88 PROCESS-ERROR VALUE -02.
88 SERVICE-FAILURE VALUE -03.
88 SOAP-FAULT VALUE -04.
88 CONNECTION-FAILURE VALUE -05.
88 DOM-ERROR VALUE -06.
88 VALIDATION-FAILURE VALUE -07.
88 PROGRAM-ABEND VALUE -99.
03 WSC-RETURN-MSG PIC X (100) VALUE SPACE.
02 WSC-INVOKE-TRACE PIC X(001) VALUE 'N'.
02 WSC-WARNING-FLAG PIC X (01) VALUE 'I'.

88 REPORT-WARNINGS VALUE 'R'.
88 IGNORE-WARNINGS VALUE 'I'.
02 WSC-VALIDATE-SCHEMA PIC X (01) VALUE ' '.
88 VALIDATE-REQ-SCHEMA VALUE 'I' 'B'.
88 VALIDATE-RESP-SCHEMA VALUE 'O' 'B'.
88 VALIDATE-ALL-SCHEMA VALUE 'B'.

02 WSC-FUTURE-USE PIC X (002) VALUE SPACE.

02 WSC-TIMEOUT-SECONDS PIC S9(05) COMP-3 VALUE +0.

02 WSC-TIMEOUT-MICROSEC PIC S9(05) COMP-3 VALUE +0.

02 WSC-CONNECTION-CLOSE PIC X (01) VALUE 'N'.
88 CLOSE-CONNECTION VALUE 'Y'.
88 REUSE-CONNECTION VALUE 'N'.

02 WSC-TCPIP-JOBNAME PIC X(008) VALUE SPACE.

02 WSC-RELEASE-TMPL-STORAGE PIC X(001) VALUE 'N'.
88 ReleaseTemplateStorage VALUE 'Y'.

02 FILLER PIC X(080) VALUE SPACE.

02 WSC-INTERNAL-USAGE PIC X(118) VALUE SPACE.

02 WSC-METHOD-AREA PIC X (101500).

02 WSC-SOAP-Fault REDEFINES WSC-METHOD-AREA.

10 WSC-Fault-Code PIC X (50).

10 WSC-Fault-String.
15 WSC-Fault-Str-Len PIC S9(04) BINARY.
15 WSC-Fault-Str-Text PIC X (500).

02 Input-Request REDEFINES WSC-METHOD-AREA.
03 TestlLargeComplexData.
04 LargeComplexDataln.
05 person
OCCURS 500 TIMES.
06 firstName PIC X (25).
06 middileName PIC X (25).

99

SOLA Developer User’s Guide

7

06 lastName PIC X (25).
06 privacyId PIC S9(09) COMP.
*xxxxxxx The following comment refer to variable below
xAAFxFxxx date format e.g - 2002-10-10+05:00
06 dateOfBirth PIC X(leo).
06 phoneNumber PIC X (12)
OCCURS 9 TIMES.
02 Output-Response
REDEFINES Input-Request.
03 TestLargeComplexDataResponse.
04 LargeComplexDataOut.
05 person
OCCURS 500 TIMES.

06 firstName PIC X (25).
06 middileName PIC X (25).
06 lastName PIC X (25).
06 privacyId PIC S9(09) COMP.

*xxxxxxx The following comment refer to variable below
xAAKxxxxx date format e.g - 2002-10-10+05:00
06 dateOfBirth PIC X(le6).
06 phoneNumber PIC X (12)
OCCURS 9 TIMES.

The major fields in the protocol section are described below:

WSC-ENVIRONMENT : Set this to ‘O’ for CICS programs, ‘C’ for containers, and ‘B’ for all
other programs (IMS, Batch, DB2 Stored Procedure, etc). The default is ‘O’.

WSC-METHOD-NAME: The web service operation name, extracted from the WSDL. Do not
modify this field.

WSC-TEMPLATE-NAME: The name of the runtime metadata template. Do not modify this
field.

WSC-TRANSPORT-PROT: Set this field to ‘H’ for http transport or M for MQ transport. The
default is ‘H.

WSC-SSL-IND: Set this field to 'Y’ to use SSL security, ‘A’ for AT-TLS or ‘N’ for none. The
default is ‘N’. When the field is set to Y’ then your outbound invocation will use native SOLA
SSL support. This supports SSL 3.0 protocol and accepts server certificate having either 1024
or 2048-bit RSA keys. When the field is set to ‘A’ then your outbound invocation will exploit zOS
TCPIP enabled AT-TLS (Application Transparent TLS).

Note: Contact your local zOS support to configure AT-TLS policy. AT-TLS supports SSL3.0
and TLS1.0 protocol.

http Data: The next few fields are only relevant to http transport.

WSC-NODE-1 thru WSC-NODE-4: Use these four fields to specify the 4 nodes of the IP

address that your web service’s binding endpoint. Leave these fields as zero if you want SOLA
to use DNS to resolve your FQDN.

100

SOLA Developer User’s Guide

7

WSC-PORT: Use this field to specify the port number. By default this field is extracted from the
port number of the soap:address location attribute.

WSC-FQDN: Use this field to specify the FQDN for your web service’s binding endpoint. By
default this field is extracted from the soap:address location attribute.

WSC-FILE-PATH: This field is extracted from the filepath of the soap:address location attribute.

WSC-PROXY: If your service is accessed through a proxy server then enter the FQDN of the
proxy in this field.

WSC-PROXY-PORT: Specify the port number of the proxy in this field.

NMOTE: SO0LA QOutbound Processor now supports passing extended file path URI
by using the 122 byte storage of the WSC-PROXY field as additional storage. The
application driver invoking the SOLA outbound processor has to set the WSC-

PROXY-PORT field as follows:

MOWE 99999 TO WSC-PROXY-PORT
and set the extended file path of up to 230 bytes by using storage areas of WSC-
FILE-PATH (128 bytes) & WSC-PROXY {122 hytes].

MQ Data: The next few fields are only relevant to MQ transport

WSC-CONVERS-TYPE: Specify the MQ conversation type in this field. ‘D’ for Datagram, ‘R’ for
RequestReply or ‘T’ for ReplyTo.

WSC-MANAGER-NAME: The name of the MQ Queue Manager to connect to.
WSC-QUEUE-NAME: The name of the queue that SOLA should write to.
WSC-REPLY-TO-QUEUE: The name of the reply queue

WSC-MSG-EXPIRY: This represents the time (in milliseconds) that a message placed on a
gueue is allowed to persist before being removed by the queue manager. The default is to have

the message persist indefinitely.
WSC-MSG-PRIORITY: The priority to be assigned to the message.

WSC-SYNCPOINT-CTL-FLG: The fields WSC-SYNCPOINT-CTL-FLG and WSC-MQHCONN-
HANDLE go together. If the client wants to control sync/rollback operations when using
outbound over MQ messaging protocol, then he must set WSC-SYNCPOINT-CTL-FLG. If this
flag is set then he must also provide WSC-MQHCONN-HANDLE during the call which
represents a particular MQ manager that SOLA will use during the outbound processing.

101

7

SOLA Developer User’s Guide

WSC-MQCONN-HANDLE: This represents a connection handle (automatically returned to the
application after a request for a connection), that is, the connection to a particular queue
manager. Normally when SOLA returns to an application during outbound calls, any MQ
message processing has already automatically been "synced on return”. If however the
application wants to control sync/rollback operations itself, then the application must pass in a
particular connection handle which SOLA will use during all outbound processing of MQ
messages.

Please note if MQ is used: CSD Definition and XML9 definition for TRANCLASS is shipped with
the default DFHTCLOO and must be customized at setup.

WSC-MQGET-DATA-CONVERSION: This tells SOLA whether to perform any data conversion
on messages that are being retrieved on behalf of the application. The conversion of the
message will be in accordance to the encoding used when the message was originally placed
on the queue.

WSC-RETURN-CD: The return code issued by SOLA. Values are:

NORMAL-COMPLETION VALUE +00
ARRAY-OVERFLOW VALUE +01
DATA-TRUNCATED VALUE +02
OVERFLOW-AND-TRUNC VALUE +03
INVALID-CALL VALUE -01
PROCESS-ERROR VALUE -02
SERVICE-FAILURE VALUE -03
SOAP-FAULT VALUE -04
CONNECTION-FAILURE VALUE -05
DOM-ERROR VALUE -06
VALIDATION-FAILURE VALUE -07
PROGRAM-ABEND VALUE -99

WSC-RETURN-MSG: The error message issued by SOLA if WSC-RETURN-CODE is negative.

WSC-INVOKE-TRACE: Set this field to ‘Y’ to turn on a detailed trace. Use for debugging
purposes only, as the volume of trace data can be large.

WSC-WARNING-FLAG: Set this field to ‘R’ to report validation failures, or ‘I’ to ignore validation
failures. See the Validation section on page 104 for details.

WSC-VALIDATE-SCHEMA: Set this field to ‘I’ to validate requests, ‘O’ to validate responses or
‘B’ to validate both. See the Validation section on page 104 for details.

WSC-TIMEOUT-SECONDS and WSC-TIMEOUT-MICROSEC: How long SOLA should wait for
a response from the remote web service before timing out.

WSC-CONNECTION-CLOSE: Whether SOLA should close the TCPIP connection when the
service has completed. Specify ‘Y’ to close the connection or ‘N’ to leave the connection open
for high-volume batch applications.

WSC-TCPIP-JOBNAME: The name of the TCPIP stack that SOLA should connect to. If this
field is blank then SOLA will connect to “TCPIP".

102

SOLA Developer User’s Guide

7

WSC-RELEASE-TMPL-STORAGE: Flag to indicate if SOLA should release the loaded
template when the service invocation is completed.
Note: Set this flag to ‘Y’ if you are running under IMS and using SOLA Outbound plugin.

SOAP Faults

If a soap fault is returned by the remote service then WSC-RETURN-CD will contain -04 and the
following fields will be populated with the text of the soap fault. The fault area redefines the
soap input area.

WSC-Fault-Code: A Code that represents the fault
WSC-Fault-String: A string containing the text of the soap fault.

SOAP Request Area

This area will contain the fields that the remote service requires you to provide. Inthe example
of the nameSearch service, the fields are:

02 Input-Request REDEFINES WSC-METHOD-AREA.
03 nameSearch.
04 BossID PIC X(8).
04 SearchValue PIC X (25).

SOAP Response Area

This area will contain the fields that the remote service returns. In the example of the
nameSearch service, the fields are:

02 Output-Response
REDEFINES Input-Request.
03 nameSearchResponse.
04 Dfhcommarea.

05 ReturnCode PIC S9(04) COMP.
05 ReturnMsg PIC X (100).

05 SequelCode PIC S9(04) COMP.
05 CICSReturnCode PIC X (4).

05 HostSysid PIC X (4).

05 TotalCounter PIC S9(04) COMP.
05 FetchCounter PIC S9(04) COMP.

05 ClientInfo
OCCURS 300 TIMES.

06 ClientName PIC X (45).
06 ProducerID PIC X(7).
06 ClientNumber PIC S9(09) COMP.
06 PhoneNumber PIC X (20).

103

SOLA Developer User’s Guide

7

Validation

SOLA has the capability to validate runtime data according to the schema data type. There are
two protocol fields in the copybook that are used for validation: WSC-VALIDATE-SCHEMA and
WSC-WARNING-FLAG.

To enable validation, WSC-VALIDATE-SCHEMA must be set to ‘I’ (to validate requests), ‘O’ (to
validate responses) or ‘B’ (to validate both).

Additionally, you can instruct SOLA to report or to ignore validation failures. Setting WSC-
WARNING-FLAG to ‘R’ will report validation failures, while setting it ‘I’ will ignore them.

WSC-RETURN-CD will return a code of -07 if WSC-WARNING-FLAG is set to ‘R’.

Using SOLA to Invoke Outbound Requests

At runtime, it’s fairly simple to invoke an Outbound web service. All that’s required is to fill in the
input fields in the generated copybook, override any fields in the protocol section, and call the
SOLA Outbound utility module XMLPC103.

Because the values in the protocol section were extracted from your WSDL, you may need to
override them. For example, when you imported the WSDL the soap:address may have
referenced a version of the outbound service that resides on a development server, but in your
test and production systems you would want to use a test or production version of the service.
This can be accomplished using virtual services defined in SOA Software’s Service manager, or
by overriding the FQDN field in the WSC-XMLPC103-LINKAGE copybook.

Invoking an outbound service from CICS

Format 1. Copybook less than 32k

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103'.

EXEC CICS LINK
PROGRAM (WS-XMLPC103)

COMMAREA (WSC-XMLPC103-LINKAGE)
LENGTH (LENGTH OF WSC-XMLPC103-LINKAGE)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC

104

SOLA Developer User’s Guide

7

Format 2. Copybook greater than 32k

First place the SOLA generated copybook in a container called ‘SOLA-CONTAINER’ (the
Channel and Container names are important and must be as shown).

MOVE 'SOLA-CHANNEL' TO WS-SOLA-CHANNEL
MOVE 'SOLA-CONTAINER' TO WS-SOLA-CONTAINER
MOVE LENGTH OF WSC-XMLPC103-LINKAGE TO WS-CONTAINER-LEN

EXEC CICS PUT
CONTAINER (WS-SOLA-CONTAINER)

(
Channel (WS-SOLA-CHANNEL)
From (WSC-XMLPC103-LINKAGE)
FLENGTH (WS-CONTAINER-LEN)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC

Now link to XMLPC103 passing the Channel.

EXEC CICS LINK
PROGRAM (WS-XMLPC103)

Channel (WS-SOLA-CHANNEL)

RESP (WS-RESP)

RESP2 (WS-RESP2)
END-EXEC

Invoking an outbound service from Batch, IMS, DB2 Stored Proc, etc.

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103’.

CALL WS-XMLPC103 USING WSC-XMLPC1l03-LINKAGE

Using WS-Security with Outbound requests

The current version of SOLA doesn’t support WS-Policy for Outbound web services requests.
SOLA does however expose its internal Policy interface to allow web service requestors to
influence the creation of the wsse:Security header on Outbound requests.

This interface is remarkably simple to use; all that’s required is to provide a second copybook
containing the security credentials. The methods of calling SOLA with the second copybook are
limited to:

e CALL USING WSC-XMLPC103-LINKAGE, WSC-SECURITY-TOKEN for non CICS calls
e EXEC CICS LINK using two containers, the first containing WSC-XMLPC103-LINKAGE
and the second containing the WSC-SECURITY-TOKEN.

The Security Structure WSC-SECURITY-TOKEN is provided in the SOLA SAMPLIB as member
SECTOKEN. Include this member in your program and populate it before calling XMLPC103.

105

SOLA Developer User’s Guide

01 WSC-SECURITY-TOKEN.
05 WSC-Eye-Catcher PIC X (08) VALUE 'SECTOKEN'.
05 WSC-Security-Head-Cnt PIC S9(04) VALUE +0 BINARY.
05 WSC-Security-Info OCCURS 3 TIMES.

Kmmmm must understand is attribute of the security
Kmmmm if you chose to ignore it, fill it with spaces.
K e e ———_———_—_—_—_—_—_E—E—E—E—E———————————
10 WSC-Must-Understand PIC X (01).
88 MustUnderStand-0 VALUE '0'.
88 MustUnderStand-1 VALUE '1'.
88 OmitMustUndrStnd VALUE ' '.
10 Actor PIC X (64).
10 WSC-Add-Timestamp PIC X (01).
88 No-Timestamp VALUE 'N' ' ',
88 Add-Timestamp VALUE 'T'.

10 WSC-Token-Timestamp.

*---- Create must be sent in the following format
*---- example - 2009-11-12T05:13:51.428%2
*-—--- Fill create with spaces if not provided.
*---- If spaces, SOLA will use current GMT timestamp
g

15 T-Create-Token-Tm PIC X (26)
g
g
*--- Expire may be sent in the format 2009-11-12T05:13:51.428%
*--- Fille it with spaces or low value if not provided
g g g

15 T-Expire-Token-Tm PIC X (206).
K e -
*--- Expire may also be given as interval from current time
*--- 1in seconds

15 T-Expire-Interval.
20 T-expire-Seconds PIC S9(09) BINARY.

10 FILLER PIC X (256).
10 WSC-Token-Cnt PIC S9(04) BINARY.
10 WSC-Token-Data OCCURS 3 TIMES.

15 WSC-Token-Type PIC X (01).

88 UserNameToken VALUE 'U'.

88 Custom-Token VALUE 'C'.
e)
Aemmmmm e Provide the user name --------

K e e
15 Username-Token PIC X (256).
K e e
oo If custom token is sent, you need to ----
Kmmmm - pass the entire xml text ---------—-—----

15 Custom-Token-Data REDEFINES
Username-Token.
20 Cust-Token-Len PIC S9(09) COMP.
20 Cust-Token-Ptr POINTER.
20 FILLER PIC X (248).

Kmmmm = If password is not sent in the clear text

106

SOLA Developer User’s Guide

e —— a digest can be passed
*ommm e digest password = BASE64 (SHA-1 (Nonce+create+password))

15 Password-type-ind PIC X (01).
88 Clear-text VALUE 'C' ' '.
88 Digest-bo64 VALUE 'B'.

*-If your password 1is in cleare text or digest format

*-set d-no-action to true (when sending digest, use base64 format)
*-If you want sola to generate digest then

*-Set Generate-digest to true (ICSF must be active)

*-In this case SOLA will generate digest as follows

*-digest password = BASE64 (SHA-1 (Nonce+create+password))

*-SOLA will generate digst from password after converting to utf8

15 Password-action PIC X(01).
88 d-no-action VALUE 'N' ' ',
88 Generate-digest VALUE 'G'.

15 Password-Token PIC X(128).
K e e e —— ————————————— e
Kmmm e — Below is example of nonce format
e —— If clear-text and no-action
A —— fill nonce with spaces
Kmmmm = must fill password with clear text ebcdic
A —— If digest-b64 and generate-digest
A —— Either fill nonce with binary
A —— or fill it with space so SOLA will generate
e —— fill password with clear text (ebcdic)
e —— fill create with value or space for sola to
Kmmmmm = generate
e —— If digest-b64 and no-action
Kmmmmm - must fill nonce with base64 value
Kmmmm o ——— must fill password with base64 digest
Kmmmm o ——— must fill create
Koo m = If clear-text and generate-digest
A —— generate-digest is ignored
K e e

15 Password-Nonce PIC X (128)
K o e e —————_———_—_——_—_——————_——E————_————————
Homm oo Nonce encoding attribute is for future use
Homm oo If encoding type is set to spaces,
Homm oo this attribute will not be populated
K o e e ————————————_——————————————————————

15 Nonce-encoding PIC X(1).

88 Dbase64-binary VALUE 'B' ' '.

*---- Create must be sent in the following format

*-—-- example - 2009-11-12T05:13:51.428%

*-—--- Fill create with spaces if not provided.

*-—--- If spaces, SOLA will use current GMT timestamp

K e e
15 Create-Token-Tm PIC X(26).

K o e e —————————————————————

Kmmmmm—— The timestamp token will be filled

Kmmmm If you indicate add-timestamp

Kmmmm Timestamp element is added to Security header

Kmmmm outside username token if present

107

SOLA Developer User’s Guide

g

g g g

*--- WS-Addressing for future use only -----------------

g g g g g g
10 WSC-Addressing.

15 Addressing-Container.

20 Add-Value-Len PIC S9(09) COMP.

20 Add-Value-Ptr Pointer.

20 Add-Value-filler PIC X(08).
g g g g g
Ao For future only--------—--—--——-—-——-—-———-——-
g g g

05 WSC-RM
10 RM-Container.

15 RM-Value-Len PIC S9(09) COMP.

15 RM-Value-Ptr Pointer.

15 RM-Value-filler PIC X (08).
g
A For future only--------------"-"-"-"-"-"—-"-"—————
g g

05 WSC-XML-Encryption.
10 Enc-Container.

15 Enc-Value-Len PIC S9(09) COMP.

15 Enc-Value-Ptr Pointer.

15 Enc-Value-filler PIC X(08).
g g
Ao mm e For future only-------—----—--—---—-—-——-—-————
g

05 WSC-XML-Signature.
10 Sig-Container.

15 Sig-Value-Len PIC S9(09) COMP.

15 Sig-Value-Ptr Pointer.

15 Sig-Value-filler PIC X (08).

05 Filler PIC X (250).

05 WSC-Http-Head-Cnt PIC S9(04) VALUE +0 BINARY.
g
o m oo Repeat the header info based on count-
g

05 WSC-HTTP-Header-Info OCCURS 1 TO 15 TIMES

DEPENDING ON WSC-Http-Head-Cnt.
g
Hmmm oo Header value can be given--------——-------
Ko mmmm o= as text up to 128 bytes ---------------
Koo mmmm o or len + pointer in case of batch program
Hmmm oo or CICS Container name that contains the value
g
10 Http-Value-Ind PIC X(1).

88 Value-given VALUE 'V' ' ',

88 Pointer-given VALUE 'P'.

88 Container-given VALUE 'C'.
g
Koo Below is an example of name value pair -----
g
Ko m Cookie: S$Version=1; UserId=JohnDoe
Fom Accept: */*

Homm If-None-Match: "737060cd8c284d8af7ad3082£2095824d"
g

108

SOLA Developer User’s Guide

e —— You can also put custom headers such as------
Homm custom-header: <some value >
g

10 Http-Name-value-pair PIC X (256).
g
Kmmmm oo Fill container name if using CICS Containers
Kmmmm oo else use pointer if the value is bigger than 256

10 Http-Nm-value-Long.

15 Http-Nm-Value-Len PIC S9(09) COMP.
15 Http-Nm-Value-Container.
20 Http-Nm-Value-Ptr Pointer.
20 Http-Nm-Value-filler PIC X (12).
*x*x*x*%0)5 WSC-Additional-HTTP-Header PIC S9(04) wvalue zero.
05 Filler PIC X (256).
g
* if additional header needs to be added on http
* please uncomment 3 lines below and keep repeating
* them for each additional header
g
* 05 WSC-NO-OF-HEADERS.
* 10 WSC-Header PIC X (128).
* 10 WsC-Header-value-len PIC S9(04).
* 10 WsC-Header-value PIC X (256).
g g
***-— the above WSC-Header-value can be expanded up to 4k
**x-- please make sure WSC-HEADER-value-len contains the
***-- corrent length else wrong data will be sent
g
***-—- End of security section
g
g
Fomm Encryption and signatures are for future use only
oo Not currently supported -----—--—-—-—-—---

01 WSC-Encryption-Decryption.
05 WSC-Encryption.

*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Enc-ICSFKey PIC X (64).
*--Future only-------—-—- Cert Container or pointer

10 WSC-Enc-Cert-Container.
15 WSC-Enc-Cert-Pointer wusage is pointer.
15 WSC-Enc-Cert-FIller PIC X (12).

*--Future only-------- can define partial x path to fit
e m e in 256 bytes
10 WSC-Enc-Element PIC X (256) occurs 3 times.
05 WSC-Decryption.
*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Dec-ICSFKey PIC X (64).

01 WSC-Signature.
05 WSC-Signature-create.

*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Sign-ICSFKey PIC X (64).
*--Future only-------- can define partial x path to fit
e e in 256 bytes
10 WSC-Sign-Element PIC X (256) occurs 3 times.

05 WSC-Sign-Verify.

109

SOLA Developer User’s Guide

7

*--Future only--------- RSA Key must be defined in ICSF
10 WSC-Veri-ICSFKey PIC X (64).
10 WSC-Veri-Cert-Container.
15 WSC-Veri-Cert-Pointer usage is pointer.
15 WSC-Veri-Cert-FIller PIC X (12).

Here’s a brief description of how to use the fields in the SECTOKEN copybook:
WSC-Security-Head-Cnt: Indicates the number of Security Headers to include.

WSC-Must-Understand: A one byte field. Values ‘0’ ‘1’ and ‘ ‘. A blank causes the attribute to
be omitted entirely.

Actor: If value is other than spaces then it will be added as the ‘actor’ attribute to the
wsse:Security element.

WSC-Token-Cnt: Indicates the number of user name tokens (wsse:UsernameToken) to be
added (up to 3).

WSC-Token-Type: ‘C’ for custom (not yet supported) or ‘U’ for Username Token (supported)
Username-Token: The user name token.

Password-type-ind: ‘C’ “ “ or ‘B’. This indicates if the password is clear text (‘C’ or blank) or a
base64 digest (‘B’)

Password-action: ‘N’, * “ or ‘G’. ‘N’ or blank indicates that there is no action needed on the
Password. Either you should provide (and wish to use) plain text, or you must provide the
base64 digest yourself. ‘G’ indicates to SOLA that we need to generate the digest using the
provide plain text password.

Password-Token: The clear text password of the base64 digest password.
Password-Nonce: If digest is used this is the value of the Nonce.

Nonce-encoding: For future use. Currently only base64 is supported.

Create-Token-Tm: If using a digest this is the Created time

WSC-Add-Timestamp: ‘T’ if you want SOLA to add a timestamp to your request.

Invoking an Outbound Service from CICS using WS-Security

Please refer to program WCC6032A, which is shipped in the SOLA SAMPLIB, for a sample
program that invokes the WS-Security interface from a CICS program.

An abbreviated description of the process is as follows:

First place the SOLA generated copybook in a container called ‘SOLA-CONTAINER’ (the
Channel and Container names are important and must be as shown).

110

SOLA Developer User’s Guide

7

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103’.
MOVE 'SOLA-CHANNEL' TO WS-SOLA-CHANNEL
MOVE 'SOLA-CONTAINER' TO WS-SOLA-CONTAINER

MOVE LENGTH OF WSC-XMLPC103-LINKAGE TO WS-CONTAINER-LEN

EXEC CICS PUT
CONTAINER (WS-SOLA-CONTAINER)

(
Channel (WS-SOLA-CHANNEL)
From (WSC-XMLPC103-LINKAGE)
FLENGTH (WS-CONTAINER-LEN)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC

Then place the security token data structure into a container called ‘SOLA-SECURITY”’ as

shown.
MOVE 'SOLA-CHANNEL' TO WS-SOLA-CHANNEL
MOVE 'SOLA-SECURITY' TO WS-SOLA-CONTAINER

MOVE LENGTH OF WSC-SECURITY-TOKEN TO WS-CONTAINER-LEN

EXEC CICS PUT

CONTAINER (WS-SECUR-CONTAINER)
Channel (WS-SOLA-CHANNEL)
From (WSC-SECURITY-TOKEN)
FLENGTH (WS-CONTAINER-LEN)
RESP (WS-RESP)
RESP2 (WS-RESP2)

END-EXEC

Now link to XMLPC103 passing the Channel.

EXEC CICS LINK
PROGRAM (WS-XMLPC103)

Channel (WS-SOLA-CHANNEL)

RESP (WS-RESP)

RESP2 (WS-RESP2)
END-EXEC

Invoking an Outbound Service from Batch, IMS, DB2 Stored Proc, etc using WS-
Security

Please refer to program WCC6032B, which is shipped in the SOLA SAMPLIB, for a sample
program that invokes the WS-Security interface from a non-CICS program.

An abbreviated description of the process is as follows:

Populate the two copybooks then call the SOLA Outbound utility module XMLPC103. The
example below shows a COBOL version of the call.

01 WS-XMLPC103 PIC X (08) VALUE ‘XMLPC103'.

111

SOLA Developer User’s Guide

7

CALL WS-XMLPC103 USING WSC-XMLPC103-LINKAGE
, WSC-SECURITY-TOKEN

112

SOLA Developer User’s Guide

7

Analyzer Reference

This section contains information about the various menu options, properties and alternate
views available in the analyzer. You can use this reference to increase your familiarity with the
analyzer, as well as learn how to perform more complex analysis using the full capabilities of
SOLA Developer.

Analyzer Button Bar

Prefix: APPLY DICTIONARY FINALIZE

Prefix Exclusion Field: this field allows for a prefix or a group of prefixes to be entered for
exclusion from the field names. If more than one prefix is entered, prefixes must be separated
by commas. The prefix field works as a preprocessing step when APPLY DICTIONARY is
clicked. The unwanted prefixes are first stripped off, and the resulting names are then fed into
the dictionary.

APPLY DICTIONARY: this button applies the SOLA dictionary to every item in either the
legacy tree or the schema tree, depending on what type of analysis you are doing (outbound,
inbound, etc.). For more information about the SOLA dictionary, see page 246.

FINALIZE: this button will finalize the analysis, and create the method.

113

SOLA Developer User’s Guide

7

Legacy and Schema Trees

Depending on the type of web service you are creating (bottom up, top down, etc.), which one of
the two tree types (legacy or schema) is the target of your analysis may differ. However, the
drag and drop functionality is identical regardless of analysis type.

Tree Placement

The location of the trees will vary depending on which type of analysis you are doing.

Inbound, bottom up analysis: the legacy tree is on the left, and the schema tree, which is the
target of the analysis (the one you build and/or configure when analyzing) is on the right. This
includes callable and channel/container analysis, which is always inbound bottom-up.

Outbound or inbound top-down analysis: the schema tree is on the left, and the legacy tree,
which is the target of the analysis (the one you build and/or configure when analyzing) is on the
right.

Inbound, meet-in-the-middle analysis: the legacy tree is on the left, and the schema tree is
on the right. Both trees are considered as source trees and so are frozen from any drag and
drop updates. The only user update permitted is the establishing of links between legacy and
schema tree elements.

When dragging items from one tree to another, you drag from the left tree to the right tree.

Prefnalyss || Analysis * Astyan

Prefix: APPLY DICTIONARY FINALIZE
Schema Inputs DFHCOMMAREA ORCOMHARLA Schewa tgnts
2 € sweNameSearchl =B DFHCOMMAREA - ‘. "
€ Bossld [Bllreturncode o
o € SearchType Bllreturnisg o
L SEARCHBYNAME [BlFrogramversion
LI sEARCHBYSSN Bl sqlreturnCode € w
€ searchvalus Blcicsre E €
= & AccessMethod Heossid
LIFIRMWIDEACCESS = [l 5earchType
e [sEARCHBYNAVME Satrons Owtpmt
B SEARCHBYSSN ™
£

= £ sweNameSearchiResponse -
= € DFHCOMMAREA

£ ReturnCode
£ ReturnMsg
£ Programversion
£ sqlReturnCode
& cIcsre
£ TotalCounter i

Bl searchvalue
= [l AccessMethad

B rcaccess
“MNGMNTACCESS
[FIRMWIDEACCESS

[l Hostsysid

Bl TotalCounter

BlFetchCounter

m

a
-
£

Outbound & Inbound Top Down All other types
The tree on the left is referred to as the “source tree”, because that’s the structure you will use
to build either a WSDL (inbound bottom-up, callable, container) or a copybook (outbound,
inbound top-down).

The tree on the right is called the “target tree”, because that’s the tree you are building to create
your web setrvice.

114

SOLA Developer User’s Guide

7

Header Tabs

Both the Schema Inputs and Schema Schema Inputs || Header
Outputs section have a Header tab. This
allows you to configure the input and output
SOAP header for the web service you are
creating.

€ Header

Adding elements to the headers works the
same way as adding elements to the input
our output sections of the schema.

Click on the header tab (input or output)
you want to configure, and drag items into
that section.

Drag and Drop Operations

The legacy and schema trees support the following drag and drop operations:

Copy item from one tree to another: you can drag and drop items from the source tree (left)
to the target tree (right). When building a web service, depending on the type of analysis
(inbound, outbound, etc.), you are either building a WSDL or a copybook. Dragging items from
the source tree to the target tree is how that WSDL or copybook is constructed. Detailed
information about how to conduct an analysis begins on page 45. When you drag an item from
the source tree to the target tree, the item remains in the source tree and an equivalent item
ends up in the target tree. The destination item will be linked (associated) with the source item
(see below).

CTRL Copy item from one tree to another:

i Schema Inputs Header
you can access a special menu of drag and

drop operations by holding down the CTRL = 4 Append Legacy Item
key when you drag an item from one tree to
another. Append Default Ttem

As=zociate Legacy Item

m Append Legacy Item: this is the DependingOn Legacy Ttem
default drag and drop operation
and is the same as not using the
CTRL key. Cancel Operation

Redefine Legacy Item

= Append Default Item: this moves
the item from the left tree to the right tree, but sets its node type as “default”. This
means that it will not be in the schema and SOLA will pass a default value to the
legacy program. You will need to set the value using the properties panel.

®m Associate Legacy Iltem: when an item is moved from the source tree (left) to the
target tree (right), it will have an association with its source. That way, you will
always know the source of the item in the tree you are building and/or configuring,

115

SOLA Developer User’s Guide

even if you change its name. However, if you create a new item in the target tree, it
will not have an associated source tree item. You can then use this CTRL-drag
operation to create an association for that item. You can also use this operation to
override an existing association and create a hew one.

= DependingOn Legacy Item: you can use this operation to create an occurs-
depending-on link from an item from the target tree to an array in the source tree.
The target array’s number of occurrences will then be limited to the numerical value
of the linked item. For example, if there is a value in the source tree called
“fetchCounter” with a default value of 100 and you drag fetchCounter on top of an
array in the target tree, that array will be limited to 100 occurrences. This is for
inbound bottom-up analysis only (including callable and channel/container).

= Redefine Legacy Item: this operation is only used when the legacy tree is the
source tree (bottom up and meet-in-the-middle) and creates a different kind of
association. When you use this operation, the legacy item you drag to the schema
tree will be redefined by the legacy item the target schema item is associated with.
You can use this to control memory usage by the legacy program.

®m Cancel Operation: cancels the drag and drop operation.

Display relationship between an item in one tree and its counterpart in another tree:
when an item is moved from the source tree (left) to the target tree (right), it will have a
permanent association with its source. That way, you will always know the source of the item in
the tree you are building and/or configuring, even if you change its name.

This relationship is displayed via a highlight. When you click on an item in the target tree, its
corresponding item in the source tree will be highlighted.

116

SOLA Developer User’s Guide

s

dfhcommarea Schema Inputs | Header
;l.dfhu:u:umrnarea = € convertTemp
=Bl in-type InType
.temperature-:nnver‘t ﬂ InFahrenheit

.Iength-cnnvert
;l.length-area
.in-feet
.in-inches
.Dut-centimetres
;l.ternperature-area

B in-fahrenheit schema Outputs || Header

out-celsius
. = E convertTempResponse

. e :
These items o sl

are associated

This association is also displayed in a pop-up dialog when you hover over a tree item on either

tree.
Legacy Tree Schema Tree
= . DFHCOMMAREA Linked: /Envelope/Body/commareaTestResponse/ReturnCode i
. ReturnCode t{b € ReturnedRows
.ReturnMsg = € Envelope
. ReturnRowCount E e
S = € Body
=Bl char-Tes = € commareaTestResponse
.Inl:har
o & ReturnCode
HII'IC arBig = & ReturnMsg
"ﬂEmallIl*t-TE:‘-f OutChar

Move item within the same tree: you can move items around in the right tree to change their
position in the WSDL or copybook. Moving items can have effects on functionality.

117

SOLA Developer User’s Guide

7

Tree Item Menus

Right-clicking on an item in either the legacy Schema Inputs || Header

tree or the schema tree will display a pop-up o

menu. The menus are different, depending 3 SleonvertTel L s Name
on whether you've clicked on a Legacy tree or InType . .

a Schema tree. The menus contain several € InFahrg Display Table View
options for analyzing the program. Depending Define Enumeration

on which tree you chose and what type of

analysis you are doing (inbound bottom-up,
inbound top-down or outbound), you will see Remove Association
different items in the menu.

Apply Dictionary

Custom Exit

The complete list, for both the legacy and the Transformation b
. Schema Outpu
schema trees, is presented here. EditCheck b
= £ convertTe .
Apply Dictionary: choosing this option will € outcely ~ Node Operations)

apply the SOLA dictionary to the selected item
only. For more information about the SOLA
dictionary, see page 246.

Assign Default: Applies only to Default
nodes. Allows user to attach a value in cases
where this tag is not sent up as part of the
SOAP Request.

Assign Container: Specify a container name to associate with a Legacy 01 level item.

Custom Exit: (Optional). Specify the name of an exit program to be called to perform custom
transformations. Specifications on writing a custom exit will be provided on request.

Define Enumeration: T
choosing this option will -
display the enumerations
panel, which lets you make
changes to existing
enumerations, create new
enumerations or delete
enumerations. The
enumeration panel contains
all the existing enumerations
of the item you clicked on. If
there are no enumerations,
the panel will be blank.

| Enumeration Value Enumeration Description
T
(i

Eﬂ'@]‘mx

Ok] [Cancel]

You can create new enumerations by clicking the E* icon and delete existing enumerations by
clicking the W icon next to the enumeration you wish to delete. To delete the L enumeration,
click on its associated T icon.

118

SOLA Developer User’s Guide

7

To change the value of an enumeration, enter the new value in the field under the Enumeration
Value column. You can also add an optional description under the Enumeration Description
column.

When you are finished with the enumerations panel, click to save your changes or

to discard them.

Display Table View: choosing this option will display the current item and all of its children in a
table view (users of SOLA 5.x will recognize this familiar layout). The table view shows all of the
items (parent and children) in a table under a series of column headings that correspond to the
item’s properties (from the properties panel).

—_— ——
TableView = |||

¥Path: [Envelope/Body/nameSearch

Rowid Schema Name o Node Type Data Type Deszcription
1 nameSearch | e &
2 Boszsid | e string
3 SearchType | e string
4 SearchType-23-01 | n string E
| 5 SearchType-83-02 | n string
] SearchValue | e string
7 SearchValue | e string
2 SearchValue | e string
|] Accesshethod | e siring -
Fi 1} I

Some users find it more convenient to change the various properties of an item and its children
using the table view. There is nothing that you can do in a table view that you cannot do by
selecting individual items and changing their values using the properties panel; the table view is
offered as a time saving convenience to those users who prefer this type of layout.

Delete this Node: choosing this option deletes the selected item.

Edit Check: (Optional). Specify the name of an edit check program to be called to perform
field validation. Specifications on writing an edit check program will be provided on request.

Edit Schema Name: The element or attribute name that appears in the schema may be
modified.

Edit Legacy Name: use this to change the name of the legacy field. You can also change the
name by double clicking the field.

Init Character: Specify an initialization character for a Legacy 01 level item. This is a single
character that will be used to initialize the structure by copying that character to every byte in
the structure. Init Character can only be specified at the 01 Structure name field, specifying it

119

SOLA Developer User’s Guide

7

for any other field in the structure will have no effect. Init Character can be specified on one of
two ways:
1. As a single displayable character
2. As a hexadecimal character, in the format X'00’, which represents the a low-values
character.

Input Processing: for input elements only (applies to Outbound analysis). Displays the input
processing sub-menu, detailed below:

®= Excludelf: choosing this option displays a sub-menu of additional options. Selecting an
option from the sub-menu will exclude the selected field from the WSDL if certain
conditions are met. Options are:

Default: will exclude the field if it's equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will exclude the field if its value is 0 (zero).

Spaces: will exclude the field if its value is one or more spaces.
Low Value: will exclude the field if its value is binary zero.
HighValue: will exclude the field its value is all hexadecimal FF.

= StopArraylf: choosing this option displays a sub-menu of additional options. Selecting
an option from the sub-menu gives you the ability to pick an elementary item within an
array to use as a sentinel to stop table processing if certain conditions are met (based on
selected option)

Default: will stop the array if it's equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will stop the array if the field’s value is O (zero).

Spaces: will stop the array if the field’s value is one or more spaces.
Low Value: will stop the array if its value is binary zero.

HighValue: will stop the array if its value is all hexadecimal FF.

EditChecks on Input Processing: for input Schema Inputs || Header
elements only (applied to Inbound analysis). YOU & € namesearchomol

can set edit checks on input elements to do €Bossl i schems Hame
basic checks like mustNumeric, mustNotNull, Jz::: Display Table View

mustNotEmpty, mustNotSpaces. SOLA will
validate and reject the request if any of these
checks, if specified on a field, fail.

[Acce Matching Report
Define Enumeration
Apply Dictionary

Remove Association

SOLA by default validates lengths of the fields to
ensure requests are rejected with ‘Schema
violation error’ if data passed in any element is

Custom Exit

Transformation [

more than length of the program structure prv—— i s
variable. If you desire to ignore these schema S € oo e 0'3'3““0”5 b | musthothul
violations and allow for data to be truncated and p € Dfhcommarea musthotEmpty
passed to application then you can set £ ReturnCode musthlotSpaces
‘truncationAllowed’ edit check on individual input = P;ff:rnﬂl‘essage truncationAllowed

elements or you can set it at a more global level

120

SOLA Developer User’s Guide

7

on the first node (method node) in the Schema Inputs tree. Setting ‘truncationAllowed’ on the
first node ensures that schema violations due to more data being passed in all the input
elements of the method are tolerated.

Matching Report: this option is available only in the legacy tree. It displays the ‘Legacy &
Schema Matches dialog’, which displays all the associations (links) between the selected legacy
item (citem) and its children, and items in the schema tree (sitems). Clicking on the top level
items will display a report of all associations in the tree.

| Matching Report =] £
|

| | Legacy & Schema Matches

Schema Name Schema Path

= Legacy Key: [InsmallIntMax) - /SmallInt-Test/InSmalllntMax (1 Schema Match)

InSmallinthax {Envelope/Body/commareaTest'Smallnt-TestinSmallnth ax

|
= Legacy Key: (InsmallIntieq) - /SmallInt-Test/InSmallIntieg (1 Schema Match) |
InEmallintheg {Envelope/Body/commareaTest’Smallnt-TestinSmallntNeg |
|

[| & Legacy Key: (InSmallIntPos) - /SmallInt-Test/InSmallIntPos (1 Schema Match)

InEmallintPos [Envelope/Body/commareaTest’Smallnt-TestinSmallntPos

|
|
= Legacy Key: [SmallInt-Test) - /SmallInt-Test (1 Schema Match) I
|

| Smallnt-Test JEnvelope/Body/commareaTest'Smallnt-Test

Node Operations: displays the node operations sub-menu, detailed below:

m All Attrs -> Elems: changes the selected item and all of its child nodes from an
attribute to an element.

®m All Elems -> Attrs: changes the selected item and all of its child nodes from an element
to an attribute.

= Appent Child Node: choosing this option will create an item (Citem or Sitem,
depending on which type of analysis you are doing) and append it to the selected item
as a child. The newly created item will be named “DoubeClick to Edit”, indicating that
you should name the node by double clicking its placeholder name.

m Current Node -> Attr: changes the current node (but not its child nodes) into an
attribute.

® Current Node -> Default: changes the current node (but not its child nodes) into a
default node.

m Current Node -> Elem: changes the current node (but not its child nodes) into an
element.

® Current Node -> Text: changes the current node (but not its child nodes) into a text
node.

m Delete this Node: choosing this option deletes the selected item.

121

SOLA Developer User’s Guide

7

= Insert Node Before: choosing this option will create an item and place it in the tree
before the selected item on an equal level (i.e. if the selected item is a child node, the
newly created item will also be a child of the same parent).

Output Processing: for output elements only (applies to Inbound analysis). Displays the
output processing sub-menu, detailed below:

= Excludelf: choosing this option displays a sub-menu of additional options. Selecting an
option from the sub-menu will exclude the selected field from the WSDL if certain
conditions are met. Options are:

Default: will exclude the field if it's equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will exclude the field if its value is 0 (zero).

Spaces: will exclude the field if its value is one or more spaces.
Low Value: will exclude the field if its value is binary zero.
HighValue: will exclude the field its value is all hexadecimal FF.

= StopArraylf: choosing this option displays a sub-menu of additional options. Selecting
an option from the sub-menu gives you the ability to pick an elementary item within an
array to use as a sentinel to stop table processing if certain conditions are met (based on
selected option)

Default: will stop the array if it’s equal to its default value (spaces for character
fields,zero for numeric fields).

Zero: will stop the array if the field’s value is 0 (zero).

Spaces: will stop the array if the field’s value is one or more spaces.
Low Value: will stop the array if its value is binary zero.

HighValue: will stop the array if its value is all hexadecimal FF.

NoChildren: For multi-level Group arrays — when the first level does not contain
any fields to trigger stop array processing, use NoChildren. This will generate a
property processing code ‘3105’ to tell runtime while building the SOAP response
to check group array elements and if there are no child nodes then the empty
group node is deleted and Stop-array condition is triggered. See below
examples.

122

SOLA Developer User’s Guide

7

Note: in Figure 1 below the first level array without elementary data items is set to
StopArraylf ‘NoChildren’ and in Figure 2 the property panel contains the new Processing
Code ‘3105'.

Figure 1:

Schema Outputs | Header

3 € QCA30M1Response
.ﬂ_ LK-RETURN-CODE
€ LK-RETURN-MSG

3 € LK-GROUP-ITEM Edit Schema Name
£ LK-ELEM-ITEM] Display Table View
3 € LK-ARRAYS

Matching Report
= € LK-ARRAY-LVL-1 e

=] .e_ LK-ARRAY-LVL-2 Define Enumeration

€ LK-ARRAY-DA| anply Dictionary Default
Remove Association Zero
Custom Exit Spaces
Transformation [LowValue
Remove Depending HighValue

Output Processing Excludelf NoChildren
Node Operations StopArraylf p Remove

Figure 2:

objectType Sltem
Schema Qutputs Header JeEthyp
offset 108
= € QCA30MiResponse
.e_ LK-RETURN-CODE pattern
e LK-RETURN-MSG precision 15

o € LK-GROUP-ITEM
€ LK-ELEM-ITEM1

processingCode 3105

) g LK-ARRAYS program|D 2015-08-31-13.50 2
= g LK-ARRAY-LVL-1 reflD
= & LK-ARRAY-LVL-2 rowhium 00015
£ LK-ARRAY-DATA
- scale o
schemahim LK-ARRAY-LYL-1

In Figure 3 below all other StopArraylf processing would be chosen as usual. In the case below
a StopArraylf condition of ‘Default’ is chosen to stop all processing when the array has
encountered no more data.

Figure 3: r————

2 £ QCA30M1Response
£ LK-RETURN-CODE
€ LK-RETURN-MSG F
3 & LK-GROUP-ITEM Edit Schema Name
€ LK-ELEM-ITEM1
3 £ LK-ARRAYS
3 £ LK-ARRAY-LVL-1

Display Table View
Matching Report

= £ LK-ARRAY-LVL-2 Define Enumeration
€ LK-ARRAY-DATA Apply Dictionary Default

Remove Assodiation Zero
Custom Exit Spaces
Transformation » LowValue
Remove Depending | | Highvalue
Output Processing Excludelf) NoChildren
Node Operations » StopArraylf » Remove

123

SOLA Developer User’s Guide

7

Remove: removes the stop-array condition.
Remove Association: removes all associations from the target node.
Remove Depending: removes an occurs-depending-on association.

Transformation: allows you to change the format of the item’s properties (e.g. change date
from YY-MM-DD to MMDDYY or “true or false” to “Y or N”). There are several formatting
choices for each available property type. This functionality is present in inbound and outbound
web services.

Date: change date format (e.g. YYMMDD to YY-MM-DD, etc.).

Time: change time format.

Timestamp: change timestamp format.

Boolean: change Boolean value format (e.g. true/false to T/F, etc.)

CodePage UTF8: choosing this menu option allows you to choose codepage
conversion to and from UTF8 (variable length characters) to DBCS (two bytes per
character). SOLA uses z/OS Conversion Services to do the conversions, so you'll need
to have that active on your system, and the appropriate codepages will need to be
installed. Please see the SOLA Installation Guide and SOLA Administration guide for
details.

E| ﬂ getParts
E PartMNurmher

Edit Schema Mame UTF-16 (12007

Display Table Wiew KOREAN (833)

Define Enurneration KOREAN DB (534)

Apply Dictionary THAI (838)

Rermowve Association THAI DB (839

Custom Exit SWEDISH (2781)
Transformation 2 D ate 3 CHIMESE DB (835))
EditCheck 2 Time I CHIMESE MIX (937)
Mode Operations 2 TirmesStamp 3 1aPAN DB (3007

Boolean b JAPAN MIX (959)

CodeFPage UTFE <-= pl'l-r. GERMAN (1141

i o
Misc p‘—i' FREMCH {1147

m Misc: allows you to set miscellaneous settings:

Retain XML cp37: indicates that the data in this element is an application XML
payload that the SOLA runtime must not parse and that has to be exchanged
between the SOAP client and the application in EBCDIC format. This is valid for
both input and output processing.

124

SOLA Developer User’s Guide

Retain XML UTF8: indicates that the data in this element is an application XML
payload that the SOLA runtime must not parse and that has to be exchanged
between the SOAP client and the application in UTF-8 format. This is valid for
both input and output processing.

SOLA offers the ability to validate the application’s input and output data at runtime as a natural
consequence of capturing the information required for transformation. See the Validation
section on page 104 for details.

Unlink This Node: this will undo a drag-and-drop link operation (see page 115), unlinking a
source tree item from an item in the target tree.

125

SOLA Developer User’s Guide

7

Analyzer Properties

The properties displayed in the properties panel can be customized, however all SOLA
installations are shipped with a standard set of properties that are described here. These
properties not only display information about the selected item, they also contain configurable
fields that can change the way the item, and consequently the web service, behave.

b A

Not all properties appear for every field type.
createdTimestamp=2008-07-10-14.01., 33, 154000 |

If a property exceeds the available field createdTimestamp 2008-07-10-14.0...
space, double click on the field to display a createdUser m
pop-up dialog with the full length property .

dataType

value.

m aType: the datatype in an
abbreviated form.

® columnNm: this is the name of the legacy tree item.

m citxSnstivelD: thisis ID of the legacy tree item that is linked to the displayed schema

tree item
® dataType: indicates the item’s data type. Legacy dataType M
item data type names indicate mainframe data dataTypeFa string
types while the Schema item data type names dependD hazef4Binar
conform to open system data types. This is a drop - dateTime '15
down list and the value can be changed. See description
. . boalzan
Appendix A: Schema and Copybook Generation ediCheckCode
on page 265 for details about the available : Heger
! enviraniD shiort
options.
excludelfhull decimal

= dependlID: if the selected item is part of an ‘occurs depending on’ array, this field
displays the id of the item it depends on.

m description: a free form description of the item. You can use this to facilitate reuse by
making it easier for others to understand your analysis.

m effective: timestamp that indicates when the item was created and made effective
= environlID: ID corresponding to the Environment in which the analysis is being done

m excludeifNull: this item is a drop down menu with two values, Y and N. Select Y to
filter responses based on their “natural nullable state” (e.g. 0 for numeric items or an
empty string for strings). If Y is selected, the field will be excluded from the WSDL if it is
null.

126

SOLA Developer User’s Guide

ID: Unique internally assigned identifier for the element

io: this is the variable’s disposition (I/O status) and has the following options (the default
value represents what SOLA believes to be most appropriate for the associated
variable):

I: indicates that the variable is contained in the SOAP request and is input to the
COBOL or PL/I program.

O: indicates that the variable is output from the COBOL or PL/I program and will
be published in the SOAP response.

X: indicates that the variable is excluded, which means it is not referenced or
usage of the variable is unknown by the COBOL or PL/I program and will not be
part of either a SOAP request or a SOAP response.

B: indicates the variable is contained in the SOAP request and is input to the
COBOL or PL/I program and is output from the COBOL or PL/I program and will
be published in the SOAP response.

len: the maximum physical length, in bytes, of the variable. This will typically be the
same as the Precision, though in the case of decimal data types, Length and Precision
will be different.

level: this is the variable’s level within the COMMAREA. This does not necessarily
directly correspond to the level number in the commarea, with the exception of 88 levels.
If the commarea structure level numbers are 01,05,10, the levels will be 1,2,3.

maxOccurs: this is an Sitem property that indicates the maximum number of
occurrences of an item. This item corresponds to an xml schema’s maxOccurs value.

methodID: this is the internal ID of the method

minOccurs: this is an Sitem property that indicates the minimum number of occurrences
of an item. This item corresponds to an xml schema minOccurs value.

namespace: this is an optional Sitem property to set the namespace for the schema
item

nodeType: this is a menu with two options, e (Element) or a (Attribute). This field will
determine whether the associated item is treated as an element or an attribute in the
WSDL. When SOLA analyzes a compile listing, it determines what is input and output
and attempts to set most output items as attributes for performance and efficiency
reasons. Output Arrays are exceptions that will be represented as elements.

The figures below show two results of a Quick Test on the same method. The first is
with all fields set to A (Attribute) and the second is with all fields set to E (Element).

All Fields set to Attribute:

127

SOLA Developer User’s Guide

<?xml version="1.0" encoding="UTF-8" ?>
ol = T T

- <s0ap:Body:>
- <nameSearchResponse
xmins="http:/ fnameSearch.ClientFinder.x4mlsoa.com/CA/SOLACAD4/TXMLD990">
- <Commarea ReturnCode="0" ReturnMessage="" ProgramVersion="1.0" SequelCode="0"
CicsReturnCode="" HostSysid="CICB" TotalCenter="2" FetchCenter="2">
<ClientInfo ClientName="HOGAN, RUTH S' Producerld="7469968"
ClientNumber="113340063" PhoneNumber="" /=
=ClientInfo ClientName="HOGAN, RUTH S' Producerld="7469968"
ClientNumber="987130063" PhoneNumber="" /=
</Commareaz
</nameSearchResponse>
</soap:Body:=
</soap:Envelope>

All Fields set to Element:

<?xml version="1.0" encoding="UTF-8" ?=

Elap = 66 mi ds -
- <soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
- <spap:Body>
- «nameSearchResponse
xmins="http:/ /namesSearch.ClientFinder.x4mlsoa.com/CA/SOLACAD4 /TXMLD990">
- <Commareaz
<ReturnCode=0</ReturnCode =
<ReturnMessage /=
<ProgramVersion=1.0</Program\Version
<SequelCode=0</SequelCode>
<CicsReturnCode /=
<HostSysid=CICB </HostSysid =
<TotalCenter=2</TotalCenter=
<FetchCenter>2</FetchCenterz
- «ClientInfo>
«ClientName>HOGAN, RUTH S</ClientName=>
<Producerld =7469968 </Producerld =
<ClientNumber=113340063 </ClientNumber:
<PhoneNumber /=
«/ClientInfo=
- «ClientInfo>
<ClientName>=HOGAN, RUTH S</ClientName>
<Producerld=7469968/Producerld=
<ClientNumber>987130063 </ClientNumber:
<PhoneNumber /=
</ClientInfo=
</Commarea
</nameSearchResponse
</soap:Body =
<fsoap:Envelope=

NSalias: this is an optional Sitem (Schema tree item) property to set the namespace
alias to correspond to the namespace setting on the schema item.

objectType: this is the object’s type, either Citem (Legacy tree item) or Sitem.

occurs: for arrays, this will be the number of rows contained in the array and will only be
populated at the group level. For the variables within the array, this field will be zero.

occursDepth: this relates directly to the array’s dimensions. In a multi-dimension array,
for instance, variables in the first dimension will be at ‘Occurs Depth’ one. Those in the
array’s second dimension will be ‘Occurs Depth’ two, etc.

occursFrom: this is the starting point of the array in the legacy program (e.g. a 1-100
array will have an occursFrom of 1). The minOccurs value may initially gets its value

128

SOLA Developer User’s Guide

from occursFrom, if present. If there is no occursFrom, the value of minOccurs will be
defaulted.

m occursSize: this is the total length of all data items that comprise a single row of the
COBOL array. If this number was multiplied by the ‘Occurs’ value it would yield the total
length of the COBOL array.

m offset: this is the offset (relative to zero) of the data item within the overall data
structure.

= parm: Not used Commarea Analysis
= pattern: Not used Commarea Analysis

® precision: the data variable’s precision. This will typically be the same as the len
(length), though in the case of decimal data types, len and precision will be different.

= programlID: this is the internal ID of the program

= redeflD: if the item redefines another item, this field displays the internal ID of the
redefining item.

®m resultSet: Not used Commarea Analysis

= rowNum: for Citems (legacy tree items), this represents their row number in the legacy
tree. For Sitems (schema tree items), this represents their row number in the schema
tree.

m scale: for some datatypes (such as fractions), the scale represents the number of
significant positions after the decimal point

= schemaNm: this represents an Sitem’s (schema tree item) name in the WSDL.
m specialCond: Not used Commarea Analysis

= stopArrayifNull: this is a dropdown menu that gives you the ability to pick an
elementary item within an array to use as a sentinel to stop table processing if the item’s
value is null (“natural nullable state” for that particular data type, e.g. 0 for numeric items
or an empty string for strings). The Stop Array column will contain a checkbox if the field
is part of an array (otherwise it will be empty). Select S to activate stop array processing
for the associated field(stop the array if null). Select N to disable stop array processing
(not stop array if field is null).

= Type: displays the Citem’s picture clause, which will either be a fixed value or a drop

down menu containing two or more options. The available options depend on the data
type. The following is a compilation of all possible options:

Grp: indicates that the variable is a group level variable within the data structure.

129

SOLA Developer User’s Guide

Dis: indicates a display, or character (PIC X) variable.
Num: indicates a numeric (PIC 9) variable.

Bin: indicates a binary (comp) variable.

Pck: indicates a packed decimal (comp-3) variable.
Ned: indicates a numeric edited variable.

Ptr: indicates a pointer variable.

B64: indicates to SOLA that this variable’s data must be converted to Base 64
format before being sent in a SOAP response or converted from Base 64 to
native binary if received as part of a SOAP request. This is used for transporting
binary data such as photographs or PDF files for instance.

value: this field is present in both Citems and Sitems, though it can only be set for
Sitems. Setting the value of an Sitem hard codes that value in the WSDL. This means
that the web service will always use the value you set and will never take input for this
item from the consumer.

130

SOLA Developer User’s Guide

7

Using SOLA Developer - Callable APIs and
Containers

SOLA offers three methods of passing a structured block of data to a program; Commarea,
CICS Channels and Containers and Callable APIs. The traditional DFHCOMMAREA is limited
to 32k, so to overcome this limit, SOLA can create web services by exploiting CICS Channels
and Containers and Callable APIs.

Callable API and Container programs are imported and analyzed using the Commarea
analyzer. Please read the Commarea (inbound, bottom up) section to familiarize yourself with
the import and analysis processes before continuing. This section will highlight the differences
between creating a web service from a standard Commarea program and callable API and
container programs.

Callable APIs

A Callable program is invoked using a COBOL CALL instruction. Callable programs use the
standard register linking convention. The advantage to using callable programs is that there is
no limit to the size of the data area that is passed.

There is a pre-requisite condition to enable callable programs. In order for a web service
created from a callable program to function, a SOLA runtime Callable plugin module must be
running locally in the region in which the application callable program is executed

There are two SOLA runtime Callable plugin module that are delivered and the choice of which
module to use is as described below:

XMLPC205 - If your application callable program is coded not to expect DFHEIBLK as
first parameter then use this module.
XMLPC206 - If your application callable program is coded to expect DFHEIBLK as

first parameter then use this module.

Step 1 — Mainframe Preparation

Preparation steps are identical to that of importing Inbound Commarea programs

To work with Callable API programs a PPT entry is needed in the WOR region that points to the
AOR region. Since the Callable API programs are not called directly but instead run under the
control of SOLA, the PPT entry for a DOM API program must specify
REMOTENAME(XMLPC205) or REMOTENAME(XMLPC206).

WOR AOR
PPT: PPT:

DEFINE PROGRAM (yourCallprogName) | DEFINE PROGRAM (XMLPC205)
LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)

131

SOLA Developer User’s Guide

REMOTE REGION (yourRegion)
REMOTE NAME : XMLPC205
REMOTE TRANID: (yourTranId)

PCT:
DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)
STATUS (Enabled)

Step 2 — Importing a Callable Program

Callable APl import and analysis is identical to
that of Commarea programs (see page 45). ltis
important, however, that you use the correct
import panel. Even though the panels may
appear identical, there are backend differences.

€ ||

SOLA uDDI File Datasets Home

Environments{ TEST) * PROGRAM ~
2 I Directory
#|53 .analysis
+ | -aDemoProject
[E4].comman
[£§] -commaonLM
[.commanLMMNew
[55) .ImSOLA_1029
|28 .mikesTests
4 |5 -totest-tt-r621
[0 .tt-re22-QTB
#[78 AuthProject0l

Import Program

To get to the callable import panel, select the
project you wish to import to and right-click it.
From the pop-up menu, select Import Program.
If you wish to import the program to a new
project, first follow the steps for creating a new
project on page 22.

Show Project History
Filter by Project

User Authority y
Add WSDL Template

Delete Project

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select
“Callable”, then select one of the three import types (bottom-up, meet-in-the-middle or top-
down), just like commarea. In this example we are selecting Bottom Up.

Home Import >

Importing Commarea - Bottom Up Producer B | Other Import Types ~ |

- k= Commarea [3
project: @8 container [
Program Name: | Please enter a pic & callable > I Top Down
Owverride Name: Optional, Usuallby E IMS Message » Meet InThe Middle
Language: COBOL E3 outbound Bottom Up
Host Code Page: 037(Default Code BMS 3270
Enumerations: Include [0 stored Procedure
Environment: TEST =) Adhocsql
Program Description: |: EN cCustom
Structure Name: |Please enter a stry = Erchiestaton

Class Name

Dataset/Listing Name

IMPORT RESET

E IP!‘.—'-dszs enter a class name.

B Il—’!é-aq-\> enter a listing or dataset name.

132

SOLA Developer User’s Guide

7

The Import panel will change to display the callable import panel.

Home Import '®

Importing Callable - Bottom Up Producer ‘& Other Import Types *

Project:

Program Name: |Please enter a program name.

Override Name: | Optional, Usually same as program Name
Language: COBOL i

Host Code Page: (037(Default Code Page) v

Enumerations: 037(Default Code Page)
1140(US Canada EUR)

1141(Russia)
Program Description: | |

Environment:

Structure Name: [Please enter a structure name. l

Class Name: | Please enter a class name.

Dataset/Listing Name: [Please enter a listing or dataset name. l

IMPORT RESET

From this point, follow the steps for importing a Commarea program (matching the type you
selected, bottom-up, etc.) to create a web service from a callable program. Note the Host Code
Page selection options (this is described further in the SOLA Administration Users Guide and in
the Importing a Commarea Program’ and ‘Admin Menu’ button sections of this guide.)

133

SOLA Developer User’s Guide

7

Channels and Containers

Channels and containers are programs that implement the channel and container interface to
overcome the 32K Commarea limit.

Channels and containers are a feature of CICS TS 3.1 (and above).

Step 1 — Mainframe Preparation

Preparation steps are identical to that of importing Inbound Commarea programs.

134

SOLA Developer User’s Guide

s

Step 2 — Importing a Channel/Container

soA || uoor | mie | patasets | 2] [Home Channel/Container import and analysis is similar
to that of inbound bottom-up Commarea

Environments{ TEST) * PROGRAM ~ programs (see page 45). The only difference is

3 I Directory . the addition of several fields to the import panel
4 (23] -analysis that describe the channel and containers used
Gl (L -aD=maProject by the program.
4 [B§] .common Import Program
4 G .commonLM Show Project History To get to the channel/container import panel,

4 3] .commonLMNew
[0y ImSOLA_1029
4 [£4] .mikesTests User Authority

Filter by Project select the project you wish to import to and right-

, click it. From the pop-up menu, select Import

575 totest-tt-r621 AGd'WSDL Templete Program. If you wish to import the program to a

o (5% tt-r622- new project, first follow the steps for creating a
(&) .tr-re22-gTR e J

471 AuthProfecto] ve) new project on page 222.

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select
“Container”.

Home Import *

Importing Commarea - Bottom Up Producer B | Other Import Types ~ |

| k4 Commarea b
Project: | Container 3 Top Down "
Program Name: | Please enter a ’ = cCallable 2 Meet InThe Middle
Override Name: Optional, Usually ! E IMS Message > Bottom Up ‘
!
Language: COBOL | £J Outbound T
Host Code Page: 037(Default Code: BMS 3270
Enumerations: Include ! [0} stored Procedure
Environment: TEST |) Adhocsal
Program Description: [EN custom
Structure Name: [x'}‘;-,;.-,\.. enter a str | Orchestration
Class Name: [L’Ir,u;,\-;- enter a class name]
Dataset/Listing Name: Ii‘;‘..,-(,»_- enter a listing or dataset name |
IMPORT RESET

If you select Top Down or Meet in the Middle, you will be taken to the WSDL import screen.
From that point, you can follow the instructions for importing the same type of commarea
program.

If you select Bottom Up, the Import panel will change to display the channel/container import
panel, which is a little different from the Commarea import panel. See the illustration below:

135

SOLA Developer User’s Guide

7

Home Import =

Importing Container - Bottom Up Producer @ Other Import Types ~

Project:

Program MName: [Please enter a program name.

Ooverride Name: | Optional, Usually same as program Mame

Language: COBOL s

Host Code Page: 037(Default Code Page) e
Enumerations: | Include ™
Environment: | TEST v

Program Description: [

Structure Name: [Please enter a structure name.

Class Name: [Please enter a class name.

Dataset/Listing Name: [Please enter a listing or dataset name.

Channel Name: [Please enter a channel name.

Input Container: | Please enter an input container name.
Output Container: |Please enter an output container name.

Error Container: |Please enter an error container name.

IMPORT RESET

This panel contains some fields not present on the standard Commarea import panel.

B Channel: the name of the mechanism with which the program’s containers are
associated with. A channel is analogous to a COMMAREA, but it does not have the
constraints of a COMMAREA.

® |nput Container: the storage structure that contains input to the program.
B Qutput container: the storage structure into which the programs sends its output

B Error container: the storage structure into which the program sends its error
responses.

Fill out the extra fields described above, then follow the steps for importing an inbound
Commarea program using bottom-up methodology to create a web service from a
channel/container. Note the Host Code Page selection options (this is described further in the
SOLA Administration Users Guide and in the 1Importing a Commarea Program’and ‘Admin
Menu’ button sections of this guide.)

136

SOLA Developer User’s Guide

7

Note: If your program doesn’t follow the simple input container, output container and error
container approach, just enter the channel name and leave the container names blank. You
can enter them later.

Specifying your Container Names

If your program supports a more complex arrangement than the approach that SOLA provides
on the initial Analysis screen (default input container, output container and error container), you
can specify them during analysis.

Let’s say you have a program called MULTICON that uses three containers, INPUT-AREA,
OUTPUT-AREA1 and OUTPUT-AREAZ2. Each container is associated with a 01 structure, and

you would:
e Enter the three 01 level structure names in the Structure Name field (separated by
commas)

e Enter the Channel name
e Leave the Container names blank

Home Import '*

Importing Container - Bottom Up Producer Ej Other Import Types ~

Project:
Program Mame: | MULTICOM

Override Name: | Optional, Usually same as program MName

Language: COBOL oot

Host Code Page: 037(Default Code Page) D
Enumerations: | Include R
Environment: TEST e

Program Description: | TESTING
Structure NMame: | INPUT-AREA, OUTPUT-AREA1L, OUTPUT-AREA

Class Name:
Dataset/Listing Name:
Channel Name:

Input Container:
Output Container:

Error Container:

IMPORT RESET

With three containers, the Analysis screen would show three tabs in the source area, one for

each of the 01 level Structure names.

MultipleContainers
SOLADEMO.TEST.COBCOPY#(MULTI)
CUSTOMER

Please enter an input container name.
Please enter an output container name.
P

lease enter an error container name.

137

SOLA Developer User’s Guide

You can associate a container with a structure by choosing the

s aira

| tab for that structure, and then right clicking on the structure’s
W o root (the 01 level name in the tree), and choosing Assign
oo Container from the pop-up menu.
Right click on the 01 level structure name (the root of the tree) to il
bring up a pop-up menu of choices for that structure, and choose B e
Assign Container from that menu. — @

This will bring up a pop-up panel for you to enter the container name for the structure.

Note: The same menu pops up no matter which of the nodes you click on in the structure tree.
However, Assign Container will only correctly associate a container with a structure when you
click on the 01 level (root) of the structure.

Assign Containes e .=« There’s no need to specify whether a container is
e Input or Output, SOLA will determine that based on
- - whether you drag structure elements to the input

schema or output schema (or both).

Note: The Container name you are assigning
should match the Container name used in the
originating program that created the WSDL that was
input into this meet in the middle Import.

138

SOLA Developer User’s Guide

7

Creating an Inbound Channel and Container Web Service
from a WSDL and a Program — Meet-in-the-Middle

It is often the case that your corporate architects want you to conform to a standard service
architecture, and they’ll expect you to do so with a WSDL that they provide. When you have a
program that fairly closely matches their requirements you can merge the WSDL and the
program using SOLA’s Meet-in-the-Middle approach, allowing your existing program to interact
using the WSDL service definition.

Step 1 — Mainframe Preparation

The only mainframe preparation required with the meet-in-the-middle approach is for you to
identify a copybook that describes the program’s interface (typically DFHCOMMAREA, but for
example, it could be any name of a typical COBOL copybook beginning with a 01 level data
name). You will need to map each of the WSDL fields to the copybook fields by dragging and
dropping each one from the left to the right. The final step will be to click the Finalize button. It
is at this point that SOLA will create a template containing those mapping rules. This is
explained in further detail in the pages that follow.

Step 2 — Importing a Channel/Container

To get to the channel/container import panel, select the project you wish to import to and right-
click it. From the pop-up menu, select Import Program. If you wish to import the program to a
new project, first follow the steps for creating a
new project on page 21.

o || =

SOLA unDI File Datasets Home
Environments{ TEST) * PROGRAM * After you select Import Program, the Import
31 | Directory panel will be dis_played under atab in th_e
[0 .analysis A workspace. This panel can be used to import
4[73] .aDemoProject any program type that SOLA supports.
[59 .common Impaort Program
4 [£§] -.commanLM Show Project History The default program type is Commarea. You
|33 .commonLMNew Filter by Project will
[0 . ImS0OLA_1029 select the Other Import Types menu to select
4[5 .mikesTests User Authority 3 “Container”.

o |:.1_J dotest-tt-re21 Add WsDL Temnlate

4 |3 .t-r622-QTB Sy =

[AuthProtectd] Delete PmJ'fp Baparting Commmares - Bottom Up Producer | - Cther ngon Types *
Progr am Naoe
Ovweride Name
) Language: COBOL Outbound
Next select Meet in the st Code Page: 037 Outack Cood (@) 65 3272
Middle and you will be taken Smeeotions: {dah O Sterwt Fevcoture
to the WSDL import screen Gonirenmants {1053 W £

Program Des rghon
Structure Name
(Lavs Name

Oalaset/Lnling Name

139

SOLA Developer User’s Guide

7

The Import panel will change to display the WSDL import panel.

Importing Commarea - Meet in Middl(f"——pﬁ Other Import Types

@ wsDL Imported From PC) wWsDL Imported From URL
Upload W5DL file from local
it
UPLOAD
Upload ZIP file from local drives
UPLOAD

ZIP files must be uncompressed and must contain a WSDL file of the same name as the ZIP file.

This panel provides the means to import a WSDL file into SOLA from a location on the
Internet/Intranet or on your local machine. To import a WSDL file from your local machine,
either type the full path to the WSDL in the Upload WSDL file from local drives field or click
the Browse... button to locate the WSDL using Windows Explorer.

To import a ZIP file, follow the same process described above, but use the Upload ZIP file
from local drives field instead. SOLA does not support compressed ZIP files, so make sure
the ZIP file you are uploading is uncompressed. This option is for the importing of WSDL files
that utilize external references. The ZIP file must contain a WSDL file of the same name as the
ZIP file and all files referenced by the WSDL.

For example, if the ZIP file is called abc123.zip, then it must contain a WSDL file called
abc123.wsdl and all files referenced by abc123.wsdl.

Once you have made your selection, click UPLOAD " Make sure you are clicking the
correct Upload button (there are two).

If you want to upload the WSDL from a URL (internet/intranet) click WSDL Imported From URL,
Either way, you will be taken to the following panel.

Importing Commarea - Meet in Hiddle" Other Import Types ™

() wsSDL Imported From PC (®) wsDL Imported From URL

Import WSDL From:
SOLA Project Name: | Testproject Copybook Name:
Service Description:
Copybook DataSet:

IMPORT RETURN

140

SOLA Developer User’s Guide

7

Fill in the fields as required:

+MW:IUJCEI V' S0P Test .lUMumiul Search .“_{ Error Search '__d Browse Dataset '.:-fiﬁ.drrmMum ﬁPLLL‘ESCC'ItIOK
Home || Import *

Importing Container - Meet InThe Middle Other Import Types ™

O wspL Imported From PC ® wsoL Imported From URL
Import WSOL From: ﬁlau‘/&ACNwamw-BUP [T
S0LA Project Name: ATEST-VR 38428 Copybook Name: owe
Service Description: [TEST CRARNEL CONTANER FOR NEET N THEMIDOLE
Copybook DataSet: |SOLAEXT 0A.COBCOPY#

Channel: Hi3

IMPORT | RETURN

m |mport WSDL From: the address (URL) of the WSDL file being imported. If you chose
to import from the local machine, the path of the local file will be displayed there. If you
chose to upload from a URL, copy and paste (or manually enter) the URL into this field.

Note: The provided WSDL must contain a SOLA compliant soap action as seen in the
example below. Only include the codepage if other than the default codepage 37 is
used.

<hbinding name="CLASS_QACA991PBindingName" type="tns:CLASS_QACA991PPortTypeName” >
<soap:binding transport="http: f fschemas.xmlsoap.org/soap/http” style="document”/>
<operation name="QACAII1M" >

<soap:operation style ="do-cumen1' soaphAction="/CA/QACAS9P/QACAS91T/CCP:UTF-8/HCP:1140"/ >
<input>

<soap:body use="literal™/>
<finput>

® SOLA Project Name: the name of the project under which the WSDL file will be
imported. This is pre-populated and cannot be changed.

m CopyBook Name: specify the member name where SOLA is to find the interface
definition (copybook) for your program.

m Service Description: a brief description of the service that will be created from the
WSDL file.

m Copybook DataSet: specify the Copybook DataSet (a PDS) where SOLA will find the
interface definition (copybook) that will be used for your program. WSDL attributes and
elements will be mapped to these copybook fields by you.

B Channel: the name of the mechanism with which the program’s containers are
associated with. A channel is analogous to a COMMAREA, but it does not have the
constraints of a COMMAREA.

When you are ready to continue, click. IMPORT

141

SOLA Developer User’s Guide

s

To return to the previous panel if you need to start over or locate data to enter into one of the

panel fields, simply click ~ RETURN

After clicking =~ MPORT " the Analysis tab and PreAnalysis panel will appear. The input
requirements are exactly the same as those used for Commarea — Meet In The Middle.

Home Import '#/|| Analysis '*

PreAnalysis
Method Name:
Method Descr: CREATE MEET IN THE M
Template Name: QACN13T3
EndPoint: |01 PUBLIC TEOR| 1445)
Target Namespace: http://CLASS_QACN13P
Template Dataset: SOLAEXT.QAASMTELD
Load Dataset: SOLAEXT.QA.LOADLIB

Copybook/Program Member: [RACHMIZC
Copybook/Program Dataset: |E-C'LF'-E>€T.'1¢-.CDBEGF"|

Program Owerride: |

Program Struciure: IIC-:I1-I'.1CIA-CH#R-RECDI

Analysis Type:

Language:
ANALYZE

When you have filled out the required fields, click the ANALYZE button.

The meet-in-the-middle analyzer is identical to the bottom-up analyzer, the Schema tree is on
the right, and the Legacy tree is on the left.

Home Import */| Analysis '*

PreAnalysis Analysis '*
Prefix: APPLY DICTIONARY FINALIZE

Init Storage: [NO =] Hex Char: X{ [0)

1C01-MOA-CHAR-RECORD 1002-MOA-COMP-RECORD 1003-MOA-COMP3-RECORD ICO4-MOA-ALPHANU| % || Schema Inputs Header

= [EH[1C01-MOA-CHAR-RECORD o € oACN13ML
= Bl ICHAR-INPUTS o & ICHAR-INPUTS 2
[inChar € InChar
[inCharBig € InCharBig

= € ICOMP-INPUTS
£ InsmallintPos
g_ InSmalllntMeg
£ InSmalllntMax

142

SOLA Developer User’s Guide

7

You can associate a container with a structure by choosing the tab for that structure, and then
right clicking on the structure’s root (the 01 level name in the tree), and choosing Assign
Container from the pop-up menu.

Home Import '#/|| Analysis |*

PrefAnalysis Analysis '*

IC01-MOA-CHAR-RECORD 1002-MOA-COMP-RECORD IC03-MOA-COMPZ-RECORD IO0H-MOA-ALPHANL) =
= - IC01-MOA-CHAR Resonm.

=) - ICHAR-INPUT Display Table View
-InChar Matching Report
InCharBi . .
- et Assign Container

Create Default

Enter the Container Name you are assigning the structure to and click Ok.

Note: You must use the same Container Name from the originating program that created the
WSDL you used in the Import step above.

In our example all Containers are Required, but you may also want to have a structure be
assigned as an Optional Container.

LTI R L W — R

(/QATEST-V6.3-Bld26/QACNMO2C [QACN13M1/IC01-MOA-CHAR-RECORD) %
Container Name: |IC01-MOA-CHAR-RECORD

Container Flag: Required R

Required
Optional

ok || cancel

R T W= ==

Your task now is to match the elements in each tree, so that SOLA can perform the necessary
transformations between the two structures. To do so, you must link every component in each
tree to a matching item in the other tree by dragging and dropping each data element to the
schema input and output.

143

SOLA Developer User’s Guide

7

In the following illustration we have begun by dragging each input or request element on the left
legacy side of the workspace to its matching schema item on the right. You must also include
the Group level item; in this case ICHAR-INPUTS.

In this example there are five input containers shown on the left side of the workspace followed
by five output containers.

Each container will have its own Tab in the workspace (ICO1 thru IC05 and OCO01 thru OCO05).

Prefix APFLY DICTIONARY finALLZE
tnat Storage: [V5 1] Mex Chars X{ T)

| 1CO1-MOA-CHAR SECORD | 000 MOACOMP AZCORD | 000 MOA COMPD SEC0RS 4 HOA ALIYAN. B4 RECT @ Schoma laguts | Heade
4 € QACNIIMY

4 £ QACN) IMIReso0nce

4 £ COMR-ouUTIUTS
£ Onthar
£ Ot

2 £ ocoM-ouTIUTS
£ OuSmalinepor
£ OutSmaRinetiey
£ OutsmalineMax
£ oninpes
£ Ovzneros?
£ Outteetie;
£ Ontwstax
& OutComos-Hw
£ OAComos HW-NIG o
£ OuComes.Hw-2.2

Continue mapping (dragging and dropping) the output containers to the Schema Outputs:

s @t @, M Qe Doon. 2n. Dee R 550 Dees. Qe = am. 5o, s, W Msor, M. GE. = wo.. © wn. Deow., Eosz., Beos. 2)a. FHsn. Do B - - Paee oty Tk e *

(7] SOLA™ peveioper

pretoc: [APPLY DICTIONARY FINALIZE

Current Usert DISZ224
Loaln Lo out

H

£

e

£

2

£

a

£

a
e i =
o SICCl% 9 @ & ©oiw “GOBoE s

SOLA Developer User’s Guide

7

Note: You will see an €2 icon when you have landed on the schema field you wish to drop the
legacy element onto.

Note: To provide a visual ‘schema-to-structure’ mapping you can click on any schema field on
the analysis screen and the corresponding legacy structure field will flash providing a visual cue
to the developer about the field mapping.

When a schema field has been successfully mapped you will see the Sltem property value set
in the property panel.

Sitem - (OutComp5-FW-5-2-NEG) »|(Bl&
Name « Value
Prefix: APPLY DICTIONARY | FINALIZE Y Bl

createdTimestamp

Init Storage: Hex Char: X([0) 2015-01-13-13.3.47.240634

+ | Schema Inputs || Header
LdEnum-2 aType int
L Enum-3 A1 | dataTypera
Enum-4 GependiD
2 € IARRAY-INPUTS
& € InputArray deseription
€ Manufacturer editCheckCode
£, Country environlD 2009-03-04-06.01 37 798472
€ Level-1-Num-In el
excludelNul
= € Modelsln
€ ModelName fromiD 2015.01-13-13.39.47.240634
€ Enginesizecc D 2015.01-13-13.39.48.160738
& Level-2-Num-In ° o
=) € ColorChoices
& color o] | | mpaea
£ Level-3-Num-In ien
Tevel 3
maxOceurs 1
~
€ outcomps-FH-NEG methodiD 2015.01-13-13.39.47.330670
£ OutComps-FW/-5-2 minOeeurs [
£ OutComp5-FW-5-2-NEG namespace NURIQACNT3M1.CLASS_QACNT..
£ outhumeric
= nedeTyee e
3 &€ OCOMP3-OUTPUTS
NSalizs

£ outComp5-16-0
£ outComps-18-0-NEG objectType Sitem
n.s -

2.0t romnsat

If the schema field was not mapped properly the property value would be blank:

activity
Prefix: APPLY DICTIONARY FINALIZE J
createdTimestamp
- [No =] : x(i@
Init Storage: [NO_[V] Hex Char: X() CoSnstivelD
+ | Schema Inputs || Hesder customEsit
L] Enum-2 dataType decimal
LJEnum-3 2 dataTypeFQ
Frum-4 dependiD
= € IARRAY-INPUTS
= € InputArray description
& Manufacturer editCheckCode
£ Country environiD 2009-03-04-06.01.37.799422
& Level-1-Num-In .
excludelfiu
= € ModelsIn
€ ModelName fromiD
€ EnginesizecC D 2015-01-13-13.39.48.160742
€ Level-2-Num-In o o
=1 € ColorChaices
lasiUpdated
€ Color v
€ Level-3-Num-In len
Schema Outputs | Header level 3
o € 0COMP3-OUTPUTS maxOteurs 1
~
£ OutCompS-16-0 methodiD 2015-01-13-13.39.47.330670
£ OutComp5-18-0-NEG
= minOceurs 0

£ OutComp5-10-5

Click | FINALIZE " 5 complete the analysis. You will be presented with a confirmation dialog
indicating the analysis was successful.

Analysis Completed Successfully

145

SOLA Developer User’s Guide

Using SOLA Developer - IMS

Creating a Web Service from an IMS Program — Bottom Up

Creating a bottom-up web service from an IMS program is very similar to creating a web service
from a Commarea program, but there are some fundamental differences that must be
understood.

If you have not already read the section on creating web services from Commarea programs, it
is suggested that you do so, as you will need all of the knowledge contained in that section to
understand how to use the IMS analyzer.

Step 1 — Mainframe Preparation

For an IMS program you’ll need the PDS member or members that contain the IMS input and
output segment copybook(s) (a compile listing of your program works equally as well). You'll
also need a PDS to store the generated template, and a loadlib for the link-edited version of the
template. Finally, your target SOLA container must be configured to connect to IMS using
OTMA or IMS Connect.

146

e

SOLA Developer User’s Guide

Step 2 — Importing the Program

SoLA | uDDl | Fle | Datasets “l#! | Home

Environments{ TEST) * PROGRAM =
d 4 Directory
(%] .analysis
4 [[7] -aDemoProject
_ﬂl_jl Loommon
4 5] -commonLM
& [(F] .commonLMNew
(03] ImSOLA_1029

Import Program

Show Project History
Filter by Project

4 [£5] .mikesTests User Authority b
3 [-totest-tt-ré21 Add WSOL Template

[tt-re22-QTB
@il or o Delete Project

[AuthProjectdil

Select the project you wish to import to and
right-click it. From the pop-up menu, select
Import Program. If you wish to import the
program to a new project, first follow the steps
for creating a new project on page 22.

In order to import a program into a project, you
must be an authorized user of that project.
Once the program is imported, you can drag
and drop the program from one project to
another. However, you must also be an
authorized user of the project you wish to move
the program into.

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

Using the Other Import Types menu, select IMS Message, then from the sub-menu, select

Bottom Up.

Home || Import '*

Importing Commarea - Bottom Up Producer B | Other Import Types * |

Project:

Program Name:

Please enter a prc

Override Name: | QOptional, Usually

COBOL
037(Default Code

Language:
Host Code Page:
Include

TEST

Enumerations:

Environment:

Program Description:

Structure Name: |P].-.nase enter a str

k4 Commarea 2 |

@ Container b

@ Callable b

MM 1MS Message b Top Down

£ Outbound Meet InThe Middle
B ewms 3270 Bottom Up

[} stored Procedure

k=] Adhocsql

B Custom

.-+ Orchestration

Class Name:

Please enter a class name.

Dataset/Listing Name: |P]-.f-ase enter a listing or dataset name.

IMPORT RESET

The Import panel will change to display the IMS bottom up import panel as outlined below:

147

SOLA Developer User’s Guide

Home Import '*

Project:

Program Name:
Override Name:
Language:

Host Code Page:
Enumerations:
Environment:
Program Description:
Structure Name:
Class Name:
Dataset/Listing Name:
IMS Transaction:
IMS Terminal:

IMS Natural Lib:

IMS Program Type:
IMS LLZZ Prefix:

IMS Segments IdBylength:

IMPORT RESET

CASEIMOO

Optional, Usually same as program Name

COBOL b
037(Default Code Page) e
Include e
TEST »

Wrapper for CASEIMO0O IMS Transaction
IN-SEGMENT-1, IN-SEGMENT-2,0UT-SEGMERN,
IMOOWrapper
SOLADEMO.TEST.COBOLO(CASEIMOO)
CASEIMOO

Please enter an IMS Terminal.

Please enter natural lib if any.

IMS Main Program o
Don't Generate LLZZ(TRANCODE) Prefix v

Segments not identified by length w

The IMS Message Import panel consists of a series of fields used to provide information about
the source program and the destination SOLA program that will be created.

Fields outlined in red are required. The red outline disappears when the field is populated.

® Project: this field is pre-populated and contains the name of the project into which the
program is being imported. Although it cannot be changed during import, you can drag
the program into a different project after it has been imported.

® Program Name: For IMS plugin that is capturing IMS Main progarm, this is just a name
on the SOLA directory to which this service is being captured into. If you are capturing
IMS Subroutine then the program name must match the application IMS subroutine

name.

B QOverride Name: Leave it blanks or fill in the same value as Program Name

148

SOLA Developer User’s Guide

Language: the language the source program is written in. Choices are COBOL, PL/I or
Natural.

Host Code Page: values entered by the Administrator into the Admin Menu / Property
File — codepage.xml that enable user to choose code page conversion to and from
UTFS8 are displayed here. The default is EBCDIC code page 37; CCSID 1140 is
supported and is the Euro currency update of code page CCSID 37. In that code page,
the "g" (currency sign) character at code point 9F is replaced with the "€" (Euro sign)
character.

Note: Code page values stored in codepage.xml and selected during IMPORT are
validated when the service is executed. It is important to make sure the code
page you are using during IMPORT is valid.

Enumerations: If enumerations (viz. 88 level items in COBOL) needs to be imported or
not. Choices are Include or Exclude

Environment: the created program’s environment. The environment is a custom
property in SOLA and available environments will depend on your particular installation.
Some examples of environments are “Test”, “QA” and “Production”.

Program Description: a brief free-form description of the program.

Structure Name: this is a comma separated list of all of the input, output and
input/output(both) structures that will be used by the web service. These names must
match the names of the structures in the program.

Structure Name: | IN-SEGMEMT-1,IN-SEGMENT-2, 0UT-SEGMEN

Class Name: when you expose a program as a web service, its operations will be
exposed as methods. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program.

Dataset / Listing Name: the input source. As mentioned previously, SOLA can import
a commarea program from a compile listing (either saved or from the JES output queue)
or from one or more copybooks. A compile listing is preferred because it allows SOLA to
attempt to categorize the interface fields, saving you work during analysis.

IMS Transaction: the transaction ID under which the IMS program will be executed.
When the IMS Program Type field (see below) is “Main”, this should be set to the
transaction ID of the corresponding IMS program. When the IMS Program Type is set to
“Subroutine” this should be set to the SOLA IMS Driver Transaction ID (SOLA is shipped
with the Common Driver Transaction XML#IMCM). You can customize this by creating
your own transaction that executes the IMS Driver Program XMLPC260.

149

http://en.wikipedia.org/wiki/Currency_sign_(typography)
http://en.wikipedia.org/wiki/Euro_sign

SOLA Developer User’s Guide

® |MS Terminal: this field allows you to specify a Terminal ID, if it is required by the IMS
transaction. This is only required for applications that are coded to work on a specific
Terminal.

® |MS Natural Lib: the Natural Library Name, containing the Natural Load Module.

® |[MS Program Type: specify the program type, Main or Subroutine. For IMS Programs
that accept input and output Segments and can run under their own transaction IDs,
specify Main. For IMS Subroutines, which are invoked by COBOL programs within an
IMS region, specify Subroutine (and use Subroutine Name as the “Program Name”).

B |MS LLZZ Prefix: instructs SOLA to either generate or not generate the IMS
LLZZ/Trancode prefix in the IMS segments being imported. This can be used when
importing application structures that don’t have the LLZZ/Trancode prefix. Choosing to
generate will create extra LLZZ and Trancode(8 bytes) fields in the template

You can see the generated prefixes in the image below:

EQMADDD1-LIME-AREA EQMAND0A-RSP-STATLIS-A

jEEQMADDDI-LINK-F&REA
HSOLA-GENERQTED-FILLER-LL
ESOLA-GENERATED-FILLER-ZZ
HSOLA-GENERATED—FILLER-TRANCODE

=B EQMADO0L-OPERATION-NAME
M EoMANNNL-EOP-ACTIVE

B |MS Segement IdByLength: The default processing of segments returned by
application is to match them in the the same order as the output segments were
specified in the Import screen. If you want to override this matching logic and identify the
returned segments and match them to imported segment structures based on their
lengths then override the default. This feature is useful when your application returns
multiple segments having multiple structures and the order of segments returned is not
fixed.

At the bottom of the Import panel is the Browse Dataset and Listings panel. This panel allows

you to pick the input source from a list without having to manually enter it into the
Dataset/Listing Name field.

150

SOLA Developer User’s Guide

7

Browse Datasets and Listings
Select Source DATASET JOB MAME & NMUMBER MULTIPLE DATASETS

Enter a dataset prefix: | DBVENKA

=5 DBVENKA
DEVENKA.BIND.COMPARE
DEVENKA.BOS24

& DEVENKA.DB2.1CL

& DBVENKA.DDIR

& DBVENKA.DDIR.D

& DBVENKA.DDIR.I
DEVENKA.DITPROF
DEVENKA.DOMOS01.LOADLIE. XMI
DEVENKA.DOMOS01.SAMPLIE. XMI

MRMVERIL A FS2 RTR

R R i

To use this panel, select from one of the three available source types by clicking on the
appropriate button tab.

Select Source DATASET JOB NAME L}NUMBER MULTIPLE DATASETS

The Dataset option includes both saved compile listings and copybooks. You can change your
default dataset prefix by entering a new value in the Enter a dataset prefix: field. Your default
dataset prefix is a user-level custom property that can be set in your user properties (page 4).

=5 DEVENKA Once you have located the dataset or listing you want to
DEVENKA.BIND.COMPARE import from, double click the dataset/ listing name to
DEVENKA.BOS populate the Dataset/Listing Name field with your selection.
B (Z DB‘-.FENKA.DBJ%L

If you select Multiple Datasets, you will not be presented
with a directory tree. Instead, you will be given five blank
fields that you can use to specify up to five copybooks.

H V& DEVENKA.DDIR

IMPORT RESET

Browse Multiple Datasets and Listings -
Select Source DATASET JOB NAME & NUMBER MULTIPLE DATASETS
Additional copybooks: |Enter an additional copybook to import
Optionally enter a futher copybook name
Optionally enter a futher copybook names
Optionally enter a futher copybook names

]
=]
[}
(=)
3
=%}
T
3
T
1¢]
o
|
=
T
k]
i¢]
(=)
3
=
L]
=]
-
3
=%}
3
k]
{5}
[

151

SOLA Developer User’s Guide

7

When you have filled in all required fields and are ready to import, click the IMPORT button.

Home Import *

Project:

Program Name:
Override Name:
Language:

Host Code Page:
Enumerations:
Environment:
Program Description:
Structure Name:
Class Name:
Dataset/Listing Name:
IMS Transaction:
IMS Terminal:

IMS Natural Lib:

IMS Program Type:
IMS LLZZ Prefix:

IMS Segments IdBylLength:

IMPORT RESET

CASEIMOO

Optional, Usually same as program Name

COBOL v
037(Default Code Page) v
Include v
TEST v

Wrapper for CASEIM00 IMS Transaction
IN-SEGMENT-1, IN-SEGMENT-2,0UT-SEGMEN
IMOOWrapper
SOLADEMO.TEST.COBOLO(CASEIMO00)
CASEIMOO

Please enter an IMS Terminal.

Please enter natural lib if any.

IMS Main Program v
Don't Generate LLZZ(TRANCODE) Prefix ¥

Segments not identified by length v

Upon successful import, a confirmation message will be displayed. The newly created program
will appear in the SOLA directory under the project you chose to import it into.

When importing IMS programs, the creation of methods is a separate step from the importing of
the program. The following section will detail the creation of an IMS method.

152

SOLA Developer User’s Guide

7

Step 3 — Creating Methods in an IMS Program

Once an IMS program has been imported, you can create methods by isolating individual
functions within the program. The IMS analyzer is almost identical to the commarea analyzer,
with some differences that will be explained in this section. To understand how to use the IMS
analyzer, you must first read the section on the bottom-up commarea analyzer (page 56), then
return to this section.

Because IMS programs handle multiple segments, in SOLA they contain multiple interfaces
(what would be called a “commarea” in a commarea program). Such an interface can be either
input, output or input/output (both). When an IMS program is imported, all of the interfaces that
will be used by the web service are identified, and all of the identified interfaces can be used
during analysis.

The multiple interfaces appear as tabs in the legacy tree.

PreAnalysis Analysis %

Prefix: APPLY DICTIONARY FINALIZE

In-Segment-1 In-Segment-2 Out-Segmé = || Schema Inputs Header

= [l in-Segment-1 2 € GetBPO4Details
Edn-Len-1 = € In-IMSMsg-Area-2
B Rw-FILLER € In-IMSMsg-Fld1-X-2
B Tran-1d € In-IMSMsg-Fld2-X-2
Ed rw-FILLER = € In-IMSMsg-Area-1
;lIn-IMSMsg-Area-l E In-IM5Msg-Fld1-x-1
Bl 1n-1MSMsg-Fid1-%-1 € In-IMSMsg-Fid2-5-1

Bl 1n-1MSMsg-Fld2-5-1

Schema Outputs | Header

= £ GetBP04DetailsResponse
= € Qut-IMSMsg-Area-1
€ out-IMSM=eg-Fld1-X-1
€ out-IMSMsg-Fld2-5-1
= £ Qut-IMSMsg-Area-2
€ out-IMSMsg-Fld1-%-2
€ gut-IMSMeg-Fld2-X-2

The tab name matches the name of the interface (for example, the COBOL 01 level) that you
supplied during analysis.

SOLA IMS plugin has been enhanced to additionally generate SOLA IMS Override fields in the
WSDL as part of soap:Header. To generate the optional header fields use the switch
‘imsheader=true” as follows:

153

SOLA Developer User’s Guide

http://njstage-gx980:1445/s0la/wsdl/v1.1/byprogram/TEST/Balaji_622_Testing/R622IM0} ?Zimsheader=true

The WSDL will get generated with SOLA IMS Override fields (underlined in the example below):

<?xml version="1.0" encoding="utf-8" 7=
- <definitions targetNamespace="http://im01Class.x4ml.soa.com/IM/R622IM01" xmins:tns="http://im01Class.x4ml.soa.com/IM/R622IM01"
xmins:TD622005="http://im01Method.im01Class.x4ml.soa.com/IM/R622IM01/T#622005" xmins:http="http://schemas.xmlsoap.org/wsdl/http/"
xmins:soap="http:/fschemas.xmlsoap.org/wsdl/soap/" xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmins:imsh="http:/ /schema.sola.soa.com/header/ims"
xmins:xsd="http:/ /www.w3.0org/2001/XMLSchema" xmins:wsdl="http:/ fschemas.xmlsoap.org/wsdl/" xmins="http://schemas.xmlsoap.org/wsdl/">
- «<types>
- <schema targetNamespace="http://schema.sola.soa.com/header/ims" xmins:imsh="http://schema.sola.soa.com/header/ims"
xmins="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
- <element name="IMSConnectParm":>
- <complexType>

- <sequence:
- <element name="IMSCDataStoreID"
- «simpleTypex

- «restriction base="stri
<minLength value
<maxlLength value="8" />

<frestriction>
</simpleType>
<felement>
- <element name="IMSCfqdn">
- <simpleType= —

- <restriction base="string">
<minLength value
<maxlLength value='

<frestriction>
</simpleType:>
<felement>
- <element name="IMSCIPaddress":
- «<simpleType> — — ———"

Other than this one difference, the IMS analyzer is identical to the commarea analyzer.

154

~¢I’ SOLA Developer User's Guide

Working with Fragmented Segments

IMS is capable of circumventing the 32K limit by fragmenting a structure into multiple 32K
chunks. SOLA can handle programs with fragmented output segments, provided that only one
application output structure is fragmented.

To specify that an output structure is fragmented, right click on the structure’s 01 level during
analysis and select Fragmented Segment.

EQMADDD]-LIMNK-AREA EMa000A-RIP-STATIIS-ARE

- B EQMAD0DL-L — o v
ESOLA-GE Display Table Wiew
ESOLA-GE Repeatable Segment
ESOL":"'GE Fragrnented Segrnent

= EQMAODOO . . 1
_IE Q Assign Container W,
[eqmac
EEQMF&E Init Character
= Bl Eqmaono Matching Report

3B EomalmTTRED-EDF-TD

A dialog box will appear asking you to confirm the change from unfragmented to fragmented.
Click OK to continue.

Fragmented Segment Confirmation ®

P This segment is currently marked as C0ERAGMENTED

<%

Do you want to change it to S845WChTED

........

I D J [Cancel]

The SOLA runtime will automatically combine the fragmented structure segments before
constructing the soap response.

If you selected a structure that is already fragmented and then select Fragmented Segment
from the right click menu, you will be presented with a dialog box that tells you the segment is
currently fragmented.

Fragmented Segment Confirmation *

P This segment is currently marked as S845W0H TSR

<%

Do you want to change it to S80S9 Ve TED

Fale I [Cancel

155

SOLA Developer User’s Guide

7

Working with Repeatable Segments

Repeatable segments are used to tell SOLA that some of the input/output data is to be mapped
to the same segment. This is similar in function to an array and is used when large volumes of
output data use the same format (e.g. customer name, DOB, address, etc.).

To mark a segment as repeatable, right click on the structure’s 01 level during analysis and
select Repeatable Segment. SOLA supports handling of repeatable segments in both input
and output

EQMADDD] -LINK-AREA ECQMANDOA-RSP-3TATUS-AREA

= B EQMADDOL-LINK-AREA
B s0LA-GENET Display Table Yiew
B s0LA-GENEF
B soLa-GENEF
= BlEQMADDOL-
EEQMADDD Assign Container
EEQM":"DDD Init Character
= BlEQMADDOL-F
= ElEqmaono
B¥ EQMAan001-REQ-EQR-INIT

Repeatable Segment

[Fer

b
Fragrmented Segmem-fl

Matching Report

A dialog box will appear asking you to specify an upper limit (you can set this as high as you
want).

Modify Occurs Count . |[=] |

EQMADDDL -LIMK-AREA

Matmne = Yalue

OCCUrs 4500

ik,] [Cancel

156

SOLA Developer User’s Guide

7

Creating an IMS Web Service- Top Down and Meet-in-the-
Middle

Just as with commarea programs, it is possible to create a web service using a WSDL as a
guideline, then create an IMS program around that web service (or alter an existing program), or
work with both a WSDL and an existing program, merging the two. The process for doing so
with an IMS program is nearly identical to the commarea process. The only difference is the
multiple interfaces that IMS programs use during analysis, as discussed in the previous section
(starting on page 146).

Step 1 — Mainframe Preparation

The only mainframe preparation required with the top-down and meet-in-the middle approach is
for you to identify a PDS dataset for it to store the generated copybook (make sure that it is
LRECL=80). You'll then write a program that incorporates that copybook, and you’ll put it in a
library that your IMS message processing region can access.

Step 2 — Importing the WSDL

souA | uoot | Fle || ootasets | €2 || Home To get to the top down import panel, select the
project you wish to import to and right-click it.

Emarcrments{ TEST) ~ FROGRAM ~ From the pop-up menu, select Import.

=\ Directory
#(8) -analysis a After you select Import, the Import panel will be
4[] -aDemaFroject displayed under a tab in the workspace. This
|54 .common Import Program .
panel can be used to import any program type

4 [(§] .commonLM Show Project History that SOLA supports
4[5 .commonLMMew i)
Filter by Project

4 [09] ImSOLA_1029 .
3 [B. mikesTests User Authority " The default program type is commarea bottom-

575 totest-tt-r621 Add WSDL Template up, so use the Other Import Types menu to
(03], 1t-r622-QT8 select either IMS Message Top Down or Meet
[AuthProject0l 2ol o InThe Middle.

157

T

SOLA Developer User’'s Guide

Top Down:

l Home H“Import =)

Importing Commarea - Bottom Up Producer B

rmnnpat«TW"‘

Project:

Program Name:
Override Name:
Language:

Host Code Page:
Enumerations:
Environment:
Program Description:

Structure Name:

IMPORT RESET

Please enter a prg

”Optional, Usuallyri
COBOL A
037(Default Code
7 Include
TEST

[

lPlease enter a stry

k- Commarea
| Container
@ Callable

MM IMS Message
g3 outbound
B sms 3270

() stored Procedure

i Adhocsql

Custom

-+ Orchestration

Top Down
Meet InThe Middle
Bottom Up

Class Name: [Please enter a class name.

Dataset/Listing Name: lPIease enter a listing or dataset name.

Meet InThe Middle:

Project:

Program Name:
Override Name:
Language:

Host Code Page:
Enumerations:
Environment:
Program Description:
Structure Name:
Class Name:

Dataset/Listing Name:

IMPORT RESET

.aDemoProject

Commarea

Container

Please enter a prd

Callable

. Optional, Usually '

IMS Message

COBOL
037(Default Code
' Include |

: 3

Outbound

BMS 3270

Stored Procedure
Adhocsql

D0OBO®PE & G

¥y Custom

k-4 Orchestration

IPIease enter a stri

v v v v

Top Down
Meet InThe Middle
Bottom Up

Please enter a class name.

|Please enter a listing or dataset name.

158

SOLA Developer User’s Guide

7

After clicking the IMPORT button The Import panel will change to display the WSDL
import panel.

Importing IMS Message - Top Down Producer @ Other Import Types ~

@ WSDL Imported From PC) WSDL Imported From URL
Upload WSDL file from local
drives
UPLOAD
Upload ZIP file from local drives
UPLOAD

ZIP files must be uncompressed and must contain a WSDL file of the same name as the ZIP fila.

This panel and the associated Import from URL panel are identical to those used in top down
and meet-in-the-middle commarea import (page 76 and page 82, respectively).

Note the Host Code Page selection options (this is described further in the SOLA

Administration Users Guide and in the Importing a Commarea Program’and ‘Admin Menu’
button sections of this guide.)

159

SOLA Developer User’s Guide

7

Step 3 - Analyzing the WSDL to Create the Copybook

IMS top down and meet-in-the-middle analysis is identical to its commarea counterparts, with
the exception of multiple interfaces and fragmented and repeatable segments described in the
IMS bottom-up section (page 128).

160

SOLA Developer User’s Guide

7

Using SOLA Developer - BMS 3270

For many years, the 3270 terminal was the principal method of communicating with CICS
transactions. Despite years of investment in alternatives, billions of these transactions continue
to be run every day by companies across the globe. In fact, in many companies, the 3270
transaction is still the most common way to access CICS transactions.

Although the physical 3270 terminal is long gone, the 3270 emulator remains to provide a PC
based alternative or a “screen-scraping” solution through the HLLAPI.

The reason that so many 3270 applications remain is because they are extremely efficient,
highly reliable and easy to operate. They have, however, proven very difficult to replace. This
is principally because the CICS 3270 “pseudo-conversational” programming model is very
difficult to port to other environments. In a pseudo-conversational transaction the 3270 operator
executes multiple iterations of 3270 transactions to perform a single business transaction.
When developing a screen-scraping solution, the programmer has to understand the countless
ways that 3270 transactions are constructed and he/she has to build a complex driver to
emulate the myriad operator interactions.

How SOLA Creates Web Services from BMS 3270
Transactions

SOLA has eliminated the complexity involved in making 3270 transactions available to the web.
SOLA attacks the complex 3270 problem by focusing on the “business transaction”, not the
individual pseudo-conversational transactions addressed by other approaches. SOLA doesn’t
use screen scraping, instead it runs natively in CICS and interfaces with the CICS supplied
3270 Bridge.

When creating web services from a series of 3270 transactions, SOLA combines a complex
chain of pseudo-conversational interactions into a single request/response operation, or “use
case”. For example, think of the interaction between man and machine when you use an ATM
to withdraw cash from your bank account. There are many possible interactions when
interfacing with an ATM, but withdrawing money from your checking account is one particular
use case. Another use case may be depositing money into your savings account. SOLA allows
you to expose each use case as a single web service operation.

To do this, SOLA provides an Analyzer for 3270 transactions. When creating a web service
from a 3270 transaction, you run your use case through the Analyzer, teaching SOLA how to
run it. Once you’ve successfully taught the Analyzer how to run the use case, the Analyzer
creates WSDL, meta-data and a test harness and documents the transaction in the SOLA UDDI
directory.

Before you can use SOLA to analyze a transaction, you need to understand how the transaction
runs; the screen flow, the inputs and outputs, etc. One way to accomplish this is to run through
the transactions you want to expose, screen by screen. Once you understand how the
transaction is run, you can then use the SOLA Analyzer to expose it as a web service.

161

SOLA Developer User’s Guide

Creating a Web Service from a Simple BMS3270 Use Case

This section will describe the steps necessary to create a web service from a series of
BMS3270 transactions.

Step 1 — Mainframe Preparation

Before launching the SOLA developer, you should run through the use cases that you plan to
import. It is a good idea to not only run through each use case to its conclusion, but also to
experiment with faulty inputs and other ways to generate errors to see how the program
responds. If you are very familiar with the 3270 program, this step is not required.

162

SOLA Developer User’s Guide

e

Step 2 — Importing and Analyzing the Use Cases

AT el e S_elect _the_prOJect you wish to import to and
right-click it. From the pop-up menu, select
Environments{ TEST) * PROGRAM ~ Import Program. If you wish to import the
3 Directory program to a new project, first follow the steps
@ [(3] .analysis - for creating a new project on page 22.
403 -aDemoProject
(&3] .common SpOrt Brog i When creating web services from 3270 use
4|5 -commonLrt Show Project History cases, importing the parent program is done
4.3 -‘I:“m"“"”'-””e"‘ Filter by Project in conjunction with creating a method. Unlike
45| ImSOLA_1029 e , | commarea programs, a 3270 program cannot
(8| mikesTests exist on its own (without methods). The
4 | 3] -totest-tt-re21 Add WSDL Template

program is nothing more than a container for

@ [.tt-r622-QTB
] o Delete Project methods.

[AuthProject(l

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select

BMS3270.
Home || Import *
Importing Commarea - Bottom Up Producer | - = Other Import Types * |
IB Commarea > |
PRORECES ' @ Container v
Program Name: |Please enter a prd @ Callable b
Override Name: Optional, Usually « @ IMS Message b
Language: COBOL a Outbound
Host Code Page: 037(Default Codef BMS 3270
Enumerations: Include ‘ [} stored Procedure
Environment: TEST | &) Adhocsaql
Program Description: [N Custom
Structure Name: Il)[uas(- enter a str{ * Orchiestration
Class Name: ll)!-;-asc enter a class name,]
Dataset/Listing Name: [Plc-as.c enter a listing or dataset name.]
IMPORT RESET

The Import panel will change to reflect the selected program type.

163

SOLA Developer User’s Guide

N

v

Importing BMS 3270 - Bottom Up Producer E Other Import Types *

Project: SolaDemo

Program Mame: | |

Class: | |

Description:

Method Name: | |

Terminal:

Transaction:

Template Name:

|
| cics sysio:[]

Template Dataset:

Load Dataset:

Endpoint: Prod -
@ Start Transaction from clear screen
Transaction Start:) Start from the first map
"~ Start with Command Line Argument
Default View: @ Graphical View © Field View
ANALYZE

The Import panel consists of a series of fields used to provide information about the source
program and the destination SOLA program that will be created.

m Program Name: this is the name that the imported program will be stored under (the
use cases will be methods of this program). This doesn’t have to be the actual name of
a program associated with the transactions, but it should be meaningful to the creator of
the web service.

= Class: when you expose this program’s use cases as a web service, each use case will
be stored as a method. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program.

m Description: the description of the class for documentation purposes. This is pre-filled
from project-level properties but can be changed.

® Method: each use case must have a uniqgue method name.

® Terminal: Terminal is only used if there is a terminal dependency for the program — for
example if you need to have signed on to a security system before you can execute the
transaction. In that case you would sign on using your 3270 emulator and then enter the
terminal ID where you've signed on in this field.

® Transaction: Transaction is the 4 character transaction ID that you enter from a blank
screen to invoke the use case.

164

SOLA Developer User’s Guide

= Template Name: this field tells SOLA what you want to call the template (run-time
metadata) that will be created when the use case is analyzed. The template tells SOLA
how to facilitate communications between a legacy application and a distributed client or
server. A template is an Assembler Data Only Load Module.

m Template Dataset & Load Dataset: these fields are used to tell SOLA where you want
the template source and the compiled and link-edited template to be stored. The source
of the template will be stored as a member in the Partitioned Data Set (PDS) named in
the Template Dataset field. The SOLA Analyzer will automatically assemble and link-
edit the template into the Load Library specified in the Load Dataset field.

m CICS SYSID: the 4 character CICS SYSID where the transaction runs.
= Endpoint: the region in which SOLA is running.

In addition to the fields, you have several options for how to start the transaction.

B Start Transaction from clear screen: Choose this option to have the web service start
from a clear screen. This is the default option.

® Start from the first map: Choose this option to have the web service start from the
transaction’s first map.

B Start with Command Line Argument: Choose this option if you want the transaction to
start with a command line argument. Selecting this button displays two additional fields.
Use these fields to enter the command line argument and its value. To use multiple

arguments, string them together in
sequence. If you enter an argument and a

Argument Name value, the transaction will be executed
Argument Value _(during a_malysis) using the supplied
information.

B Graphical View: chose this option to launch the 3270 Analyzer with the default
graphical view.

B Field View: click (select) this button to launch the 3270 Analyzer with the optional field
view.

When you have filled in all required fields and are ready to import the program and begin

analyzing the first use case (you cannot Import a 3270 program without creating at least one
method), click the Analyze button.

165

SOLA Developer User’'s Guide

Importing BMS 3270 - Bottom Up Producer B Other Import Types

Project: SolaDemo

Program Mame: SOLAEMON

Class: Widget

Description: Sola Demonstration

Method Mame: inquireWWidget

Terminal:

Tranzaction: SEMI

Template Mame: SEM1D00

Template Dataset: |SOLATEST.ASMTELO

Load Dataset: SOLATEST.LOADLIB ClCs =YsID: CICE
Endpaint: TORE -

@ Start Transaction from clear screen
Transaction Start: Start from the first map

Start with Command Line Argument
Default View: @ Graphical View Field View

ANALYZE

After you click ANALYZE, the Analysis panel will display the BMS3270 Analyzer.

Importing BMS 3270 - Bottom Up Producer B Other Import Types *

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY

Enter ¥

Scrollingkey:

n'z A

Drill Downkey:

Enter ¥

Drill DownType:

na -

Repeat ?

-

Is this last Map?

In the default view, the 3270 Analyzer is a graphical representation of a green screen with some
differences related to functionality: all empty spaces in all fields are painted with dot characters
(X o T), which aids in locating hidden fields. In recreating the green screen, SOLA

166

SOLA Developer User’s Guide

7

has captured not only the look of the original program but its functionality as well. You can
actually run through the entire 3270 program within the Analyzer. To create a method from a
use case, however, you should only run through the specific use case you are creating.

For example, the program shown in the illustration above has 20 options, and each option may
lead to other options. This program may represent hundreds of use cases. An example of a
specific use case would be selecting option 1 (information about a specific widget), entering the
widget number in the WIDGET field and advancing to the next map with the Enter key. The
next map should contain information about the widget number provided in the first map. This is
a simple but complete use case, and it can be likened to a customer requesting information
about a specific account. You can build a modern web based interface for the customer to
interact with, and by exposing use cases as web services; the customer can be invoking the
legacy program and data without realizing it.

Creating a Web Service

When creating a web service using the SOLA Analyzer, you are essentially doing the same
thing as creating a web service from a commarea program. You are creating a WSDL, which
describes the interface to the program; the input and output fields. As complex as a 3270 use
case may seem, it is really nothing more than a group of inputs and outputs. The inputs are the
fields the green screen program requires as well as the keys(button presses) it needs to
advance maps (e.g. Enter key to advance maps, PF1 to drill down, etc.). The outputs are the
data fields that the program returns.

The 3270 Analyzer provides a very simple interface for describing both input and output fields.
This interface allows for a wide range of field types, from simple input or output to error
message or end marker.

In describing how to create a web service from a use case, we will use the simple use case
mentioned earlier in this section (requesting data about a specific widget). Creating this simple
web service will allow you to understand how the Analyzer works and give you the skills you
need to create more complex web services.

The first step in creating our simple web service is to identify the input fields required for the use
case.

167

SOLA Developer User’'s Guide

SEMPLE . APPLICRTICN

INQUIRE WIDEET. . . START _TRAENSID

This is the input field that you must use to select an option from the green screen
menu. For this particular use case, we will be choosing option 1.

If you ran through the transaction in the green screen terminal, you would see that
entering an invalid widget number in field 2 results in an error message displayed

in this field. When creating web services, you can specify the number of times a
certain map is displayed. In our use case, this map should only be displayed once.
If it is displayed twice, it is because of an error (such as entering an invalid widget).
SOLA will know that an error has occurred, because a map that should only have
been displayed once has now been displayed twice, and will throw a SOAP fault. If
you wanted to capture the legacy error message in the SOAP fault, you could
describe this field in the WSDL as an error message field. SOLA would then use
the text contained in this field in the SOAP fault it throws.

e This is the input field that you must use to enter a widget number to inquire on.

Now that we know what fields we need on this first map, it’s time to describe them for inclusion
in the WSDL.

To describe a field, right click it. SOLA has identified the input and output fields on the green

screen representation, so clicking anywhere on an output field or within the green box on an
input field will bring up the field menu.

168

SOLA Developer User’'s Guide

Field Detail Window : Field3

Field Name: Sglact
Input Value: |1

Data Type:
I/0 Type:
MDT:
Protected:
Hidden:
Length:
Instance:
Start of Group:

Group Parent:

APPLY TRANSLATE CANCEL

When configuring fields, you must change the field name, or else SOLA will ignore the field
while creating the web service. In this instance, we have assigned a default value of 1 to the
field, which we’ve named “Select”. In the image above, the 10 type is set to “Input”. This means
that while SOLA will run the transaction with the value we supplied (in this case 1), the WSDL
would indicate that this is a user supplied value. Since passing a value of 1 is necessary for this
use case, we will need to set the 10 type to “AlwaysDefault”, so that the web service will always
supply a value 1 for this field when running the legacy program.

Once you have configured the field, click OK. The Analyzer
will display an icon next to the field to indicate that it has been
configured.

It is now time to configure field e .

169

SOLA Developer User’'s Guide

Field Detail Window : Field48

Field Name: |Widget
Input Value: g0ooooo3
Data Type: string
I/0 Type: |Input
MDT: QFF
Protected: NO

Hidden: NO

Length: |8

Instance:
Start of Group:

Group Parent:

APPLY TRANSLATE CANCEL

Notice that we provided a value to this input field. When the web service is implemented,
however, the user can provide any value that he or she wishes. Since we did not mark this field
“AlwaysDefault” as we did for the previous field, this field will appear in the WSDL as an input
field and the web service will accept inputs from the user. Why then do we need to provide a
value when creating the web service? The transaction needs an input (in this case a valid
widget number) to advance to the next map. SOLA must learn how to run the transaction, and
the transaction must have inputs to run. This is why SOLA makes a distinction between regular
input fields and “AlwaysDefault” fields. While analyzing this use case, we can provide any valid
widget number.

Configuring fielde is optional (the web service can just throw a generic SOAP fault), but not
advisable.
Declaring a field’s 1/O type as an

R “ | “ErrorMsg” means that SOLA will take
Field Name: |Error the text of that field as a SOAP fault
Data Type: [string ~ should it encounter a fault condition.
1/0 Type: |ErrorMsg = That fault condition, however, has
MDOT: [orF nothing to do with this field; the
Protected: [VES presence of an error message in a field
Hidden: |NO declared an “ErrorMsg” field will not
Length: |79 generate a SOAP fault. The Analyzer
Inetance: . . must be taught when to throw a fault. As
Start of Group: g . mentioned previously, one example of
Group Parent: this is declaring that a map must only
appear once. If that map appears twice,
APPLY | TRANSLATE | CANCEL then that means something has gone
| wrong and SOLA will throw a SOAP
i fault. If there’s a field declared

“ErrorMsg” on the map that caused the
fault, the text in that field will be included in the SOAP fault. If there isn’t, SOLA will throw a

170

SOLA Developer User’'s Guide

generic SOAP fault. The absence or presence of an error message field, therefore, affects only
the contents of the SOAP fault.

Now that we have fully configured the first map, it's time to set some map navigation options
and advance to the next map.

Key: NEXT SEQUENCE FINALIZE MNEXT MAP SUMMARY

Enter

Scrollingkey:

Nz

Drill Downkey:

nia -

DrillDownType:

na A

Repeat ?

-
Is this last Map?

No *

Map Navigation

o The Key value is the keyboard key that needs to be pressed to advance to the next

map. In 3270 applications, this is usually the enter key. The value in this menu
has to match what is required by the 3270 application. Notice that on the bottom
left of the green screen simulation is a key legend that tells users what keys to
press. It indicates “ENTER=PROCESS”, telling us that the Enter key processes
our request. Therefore, in our use case, we should leave the default value of
“Enter”.

e This value dictates how many times the map is allowed to repeat before a SOAP

fault is generated. The default value is “0/1”, which indicates that the map can only
appear once (does not repeat). Options range from 0/1 to 4. There is also an
unlimited value. If Repeat? is set to “unlimited”, you must specify an end marker
or the web service will enter an endless loop (information on end markers and
other Analyzer functions and settings appears later in this section). Since our use
case does not call for this map to be repeated, we should leave it at “0/1”.

9 This value tells SOLA whether this is the last map in the use case. This setting is
important, as it is one of the ways that SOLA knows the use case has come to its
conclusion. In our use case, this value should be set to “No” for this map.

171

SOLA Developer User’'s Guide

When you are ready to advance to the next map, you can click the NEXT MAP button.

Importing BMS 3270 - Bottom Up Producer B Other Import Types *

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY

Enter ¥

Scrollingkey:

LR

Drill Downkey:

niz A

DrillDownType:

n'a -

Repeat ?

-

Is this last Map?

No =+

Map Navigation

Map : 1
SOAMMO1

SOAMAPL

As requested, the 3270 application has provided information about the widget we specified.
Now we must describe the output fields we are interested in for the WSDL and set an end
condition so the web service knows when to terminate.

We are interested in all of the output fields that pertain to the widget, so right click on each of
them and configure them.

Field Detail Window : Field3

Field Name: | widget
Data Type: |string
I/0 Type: Exclude
MDT: QFF
Protected:
Hidden:
Length:
Instance:
Start of Group:

Group Parent:

APPLY TRAMNSLATE CANCEL

PE3I=END

£

172

SOLA Developer User’'s Guide

Since we’re describing simple output fields, the only thing we have to do is change the field
name.

Once you have named all of the output fields, the only thing left to do is to set an end condition.
Since this is the last map in our use case, you can do that by changing the value of Is this the
last Map? to “Yes”.

Importing BMS 3270 - Bottom Up Producer B Other Import Types ™

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY
Enter ¥

Scrollingkey:

na -

Drill Downkey:

na -

Drill DownType:

niz -

Repeat ?

-

Is this last Map?

When you are finished, click FINALEZ to continue.
Importing 8153270 [Other Import Types ~ i YOU W|” be pl’esented W|th a Summal’y pane|
SIS Anabrsts Summary that contains all the map and field
CONFIRM FINALIZE | | RETURN information you configured during analysis.
Transaction Start Information: If there were any errors In your anaIySiS’
@ Start Transaction from clear screen 3 SUCh aS nOt SpeCIfyIng the Ia‘St map Or an
Start from the frst map end marker, this panel would also contain

Start with Command Line Argument

warning messages describing the problem.

Map Information:

et o i — You can browse this panel to make sure all

rogram Name AW ran . .

ReceiveType Recsiveliep + sExtendedatirbutes 4 of the maps and fields are configured

HaFa = Rz ' correctly. If you find something you don’t

Map PF Key Enter « Drill Down Key nia = .] .

e ot oot T —— i like, you don’t have to go back to analysis,

you can change it right here in the summary

Field Information: panel .

Name Select GNr;nI;d: - 10: Input - . . .
e i st When you are certain everything is the way

GroupMame Consta -1 i i e

o omans impi you want it, click the " button. A
e confirmation message will be displayed.

Name Widget GJé::‘:d: - I0: Input - Message %
SpecialAction: Instance:

ST N - BMS1010I - Analysis+Successful

value 00000003 Data Type: o

: sting v 9999

173

SOLA Developer User’'s Guide

BMS3270 Analyzer Reference

This section will provide detailed information about the BMS3270 Analyzer. It is strongly
recommended that you read this section in its entirety at least once before tackling any major
projects using the Analyzer.

As SOLA is intended to be used by mainframe programmers, the BMS3270 Analyzer and this
documentation are both designed to be easy to use by people with a certain degree of
mainframe knowledge. If you are not a mainframe programmer, you may find some portions of
this document to be intimidating or overwhelming. If this is so, then you should realize that
SOLA was designed to be easy to use by everyone, not just mainframe programmers.
Specialized mainframe knowledge and/or skills are not required to make the most of the
BMS3270 Analyzer (though they do help). Anyone can use the Analyzer to expose complex
series of transactions as web services, all it takes is a step by step approach, starting with
simple use cases and slowly working up to more complex ones. The Analyzer is, underneath
the surface, extremely intuitive and simple to use.

The BMS3270 Analyzer is divided into four sections; the workspace, the button bar, the map
tools and the map navigation controls.

Importing BMS 3270 - Bottom Up Producer B Other Import Types

Key: NEXT SEQUENCE FINALIZE NEXT MAP SUMMARY

Enter ¥

ScrollingKey:
na h 50 E_RPPLICRTICN

Drill Downkey:

niz A

Drill DownType:

niz A

Repeat ?

-
I= this last Map?

No =+

Map Navigation

Map : 1

SOAMMO1
SOAMARL

Map Tools

This tool bar is used to configure map navigation options such as key assignments, map repeat
settings and more. This tool bar is also used to control the view in the BMS3270 Analyzer
workspace.

174

N

v

SOLA Developer User’s Guide

Key:
Enter =

Scrollingkey:
n‘a -

Cirill Drown key:
na

CirillCrownType:

n/a -
Repeat ?
0 -

I= thiz last Map?
Mo -
Map Mavigation

Map: 1
50AMMOL

SoAMAPL

Key: this is the keyboard key the user needs to press after making a
selection. The default value is Enter, other options are PF1 — PF24 (function
keys).

You can select a key (and simultaneously advance to the next map) by
pressing either the Enter key or one of the 24 function keys (Shift + function
key for PF13-24) when you are ready to advance to the next map.

NOTE: Function key shortcuts, such as F5 to refresh or F1 to open Windows Help
have been disabled in the BMS3270 Analyzer.

Scrolling Key: specifies which key is used to scroll the screen (if the screen
is scrollable). The default value is n/a (not applicable), other options are Enter
and PF1 — PF24 (function keys).

Drill Down Key: specifies which key is used to make selections (drill-down)
on the screen. The default value is n/a (not applicable), other options are
Enter and PF1 — PF24 (function keys).

Drill Down Type: specifies the drill down type. The default value is n/a (not
applicable), other options are ALL or Key.

Repeat: indicates how many times the screen should repeat before an error

message is generated. The default value is 0/1 (appears only once). Other options are 2, 3, 4

and Unlimited.

Is this last Map?: indicates whether this is the last screen in the transactions. Options are

YES and NO.

175

SOLA Developer User’s Guide

7

Map Navigation Controls

This field shows a navigation map of all the screens involved in the transaction up to the current
screen (displayed in the work area).

Clicking on a map from the main Analyzer screen L Show Map Fields

reveals the Map menu. SOAMAM

Show Map Graphics

The options in the Map menu apply to the screen

from which the menu was accessed, not the screen that is currently displayed in the work area
(unless they are one and the same). Therefore, selecting a view option for the menu may
change which screen is being displayed in the work area.

mode.

Show Map Fields: selecting this option will display the selected screen in the field view mode.

Show Map Graphics: selecting this option will display the selected screen in the graphics view

Button Bar

NEXT SEQUENCE FINALIZE MNEXT MAP SUMMARY

B Next Sequence: click this button to restart the transaction with a new set of maps (e.g.,
if your transaction takes two different sets of maps depending on type account number
on the first map then you need to teach SOLA each sequence separately by entering
two different account number for these two different sets).

® Finalize: click this button to complete and save the analysis.

B Next Map: Click this button to proceed to the next BMS 3270 screen in the transaction.
You will not be able to proceed unless you have satisfied the requirements of the current
screen (input required values, etc.). If NextMap is clicked while editing a method, SOLA
will execute your transaction in real time.

B Summary: click this button to go to the BMS Analysis Summary panel.

176

SOLA Developer User’'s Guide

Working with the Graphics View

The Graphics view displays each screen of the BMS 3270 transaction as it would appear on a
BMS 3270 terminal, with additional graphical elements overlaid onto the contents of the screen.

Z4ML SANFLE

ATPPLIER. DE3C

TELLOW
RANGE
.SMALL..
JHEDIUM
MEDITUHM

APPLICATICH

WHITE 1
RED W
BLUE WID

MEDIUM .G

HEDITHM .E
HEDITH . :
JELLOW WIDGET
JORAWGE WIDGET
JWMHITE WIDGET

MEDITUHM
MEDITUHM
! MEDITH

GET.
. WIDGET...

. INTEFEWALL.. LLARGE..REDL WIDGET

ENTER=FORWARD,.. PF3=END.
¥

The contents of the screen are interactive, allowing
you to highlight or otherwise select fields and make
changes such as naming fields and setting default
values and field parameters.

Input fields recognized by SOLA are shown as solid
green boxes.

Whenever you move the mouse cursor over a field
(input, output, etc.), the cursor changes from an arrow
to a hand (this may vary if you have custom cursor
settings).

SELECT

WIDGET

177

SOLA Developer User’s Guide

7

Field Settings

Field Detail Window : Field46 % | When the cursor changes to a
hand over a field, you can
Field Name: |Widget right-click to access a menu of

options for that field. Each

Input Value: | goo00003 . ;
field has its own menu of

Data Type: |string e options that define it and its
I/0 Type: Input v role in the transaction.
MDT: | OFF

The menu contains the

Protected: [NO following options (some

Hidden: |NO | options are not displayed with
Length: |8 | some fields):

Inst. : .. .
fetance il Input Value: this is the input
Start of Group: | No ~ value you want to enter to run
Group Parent: the transaction. Even though

in the execution of the web
APPLY— b TRANSEATE - CANCEL service this value may be

dynamic, SOLA has to be
taught to run the transaction
with fixed values. The generated WSDL can then be used to run the transaction with input from
user or application. The value is going to be same as what you would enter on a legacy green
screen for this field in order to execute the transaction. This option is only present if SOLA
determines that the associated field is an input field.

Field Name: this is used to assign a name to the field that a requestor of this service would
see. This is the name that will be published in the WSDL.

NOTE: If you change any properties of a field, SOLA will not allow you to proceed unless you
change the field name. The word “Field” with an uppercase F cannot be a part of that name, as
“Field’ is a restricted word. The name cannot contain spaces.

Data Type: this is used to specify the data type of an input or output field. Options are string,
int, short and decimal. This applies only to the WSDL file generated by SOLA and not to the
operations on the mainframe side. For example, if a certain field always displays a number and
the mainframe code identifies it as a string, you can set it to integer and the consumer of the
web service will treat the field as an integer.

I0: this is used to specify the nature of a field. It can have one of the following values:

Input: indicates that requestor will send this field to SOLA. SOLA may then use the
field to populate green screen, if the screen allows it.

Output: indicates the SOLA will pick this value from green screen and send it to
requestor.

InputOutput: indicates field is Input as well as Output.

178

SOLA Developer User’s Guide

Exclude: indicates that a request will not send data related to this field. However,
SOLA may decide to put a hidden value if MDT is set to ON.

ErrorMsg: used in conjunction with the Repeat setting in the BMS Analyzer tools (left
side of screen). If the map is defined as repeating two times but during execution
SOLA encounters the same screen three times, SOLA would send a SOAP Fault
(error message). This error message will be picked from the field that is defined as
"ErrorMsg".

AlwaysDefault: indicates that SOLA will not publish this field to the requestor, and will
instead use a default value entered during this analysis as input during real execution.

EndMarker: is used in conjunction with the “Unlimited” Repeat setting in the BMS
Analyzer tools (left side of screen) in order to allow SOLA to stop the execution at the
desired point. With the MAP set to "Repeat Unlimited"”, SOLA needs a way to stop the
transaction. Setting an EndMarker value indicates to SOLA it should end the
transaction if the specified value (the value of the field when an EndMarker was set) is
encountered during real execution.

ContinueMarker: is the opposite of EndMarker and is used in conjunction with the
“Unlimited” Repeat setting in the BMS Analyzer tools (left side of screen) in order to
allow SOLA to stop the execution at the desired point. With the MAP set to "Repeat
Unlimited”, SOLA needs a way to stop the transaction. Setting an ContinueMarker
value indicates to SOLA it should end the transaction if the specified value is not the
value of the field during real execution.

DrillDown: this is an input field that can be used to drill down (retrieve information
about) another field.

Key: this is a field that is used to identify a specific data item. In a list of data items,
the key field will be the field used to match a search query with the data item being
searched for. For example, when searching a list of widgets for a specific widget, you
can use the widget number as the key field. The user would pass a widget number,
and the transaction would scroll the list of widgets until a widget with matching widget
number is found.

MDT: indicates if MDT on the screen is ON or OFF. This value cannot be changed by the
user.

Protected: indicates if the field is protected. Possible values are YES and NO. This value
cannot be changed by the user.

Hidden: indicates if the field is hidden. Possible values are YES and NO. This value cannot be
changed by the user.

Len: indicates the character length of the field. This value cannot be changed by the user.

Instance: this value is a counter indicating the repeat instance of the map (how many times it
has been repeated during the transaction). For example, a blank screen counts as one

179

SOLA Developer User’s Guide

7

instance, and each time data is entered and the Enter key is pressed counts as another
instance.

StartOfGroup: SOLA populates this value only for the first field out of multiple fields selected
and "Grouped as Output" fields (see Marquee Tool section).

GroupParent: this is used only with fields that have been grouped (groups are explained later
in this section). This value will become a parent element in the output XML. All the fields that are
grouped together would appear as children elements under this name in the output XML.

For example, in the following image there are 7 fields:

F09/06/05

C

S 5 100.04 SUCM # 0165044

SWCHMTD

All of these fields are grouped together and have a single parent called “ltemDetail”.
In this case output XML would appear as follows:

<ltemDetail>
<child1>X</child1>
<child2/>
<child3>09/06/05</child3>
<child4>WCMTD</child4>
<child5/>
<child6>100.04</child6>
<child7>WCM # 0165044</child7>
</ltemDetail>

To close the menu without saving changes, click =~ CANCEL
To hide the menu and save changes, click |~ APPLY

For information about the = TRANSLATE 1y tton, see “Translation Feature” below.

180

SOLA Developer User’'s Guide

Translation Feature

For dealing with cryptic or inadequate data labels, SOLA offers the translation feature.

Consider the following display:

For size, the data indicates a value of “P”, which means petite. However, since the letter P is
not usually associated with size, you may choose to pass a value to the data recipient that is
more easily understand. To accomplish this, SOLA offers the translation feature.

To access the translation feature, right click on the desired field to display the field options
menu, then click the TRAMNSLATE button.

Doing so will display the translation sub-panel.

= Field Name Walue Translation
Erter -

widget '@
Repeat ?
01 - RETURN

The sub-panel consists of three columns, one of which is pre-populated with the parent field
name. To use the translation feature, enter a value (from the program) under the Value column,
then enter a translation for the value in the Translation column. To add more blank fields (to

enter more values), click the button. To remove unnecessary blank fields, click the (]
button.

When the web service is executed, the translated value will be sent to the user instead of the
original value.

For example, the possible values for size are P, M and G (Petite, Medium and Grand). Since
these are obscure and unintuitive, we want to replace them with the more easily understood
values of Small, Medium and Large. To translate these values, right-click on the Size field to

display the field options menu and then the | TRANSLATE " pyton.

Since there are three values, click the button twice to add two more fields. Enter the three
values in the blank fields under the Value column, then their translations under the Translation
column.

181

SOLA Developer User’'s Guide

Field Name Value Translation
size P Small il
size M Medium (]
size G Largs| i

When finished, click =~ BETURN " \whenever the web service is executed, the value P will be
replaced with Small, M with Medium and G with Large.

Marqguee Tool

The marquee (or selection) tool is one of the most powerful features of SOLA’s BMS 3270
Analyzer. Using the tool is similar to using a marquee tool in a graphics program that is used to
select a portion of an image.

To use the marquee tool, double click in the top left corner of what you want to select, then
double click the bottom right corner. A rectangle will appear, with its top left corner located at
the exact point of your first double click, and its bottom right corner in the exact location of your
second double click.

CBCTOR........ SMALL..WHITE WIDGET...
L. .MEDIUM RED W

MEDITHM . GEEEN WI
MEDIUM .ELACE WI
MEDITM .

Selected items will appear with a white background. It is important to note that the marquee
does not represent the selected fields, the white background does. The marquee is a guide for
selecting the fields, nothing more.

Once a selection is made, a menu of options appears:

Group or Merge § Group Output
i o'
LCTOR....... 5 iMALIL.. WHITE WIDGET.. Copy = Merge CQutput
INTEEMAL MEDIUM. EED W Paste
LCE MEDIUM. ELUE WI } SEEE i

3..GREEN....V ! MEDIUM. GREEN WI i Split
3. BLACE. . F = ! HEDITH.)

MEDTUN. PINE WIDGET.. Dismiss Menu

I
Group Output X
Group Name:

Group Output: combines APPEY— —CANCELE
the selected fields into a

182

SOLA Developer User’s Guide

7

group. In the output xml, the fields will be listed under a group heading and can be manipulated
as a single group by the output data consumer. The first field in a group will be designated as
the group parent. When this option is selected, the following dialog box appears, allowing you
to name the group and specify it’s type.

Merge Output: combines the selected output fields into a single string. This is useful when you
want to send a group of fields as a single string. SOLA will accept the discrete fields from the
program and combine them into a single string during execution.

Merge Input: combines the selected input fields into a single string. This is useful when you
may have multiple input fields on the green screen but you want the requestor to send a single
string rather than multiple strings. SOLA will chop the input strings and fill the necessary
multiple fields during execution.

Copy: this is a very powerful feature of the marquee tool. It allows you to make changes to a
field, then copy those changes and paste them to other fields. Using this feature, you only have
to make one set of changes when working with a large list of repetitive fields. To use this
feature, make changes to a field, select it with the marquee tool, then select Copy Modifications.
Use the marquee too to select a single field or a group of fields that you want to share the same
settings, then select Paste.

Paste: select this option to paste the settings of one or more fields copied using the Copy
Maodifications option onto a matching field or group of fields. The target selection must match
the copied fields. For example, if a line has four fields and you copy the first three, you can only
paste them onto the first three fields of every remaining line.

Split Field: this is another very powerful feature of the marquee tool that lets you split a single
large field into several smaller fields. This feature is explained later in this section.

Cancel: cancels the selection.

183

SOLA Developer User’s Guide

7

Split Field Feature

The Split Fields feature allows a single long string containing several meaningful pieces of data
to be sent as separate data items. This relieves the consumer of the burden of having to worry
about formatting/reformatting issues.

To use the feature, first use the Field Options menu to name and configure the field you want to
split. Then select a portion of the field with the marquee tool and choose Split Field from the
marquee tool options menu.

This will display the Split Field menu.

Split ” Parent Name: this value is
populated by SOLA and is
taken from the name given to
the parent field using the Field
Options menu. This value
cannot be changed by the user

The length and starting position control the value of the split.

Parent Name: |widget

Split Name: (except in the Field Options
Split value: | BROWN menu)'
plit Name: use this to assign
[‘:] [:] Split N this t
a name to the split portion of
Starting Position: |9 the field.
Split Length: |5 Split Value: this is the field

value, which SOLA attempts to
retrieve from your marquee tool
APPLY CANCEL selection. Although you can
manually alter this value, it is
recommended that you use the

Starting Position and Split Length fields to adjust it.

Starting Position: allows you to set an offset value (number of spaces) for the split field. This
is used in conjunction with Length to pinpoint the correct location of the split field. You know
you have the correct offset and length settings when the Split Value field displays the correct
value (of the portion of the field you are trying to split).

Split Length: allows you to set a length value (in characters) for the split field. This is used in
conjunction with Offset to pinpoint the correct location of the split field. You know you have the
correct offset and length settings when the Split Value field displays the correct value (of the
portion of the field you are trying to split).

To save changes and split the field, click =~ APPLY

To exit without saving changes, click =~ CANCEL

Repeat the process for all portions of the field you want to split.

184

SOLA Developer User’s Guide

7

Key Matching Feature

A key field is a field that is used to identify a specific data item. In a list of data items, the key
field (or fields) will be the field(s) used to match a search query with the data item being
searched for. For example, when searching a list of widgets for a specific widget, you can use
the widget number as the key field. The user would pass a widget number, and the transaction
would scroll the list of widgets until a widget with matching widget number is found.

There are two ways to use key matching; drill down and update.

Drill Down Key Matching
To use the key field for drill down key matching, you must set the following values:

Key: this key advances screens when NOT scrolling through a list trying to match the
key field. This can be the same as the Scrolling Key, but doesn’t have to be.

Scrolling Key: this must be set to the key the transaction needs to scroll through a list
while trying to match the key field.

Drill Down Key: this must be set to the key the transaction requires to drill down when
a matching field has been found (key field match successful).

Drill Down Type: this must be set to single, so that SOLA knows that only list items that
match the key field should be drilled down.

Repeat: this should be set to “Unlimited” so that the transaction can scroll down as far
as necessary to match the key field.

Is this the Last Map: this should be set to “Yes” so that SOLA does not enter an
endless loop if the map doesn’t match.

185

SOLA Developer User’'s Guide

Importing BMS3270 B COther Import Types ~

Key: MNEXT SEQUENCE FINALIZE NEXT MAP SUMMARY
PFd = N N)
SCOLAR S&ZMPLE AFP 1)
Sorallinaley: ScollingKey matches transactions’s “forward” key
5 SUPPLIER D
DrillDownkey: 3 b,
FF2

DrillDownType:
Single -

Repeat ?
Unlimited

1= this last Mapg

ez w

Map Mawvigation

DrillDownType is set to "Single”

You must also define the following fields on the map:

Drill Down Field: this is the field, typically located at the head of a row, in which the
transaction requires a certain input (e.g. “i") to drill down into its associated row.

Key Field: this is the field or fields in the row that will be matched to the search query.

Continue Marker or End Marker: define a continue marker as a precaution to allow
SOLA to stop scrolling if a match is not found.

For example, the following screen contains a list of widgets:

OLL SEMFLE AFFL

HoHHHHHHH HH
oooooooogggg

The leading input field has been defined as a Drill Down field:

186

SOLA Developer User’'s Guide

oOLA SAMPLE APPLICATION

Field Name: | Drillfield

Input Value: |1

Data Type: |stn'ng
I/0 Type: |Dn1TDown

MDT: |[;u|:F

Protected: | MO

Hidden: |N[}

Length: |1

Instance: |

Start of Group: |NO

| X< |) <3 <3} |

Group Parent: |

 APPLY TRANSLATE CANCEL

The Widget number field has been defined as the Key Field:

CSOLA SAMPLE APPLICATION

Field Name: | widget

Data Type: |stn'ng

I/0 Type: | Key

MDT: |D|:F

Protected: | YES

Hidden: |N[}

Length: |35

Instance: |

Start of Group: |Ng

B] | <] 3] <3 .

Group Parent: |

 APPLY TRANSLATE CANCEL

187

SOLA Developer User’'s Guide

Once the drill down field and the key field have been defined, advance to the next map (the
results of the drill down). Once that map is configured, return to the list screen and copy and
paste the settings for the drill down and key fields all the way down the list. Since
DrillDownType was set to single, SOLA will only drill down if the key field matches.

Update Key Matching

Key matching can also be used to update data (rather than just drill down for more information).
For example, a widget transaction might have one or more input fields on every line of data:

In this transaction, you search for a matching widget number then enter a new supplier and a
new price. The settings for this type of transaction are the same as the previous use of key
matching, except that you do not define a drill down field on the map. Instead, you enter values
in the input fields then set the DrillDownKey and Key values to the keyboard key that the
transaction wants as an update key and click Next Map.

Once you are at the next screen (typically it’s the first screen) with an “Update Successful’
message, go back to the list screen and make the Key value different from the DrillDownKey
value.

Caution: before finalizing, verify the Key, ScrollKey, DrillDownKey and DrillDownType
values.

Graphics View Screen Symbols

The following symbols may appear next to fields on the screen.

- This symbol indicates that changes were made to the field (using the field
settings menu).
‘_9 This symbol indicates that the field has been split into component features with
¢ the Split Field feature (available through the Marquee tool).

188

SOLA Developer User’s Guide

This symbol indicates a part of a field that has been split into a separate
component field with the Split Field feature (available through the Marquee tool).
This symbol appears in conjunction with the scissors symbol, and only in rows
where you have manually split the row. If you copy and paste field settings it will
only show up in original (see the Marquee Tool section for information on copying
and pasting).

This is not a discrete symbol but is in fact an overlap of the scissors and arrow
O;P symbols that sometimes occurs on the screen.

This symbol indicates the presence of a field whose value has not been set. This
¥ can be used to spot unpopulated or empty fields.

189

SOLA Developer User’s Guide

7

Working with the Fields View

The ‘Fields View’ displays the BMS 3270 screen as a series of fields with associated options.
This view is not as versatile or powerful in terms of features as the graphics view, but can be
used to quickly make changes to all of the fields of the screen in one place.

Mumber MName InputOutput Length Protected Hidden MDT Value
0 Field0 Exclude * 23 YES MO OFF SOLA SAMPLE APPLICA
1 Field1 Exclude - 8 YES MO OFF SOAMMOZ2
. Field2 Exclude - 1 YES NO OFF 5
3 Field3 Exclude - 8 YES MO oOFF WIDGETH
4 Field4 Exclude - 6 YES NO OFF COLOR
5 Fields Exclude - 1 YES NO OFF 5
5 Field6 Exclude ~ 5 YES NO OFF PRICE
7 Figld? Exclude - 8 YES MO OFF SUPFPLIER
Fieldd Exclude ~ 20 YES Mo ofFfF DESC
5 Field3 Exclude ~ 1 YES NO OFF
10 Field10 Input - 1 NO NO OFF
11 widget Input ~ 35 YES No oFF DDD000O0Z2 BROWN X !
Field12 Exclude ~ 39 YES NO OFF XLARGE WIDGET
13 Field13 Exclude ~ 1 YES NO OFF
14 Field14 Exclude ~ 1 NO NO OFF
15 Field15 Exclude -« 35 YES NO oFF 000000032 EROWN 5
16 Field16 Exclude ~ 39 YES Mo OFF 3-BLUE-SMALL-7
17 Field17 Exclude ~ 1 YES NO OFF
18 Field18 Exclude ~ 1 NO NO OFF
19 Field19 Exclude -« 35 YES NO oFF 00000004 GREEMN P &
20 Field20 Exclude ~ 39 YES MO OFF 4-GREEN-P-652
21 Field21 Exclude ~ 1 YES NO OFF

Field Num: a sequential value assigned to all fields on a given map, starting with the first field
detected.

Field Name: this is used to assign a name to the field that a requestor of this service would
see. This is the name that will be published in the WSDL.

InputOutput: this is used to specify the nature of a field and can have one of the following
values:

190

SOLA Developer User’s Guide

Input: indicates that requestor will send this field to SOLA. SOLA may then use the field
to populate green screen, if the screen allows it.

Output: indicates the SOLA will pick this value from green screen and send it to
requestor.

InputOutput: indicates field is Input as well as Output.

Exclude: indicates that a request will not send data related to this field. However, SOLA
may decide to put a hidden value if MDT is set to ON.

ErrorMsg: used in conjunction with the Repeat setting in the BMS Analyzer tools (left
side of screen). If the map is defined as repeating two times but during execution SOLA
encounters the same screen three times, SOLA would send a SOAP Fault (error
message). This error message will be picked from the field that is defined as
"ErrorMsg".

AlwaysDefault: indicates that SOLA will not publish this field to the requestor, and will
instead use a default value entered during this analysis as input during real execution.

EndMarker: is used in conjunction with the “Unlimited” Repeat setting in the BMS
Analyzer tools (left side of screen) in order to allow SOLA to stop the execution at the
desired point. With the MAP set to "Repeat Unlimited", SOLA needs a way to stop the
transaction. Setting an EndMarker value indicates to SOLA it should end the transaction
if the specified value is encountered during real execution.

ContinueMarker: is the opposite of EndMarker and is used in conjunction with the
“Unlimited” Repeat setting in the BMS Analyzer tools (left side of screen) in order to
allow SOLA to stop the execution at the desired point. With the MAP set to "Repeat
Unlimited", SOLA needs a way to stop the transaction. Setting an ContinueMarker value
indicates to SOLA it should end the transaction if the specified value is not the value of
the field during real execution.

Length: indicates the character length of the field. This value cannot be changed by the user.

Protected: indicates if the field is protected. Possible values are YES and NO. This value
cannot be changed by the user.

Hidden: indicates if the field is hidden . Possible values are YES and NO. This value cannot
be changed by the user.

MDT: indicates if MDT on the screen is ON or OFF. This value cannot be changed by the
user.

Value: this is the value of the field taken from the green screen. Making changes to the value
usually doesn’t affect anything. The only reason for you to change the value is for use with the
following settings; EndMarker, ContinueMarker or AlwaysDefault.

191

SOLA Developer User’s Guide

7

Field View Screen Symbols

The following symbols may appear next to fields on the screen.

- This symbol indicates that changes were made to the field (using the field
settings menu).
*p This symbol indicates that the field has been split into component features with
¢ the Split Field feature (available through the Marquee tool).

Environment Setup

Before you can test a new web service you will need to perform some set-up steps for the SOLA
Run-time. On page 47, we discussed the MRO (Multiple Region Operation) concept. The
following is an MRO diagram of the architecture for 3270 programs.

-- Namespace -
MQ Queue xmins="http://<namespace url>!BM!l’GADP04?{TR#DOO‘I
/ XMLP
. / - / Smp arser
regram | acy | Request
o Type | %ga?
Response ," Nam.
TE""P"‘“‘ SOLA Plug-in for ”"“59"
/ / plamai BMS3270
/ / Programs Tree
Soap Request DPL
viaMQ / /
v s
Common Driver Metadata
Soap Bequest Program Soap
Response
Soap Legacy Program
S Response
oap Template
Response
IP Address
Program Response Legacy Program
Multiple 3270
Client Requestor e Progr
Operations
T CICS Document l
l RCT

CICS / Systern Components P
ESI LR **|P Port can be shared across multiple

CICS Regions running in a single LPAR
Legacy P Metadaf
[Gener':mg;r;,nsomi " I Legacy Program MVSTCP/IP Support

SOA Enabling BMS3270 via CWS/MQ

To configure the WOR and AOR so that our Widget transaction will run, we will need to create
the following definitions.

192

N

SOLA Developer User’s Guide

v

WOR AOR

DEFINE PROGRAM (XMLPCWGT) EXISTING TRANSACTION (TGW#)
GROUP (SOLAGRP)
LANG (LE)

DEFINE PROGRAM (TGW#D001)
GROUP (SOLAGRP)
LANG (ASSEMBLER)
STATUS (ENABLED)

DEFINE TRANSACTION (TGW#)
REMOTESYSTEM (AOR) *
REMOTENAME (TGW#)

For this example, the Transaction will be running in the WOR and so will not need a
Remotesystem or a Remotename.

We define a “dummy” program that will drive the transaction in the WOR. We also define the

template (an assembler program) in the WOR. Finally, a transaction is set up in the WOR
pointing to the AOR in which the BMS 3270 transaction runs.

193

SOLA Developer User’s Guide

7

Using SOLA Developer - Stored Procedures

Stored procedures, sometimes called sprocs or SPs, are subroutines stored in databases that
can be called by applications. They are most often used for data validation, access control and
to consolidate functions that were originally implemented in applications.

How SOLA Creates Web Services from Stored Procedures

SOLA is capable of registering stored procedures and making them available as web services.
The registration process involves searching for stored procedures, supplying necessary
arguments, executing the stored procedure and finalizing registration. Once registered, a stored
procedure becomes a method stored in SOLA’s UDDI directory and can be called as a web
service.

Creating a Web Service from a Stored Procedure

This section will describe the steps necessary to create a web service from a stored procedure
by searching for a specific stored procedure, registering it with the SOLA directory, providing
required arguments, executing the stored procedure and finalizing the registration. There is no
analysis when making web services from stored procedures, as procedures are fairly simple
and perform single functions. The end result will be a WSDL, metadata template, test harness
and a UDDI entry.

194

SOLA Developer User’s Guide

7

Step 1 — Mainframe Preparation

Before you begin the stored procedure registration process, it is a good idea to configure the
mainframe environment to enable your stored procedure to be executed. During the registration
process, SOLA will attempt to execute the stored procedure to verify that the data you have
provided is valid. Although you can set up the environment at any time before the actual
execution takes place, it is a good idea to do so before the registration process.

To configure the mainframe environment, you will need to set up PPT entries in the SOLA
WOR.

WOR AOR

PPT: PPT:

DEFINE PROGRAM (yourSPprogName) DEFINE PROGRAM (XMLPC200)
LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)

REMOTE REGION (yourRegion)
REMOTE NAME :XMLPC200
REMOTE TRANID: (yourTranId)

PCT:
DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)
STATUS (Enabled)

RCT:
DB2ENTRY (yourTranId)
PLAN (XMLPLAN) *

* XMLPLAN must contain an entry which represents the collection that your target stored procedure belongs to.

If you have any difficulties with making these table entries, consult an administrator.

195

SOLA Developer User’s Guide

7

Step 2 — Verify Stored Procedure Syntax

The SOLA run time supports a subset of the stored procedure syntax, shown below in blue.
Before importing a stored procedure, verify that your procedure expects or returns only the
supported data types:

>>— 4=+ —SMALLTINT -~ — — - — = —— ——— —m +-><
| +-+-INTEGER-+—+ [
| | "-INT----- ' \
[U-BIGINT-=-=-= : |
| = ({8, @) commooooooooooooooos |
S e D) G M A e e e e LS e e e e e E e S e e e +
| +-DEC----- + '-(integer-+----------- +=) ="
| '-NUMERIC-' '-, integer-'
| -(53) -———---
+-+-FLOAT——+——-—-———————— B ettt e et +
| '-(integer)-"' |
| +-REAL--—---——-—-———————- + |
(I .-PRECISION-. | |
| '-DOUBLE-—+-——==—-———— +-!
| .= (34)-.
+-DECFLOAT-—+---—-- R e e EEE RS P e e +
| '-(l6)-"
| A . |
+-+-+-+-CHARACTER-+-—+—-——-—-———— ommm e e e e T e B +-+
| | | '-CHAR------ ' '-(integer)-' | '-FOR--+-SBCS--+--DATA-' I
| | '-+-+-CHARACTER-+--VARYING-+-- (integer) -' +-MIXED-+ |
(. | '-CHAR------ ! | '-BIT---' \
| ' -VARCHAR---—==—==——————— ! |
(. -(IM) —=———— - . |1
| '-+-+-CHARACTER-+--LARGE OBJECT-+-—4-—-——————————————— it +=!
| | '-CHAR------ G | '-(integer-+---+-)-' '-FOR--+-SBCS--+--DATA-'
| ' —CLOB-=———=——————————————————— 0 +-K-+ '-MIXED-"'
[+-M—+ |
| '-G-! |
| (1) . |
+-+-GRAPHIC-—4-—-—-——————— Fo————— o +
(I '-(integer)-' | |
| +-VARGRAPHIC-- (--integer—--)----—+
(I ~(IM) —mm - |
| '-DBCLOB=——+=———=——=——————————— += |
| '-(integer-+---+-)-"'
[+-K-+ |
| +-M-+ |
| '-G-! |
| O |
+-+-BINARY-—+-—————————— o e e e +
| '-(integer) -' | |
| +-+-BINARY VARYING-+- (integer)-—--——--———————————— + |
| | '-VARBINARY-----—- ! | |
| -(IM) ———————— - |
| '"-+-BINARY LARGE OBJECT—+-—+-———————————————— =
| BB OEEEEEEEtss s V= (dategee=r=—=-r=)) =" |
| +=K—+ |
| +=M—+ |
| Al _G_ Al |
+-+-DATE------ o +
| +-TIME------ + |
| '-TIMESTAMP-' |
o ROW L D——— = = — = — —m o +
I =l === L

196

SOLA Developer User’s Guide

e

Step 3 — Stored Procedure Registration

sota || uoor | Fie | ootssets | %2 tome Select the project you wish to import to and right-
click it. From the pop-up menu, select Import
Environments{ TEST) ¥ PROGRAM ~ Program. If you wish to import the program to a
3 Directory new project, first follow the steps for creating a
425 .analysis ~ new project on page 22.
|0 -abemoProject
(5 -.common Import Program In order to import a program into a project, you
(53] -commantL Show Project History must be an authorized user of that project. Once
jgﬂrg:&m':;g:” Filter by Project the program is imported, you can drag and drop
5[5, mikesTests User Authority > the program from one project to another.

However, you must also be an authorized user of

4|54 -totest-tt-ré21 Add WSDL Templat . : :
- i the project you wish to move the program into.

[. tt-re22-QTB

Delete Project
4 7. AuthProject01 cete Froje

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select Stored
Procedure.

Home | Import *

Importing Commarea - Bottom Up Producer B | Other Import Types = |

k= Commarea 2
Project: EE Container >
Program Name: |Please enter a pra @ callable b
Override Name: Optional, Usually $ E IMS Message b
Language: COBOL G Outbound
Host Code Page: 037(Default Code ([} BMS 3270
Enumerations: Include ' m Stored Procedure
Environment: TEST | &l Adhocsql
Program Description: [E Custom
Structure Name: [Iii.:um_- enter a stry Bl L
Class Name: [I’i.}em‘c enter a class name. l
Dataset/Listing Name: Ilﬁicas.j enter a histing or dataset name. l
IMPORT RESET

The Import panel will change to display the stored procedure search panel.

197

SOLA Developer User’s Guide

7

Harne Import *

Importing Stored Procedure D Cther Impark Types ©

Schema Specific Mame
Owner MName
SEARCH

The first step in creating a web service from a stored procedure is to select which stored
procedure you want to use. To do so, you search for it based on one of the following search
criteria:

m Schema: narrows the search to stored procedures with a matching schema.
m Specific Name: narrows the search to stored procedures with a matching name.
m Owner: narrows the search to stored procedures with a matching owner name.

= Name: narrows the search to stored procedures with a matching alias name (usually
the same as specific name).

Although all fields are optional, you must supply at least one parameter. Wildcard characters
(%) are permitted during the search, as are partial words. The example blow search below is
based around a single letter of the stored procedure’s specific name, so all stored procedures
whose specific name starts with the letter “s” will be returned. If you wanted to return all results
that have the letter s in the specific name (rather than just those that start with s), you could
specify %s in the Specific Name field.

Horme Import *

Importing Stored Procedure D Cther Impart Types ©

Schema Specific Name 5
Owner Name
SEARCH %
Once you have specified at least one search parameter, click = SEARCH " The results

summary panel will be displayed.

198

SOLA Developer User’s Guide

NP

Home Import #

Importing Stored Procedure @ Other Import Types ™

Select a specific name from the list below to continue.,

Schema Specific Name Routine Origin Language Collection

SOLAGLF SOLASPOD1 P E COBOL

SOLAGQLF SOLASPODZ P E COBROL TOA

SOLAGLF SOLASPOD4 P E COBOL

SOLAGLF SOLASPOS P E COBOL

SOLAGQLF SOLASPOG P E COBOL

SOLAGLF SOLASPO7 P E COBOL

SOLAGQLF SOLASPXX P E COBROL

SOLAGLF SOLASWOZ P E COBOL SOh

=vEIBM SOLCAMESSAGE P E C

SYSIRM SQOLCOLPRIYILEGES P E [DESMASPCC

SvsIBM SOLCOLUMNS P E C DEMASPCC

SYSIBM SQOLFOREIGNKEYS P E C DEMASPCC

SYSIBM SOLGETTYPEINFO P E C DENASPCC

=vEIBM SOLPRIMARYKEYS P E C DEMNASZPCC

SYSIRM SQLPROCEDURECOLS P E C DESMASPCC

SvsIBM SOLPROCEDURES P E C DEMASPCC

SYSIBM SQLSPECIALCOLUMMNS P E C DEMASPCC

SYSIBM SOLSTATISTICS P E C DENASPCC

SYSIBM SQOLTABLEPRIYILEGES P E [DEMASPCC

SvSIBM SOLTABLES P E C DENASPCC

SvsIBM SOLUDTS P E C DEMASPCC
RETURN

The results summary shows information about all of the stored procedures that match your
search criteria. The information is organized under the following column headings:

m Schema: the stored procedure’s schema name.

m Specific Name: the stored procedure’s internal name. The names in the column are
links. Click on the link to select that stored procedure and create a web service that will
call it.

® Routine: the routine type, can be P (for procedure) or F (for function).
®m Origin: the stored procedure’s origin, can be E (for external) or | (for internal).

®m Language: the stored procedure’s language. Options are all types, Assemble, C,
Cobol, Compjava, Java, PLI, Rexx and SQL.

= Collection: the DB2 collection that the stored procedure belongs to.

199

N

SOLA Developer User’s Guide

v

To continue with the import
process, select a stored procedure
from the list by clicking on its

Importing Stored Procedure D Cther Impart Types ©

Select a specific name from the list below to continue, name in the Specific Name

. column.
Schema Specific Mame
SOLAGLF SOLASPO If no stored procedures are listed,
SULeEl Sl go back to the previous screen
SOLAGLF SOLASPOS

SOLAGLF COLASPOS and try a new search with different
S o hene parameters.

At any point during import, you
can return to the previous panel by
clicking |~ RETURN
Clicking on a stored procedure’s name will display the procedure details panel.

Haorme Import '*

Importing Stored Procedure E Cther Impork Types ™

Zchema: SOLAQLF =pecific Mame: SOLASPO4 Routine Type: P

Ordinal PType Parm Mame DType Length Scale Parm Data
1 Input PROJIECTHNAME CHAR. 35]
2 Input DECIMAL_IN DECZIMAL 7 2
3 Input SMALLIMT_IM SMALLINT Z]
10 /0 PARM_DCATE DATE 4]

REGISTER RETURN

The procedure details panel displays the input portion of the signature for the selected stored
procedure. In order to execute, most stored procedures require input. SOLA will analyze the
selected stored procedure and automatically determine what input fields it requires. You will
need to input the data required to execute the stored procedure before proceeding.

The data you input will not necessarily be the data that is used when the stored procedure is
called as a web service after registration. SOLA needs valid input data to execute the stored
procedure to make sure that it was registered correctly.

The panel provides information about each parameter in the input portion of the stored
procedure’s signature under a series of column headings:

m Ordinal: the order that the parameter appears in the signature.

m PType: the parameter type, either | (input) or I/O (input/output).

® Parm Name: the parameter name.

m DType: the type of data that this parameter represents.

200

SOLA Developer User’s Guide

® Length: the parameter’s internal length.

®m Scale: for some types of parameters (such as fractions), the scale represents the
number of significant positions after the decimal point.

m Parm Data: this column contains fields in which parameter values can be entered.

To proceed, enter the appropriate values (you will need to be familiar with the stored procedure
and what it does to know what values are appropriate) for every parameter and click
REGISTER ~ to continue.

The registration panel will be displayed.
Harne Import *

Importing Stored Procedure E Cither Import Tvpes T

Schema: SOLAQLF Specific Mame: SOLASPO1 Routine Type: P

Project Solalnztall Program SOLASPO
Method Class
Description MSpace Prefix
EndPoint Zpad[1443) -
EXECUTE RETURN

The registration panel is where you give SOLA the information it needs to expose the stored
procedure as a web service. The stored procedure must be given a method, class and program
name. You can also specify the end point, an optional namespace prefix and provide a
description.

= Project: the SOLA project that the stored procedure will belong to. This cannot be
changed during registration, though you can drag the program from one project to
another once it is created.

® Program: the SOLA program name that the stored procedure will be organized under.
This cannot be changed.

m Method: the SOLA method name used to execute the stored procedure.
m Class: the SOLA class name that the stored procedure will be organized under.
®m Description: a free-form description field.

® NSpace Prefix: This field is optional. Use it to customize the descriptive portion of the
namespace of the WSDL that will be generated when the stored procedure is registered.

m EndPoint: the end point that the stored procedure will run in.

201

SOLA Developer User’s Guide

7

When you have provided the registration information, click EXECUTE

SOLA will attempt to execute the stored procedure with the data you provided (on the Stored
Procedure Details screen) and display the results.

If the stored procedure does not execute successfully, an error message will indicate failure,
and SOLA will display a new set of hyperlinks at the bottom of the panel.

Importing Stored Procedure E Other Import Types

Schema: SOLAQLF Specific Name: SOLASP04 Routine Type: P

Project \Solalnstall | Program \SOLASPD4 |
Method test | Class Project Test |
Description |test program | MSpace Prefix | |
EndPoint | Zpad(1443) v

An error occured during stored procedure execution. Click the links below to view the reguest and/or response.
Request Response

EXECUTE RETURN

Clicking on the Request link will open a new window containing the SOAP request that was sent
when SOLA attempted to execute the stored procedure. Clicking the Response link will open a

new window containing the SOAP response that was returned. You can use this information to

determine why the stored procedure failed to execute properly.

If the stored procedure is executed successfully, you will be taken to the finalize panel, where
SOLA will display information about the parameters used by the stored procedure.

Home Import #

Importing Stored Procedure E Other Import Types ~

Click to display request message Click to display response message
Level Parameter Name Input/Output Length Scale Occurs
1 SPA-LINKAGE-AREA B 0 0 0
2 ad I 250 0 0
4 StoredProcOwner I a 0 0
4 StoredProcMame I a 0 0
< PROJECTNAME I 35 0 0
2 adResponse] 250 0 0
4 completeData O 250 0 0
= DATA O 250 0 0
8 OutputParameters O 250 0 1

FINALIZE RETURN

The information is presented under a series of column headings:

= Level: the parameter’s logical level.

202

SOLA Developer User’s Guide

= Parameter Name: the parameter name.
® |nput/Output: the parameter type, either | (input), O (output) or B (both).
® Length: the parameter’s internal length.

®m Scale: for some types of parameters (such as fractions), the scale represents the
number of significant positions after the decimal point.

®= Occurs: if the parameter is an array or a table, this indicates how many times it occurs.

You can view the SOAP request

Click to display request message Click generated by SOLA and the
Level Parameter Name Input/Output response returned by the stored
1 idPA-LINKAGE-AREA 18 procedure.

AredbPrnct Arner
cOrTOCy -

To view the SOAP request, click
the request link. Likewise, click
the response link to view the
response.

If the procedure executed correctly and the request and response are satisfactory, you are
ready to finalize the registration.

Click EIMALIZE to create the web service.

203

SOLA Developer User’s Guide

e

Using SOLA Developer - Ad-hoc SQL

SOLA provides the means to register a method within your project that will let you run Adhoc
SQL as a web service.

How SOLA Creates Web Services from Ad-hoc SQL

To run Adhoc SQL as a web service, SOLA creates a dummy program that will represent your
Adhoc SQL requests. You do not need to register each SQL request as a separate method.
One dummy program will provide access to all of your Adhoc SQL.

204

SOLA Developer User’s Guide

7

Creating a Web Service from Ad-Hoc SQL

This section will describe the steps necessary to register a method to run Adhoc SQL as a web
service. There is no analysis when making web services from Adhoc SQL. The end result will
be a WSDL, metadata template, test harness and a UDDI entry.

Step 1 — Mainframe Preparation

To configure the mainframe environment, you will need to set up PPT entries in the SOLA
WOR.

WOR

ACR

PPT:
DEFINE PROGRAM (DummyprogName)

PPT:
DEFINE PROGRAM (XMLPC200)

LANG (LE) LANG (LE)
STATUS (Enabled) STATUS (Enabled)
REMOTE REGION (yourRegion)
REMOTE NAME : XMLPC200

REMOTE TRANID: (yourTranId)

PCT:
DEFINE TRANSACTION (yourTranId)
PROGRAM (DFHMIRS)
PROFILE (DFHCICSA)
STATUS (Enabled)

205

N

v

SOLA Developer User’s Guide

Step 2 - Adhoc SQL Registration

SOLA LDDI File

Datasets

Oof | | gk

Home

Environments{ TEST) = PROGRAM ~

21 Directory
4 |3 .analysis
[-aDemoProject
[£F] .common
4 |£F] -.commonLM
|3 .commanLMMew

Import Program

Show Project History
Filter by Project

Select the project you wish to import to and right-
click it. From the pop-up menu, select Import
Program. If you wish to create the program in a
new project, first follow the steps for creating a
new project on page 22.

In order to import a program into a project, you
must be an authorized user of that project. Once
the program is imported, you can drag and drop

@[] ImSOLA_1029
4 [55] .mikesTests

4 [£] -totest-tt-ré21
@ (3] .1t-re22-QTB
[AuthProject0l

the program from one project to another.
However, you must also be an authorized user
of the project you wish to move the program into.

User Authority 3
Add WSDL Template
Delete Project

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select Adhoc
SQL.

Hoine Tivwpoit =

Importing Commarea - Bottom Up Producer |~ | Other Import Types = |

| k=4 Commarea v |
Project: | B Container b
Program Mame: [I»‘Z---v.:- enter a I'ﬂﬂl & callable B
Override Name: Optional, Usualky 1 E IMS Message "
Language: COBOL I G Outbound

Host Code Page: |037(Default Code [} BMS 3270

Enumerations: Include E Stored Procedures
Environment: TEST : h;j AdhocSgl
Program Description: [E Custom
Structure Name: [l-:.t-:'ﬁ.,:- enter a stry = Orchestration
Class Name: [FZ- ase enter a class name, |
Dataset/f Listing Name: |_|"-L-<|k;- enter a listing or dataset name. |

IMPORT RESET

The Import panel will change to display the Adhoc SQL panel.

206

SOLA Developer User’s Guide

N7

Project : Solalnstal Program:

Class Name: AdhocSOL Method: runSCL

Class Desc: Run ADHOC S0L Category: Msc =

SOLA Binding EndPoint: 1 PUBLIC CICA{ 1443) -
REGISTER

The only information you need to provide is the program name and the binding endpoint.
m Project: the name of the project to which the dummy program will belong. This is pre-
populated based on the project from which you accessed the import screen and cannot
be changed.

m Program: the program name that will represent your Adhoc SQL requests. As this is
not an actual program, you may enter any unique name up to eight characters long.

m Method: this will be the method you use to represent your Adhoc SQL requests. It's
default name, runSQL, cannot be changed.

m Class Name: the class name that will represent the dummy program. Class names are
necessary for the dummy program to be used in distributed systems. It's default name,
AdhocSQL, cannot be changed

m Class Description: a brief description of the dummy program. This cannot be changed.

m Category: the category (type) of program. Options vary by installation.

m SOLA Binding Endpoint: the mainframe endpoint in which the dummy program will
run.

Once you have entered the program name, optional category and a binding endpoint, click to
REGISTER create the dummy program.

207

SOLA Developer User’s Guide

7

Using SOLA Developer — Custom Programs

Unlike most legacy CICS programs, such as COMMAREA programs, Custom programs are
written for the specific purpose of hosting web services within CICS using SOLA. Custom
programs allow for the complete control and handling of both the SOAP request and the SOAP
response or SOAP Fault. That is to say that all interrogation of the SOAP request, and building
of a valid SOAP response, is handled by the custom program using the SOLA provided DOM
API. In addition Custom programs are not subject to the 32K data limit typically imposed on
COMMAREA programs.

There are currently three distinct varieties of Custom programs supported by SOLA.

1. Version one ‘Legacy’ (the SOLA 5.1 model). These are typically programs written using
SOLA 5.1. These programs must be written using the SOLA 5.1 DOM API. Although
transparent to the programmer, SOAP requests and responses over 32K in size are
communicated between WOR and AOR regions by use of a SOLA provided DB2 table
called the ‘overflow’ table.

2. Version one ‘SOLA 6.1 model’. A newer, SOLA 6.1 provided version works in mostly the
same manner as the Legacy version except that it uses the new SOLA 6.0 DOM API.
Note: This version of Custom programs was introduced in SOLA 6.1 PTF SFX-6116 and
IDE Release Version 6.1.10 and greater. The procedures described here reflect this new
model. Legacy custom programs will still be supported, but any new development
should comply with the new standards described here.

3. Version two ‘Container model’. This SOLA 6.1 supported version is completely different
from the others in that it is based on CICSs Containers. In this case the programmer
has to do a few more steps compared to the other versions. The SOAP request must
first be retrieved from a provided CICS Container, and the SOAP Response (or Fault)
must be placed on a CICS container to be passed back to the WOR region. The
advantages of this model are many. It has less architectural complexity in that it does
not require the use of DB2. It also means that the Custom program may use ANY parser
desired (does not have to be SOLA’s Parser/DOM API) or no parser at all. In addition
the required PPT entries are more straightforward.

Since the 5.1 version of the DOM API is deprecated (no longer supported) the version of
Custom program that uses it is also deprecated. Therefore, for the purposes of this document,
only the newer variety of Version one (the SOLA 6.0 model) will be discussed along with
Version two.

The process for creating a web service from a DOM API (Custom) program is different than
other program types in that, instead of having an existing program which you expose as a web
service and then test, you will first write the Custom program code, test it, and then import it into
SOLA for registration and the building of the WSDL and test harness etc.

208

SOLA Developer User’s Guide

7

Custom Programs Version 1 (using the SOLA 6.1 DOM API)

With this version, SOLA program XMLPC202 will accept the SOAP Request passed to it from
the SOLA Listening Region and parse the request using SOLA’s 6.1 DOM Parser. The DOM
tree handle created by parsing will be passed via a CICS Link to your Custom Program. The
DFHCOMMAREA that your custom program receives is described in a SOLA provided
copybook called XMLCUV12.

Description of Copybook XMLCUV12:

05 :LK-:DOM-HANDLE USAGE IS POINTER.
05 :LK-:VER-EYE-CATCHER PIC X (07).
05 :LK-:SOAP-REQUEST-SZ PIC S9(09) BINARY.
05 :LK-:CUST-RETURN-CD PIC S9(04) BINARY.
88 THROW-SOAP-FAULT VALUE -1.
05 :LK-:FAULT-DETAILS.
10 :LK-:FAULT-CODE PIC X (01).
88 SERVER-ERROR VALUE 'S'.
88 CLIENT-ERROR VALUE 'C'.
10 :LK-:FAULT-STRING PIC X(35).
10 :LK-:FAULT-MSG PIC X (254).

Note that when copying this into your program you need to use a copy format such as:
COPY XMLCUV12 REPLACING ==:LK-:== BY ==LK-==.

LK-DOM-HANDLE - This is the handle that represents the DOM tree created as a result of
parsing the SOAP request.

LK-VER-EYE-CATCHER - Should be valued: ‘CU01.02'.
LK-SOAP-REQUEST-SZ — The size of the SOAP Request.

LK-CUST-RETURN-CD - Indicates to SOLA the action to be performed when your Custom
program is completed. When zero, SOLA will use the
LK-DOM-HANDLE (which should be the DOM Handle your program
used to create the SOAP Response) to generate the SOAP response
to send back to the service requestor.

LK-FAULT-DETAILS — If LK-CUST-RETURN-CD is set to -1 then SOLA will use the information
In this data structure to format and throw a SOAP Fault.

The manipulating of SOAP request and response must be handled by the SOLA 6.0 provided
DOM API. The SOLA DOM API can be used by CICS transactions and Batch jobs, while the
SOLA DOM parser and API together provide functions to inquire on an XML document
repeatedly in any direction, as well as a method to create new XML documents from COBOL
programs.

209

SOLA Developer User’s Guide

s

Since parsing of the SOAP request is handled by XMLPC202, programs of this type need only
interrogate the request using the DOM API and build a proper SOAP response, also using the
DOM API.

When finished building the response the program only needs to ensure that the DOM handle
used to create the response is placed into the commarea field LK-DOM-HANDLE and return
control to XMLPC202. XMLPC202 will then take care of delivery of the response to the
requestor.

Custom Programs Version 2 - Containers

This style of Custom program requires the use of CICS containers. Unlike Version 1 programs
which transfer SOAP data larger than 32K using a DB2 table called the ‘overflow’ table, this
version transfers the SOAP data (regardless of size) in a CICS container. This version requires
no SOLA program in the AOR (XMLPC202 is required in version 1) and control is, therefore,
passed directly to your custom program from the WOR region. This means that your program
will be responsible for the proper handling of the various containers passed between the WOR
and the AOR. In addition your program will need to parse the SOAP request that is passed in
the ‘request’ container, and place a valid soap response in the ‘response’ container along with
control information is the ‘status’ container. Although a bit more work will be required from your
program to do this (as compared to a version 1 program) the advantages are a simplified
architecture, no DB2 requirement, and the flexibility of using any parser, or parsing technique
you like.

The following is a list of possible containers that your custom program may use (all containers
are contained within channel SOLA-CUSTOM):

B SOLA-STATUS: Communications pertaining to status are handled through this
container. Contains SOLACUV2 copybook is described later in this section. This
container is input/output.

B SOAP-REQUEST: Contains the decrypted SOAP request. This container is input only.

B SOAP-RESPONSE: This container is optional. It should be present only if a normal
return code is present in the status container and will contain your SOAP response. This
container is output only.

B SOAP-FAULT: This container is optional. If you want to create a custom fault, you
should put that fault in this container. This container is output only.

Once the SOAP request has been retrieved, your program can use any parser to process the
request and build either a SOAP response or a fault (we recommend the SOLA 6.0 parser of
course).

Once the SOAP response or fault has been built, it will need to be placed back into a specific
container (along with the proper status). When control returns to the SOLA region, SOLA will
interpret the status and take appropriate action (i.e. under normal circumstances, it will send
back the SOAP response).

Under normal circumstances you will place the completed SOAP response into the CU-RESP-

CONTAINER container and set the CU-RETURN-CD to zero. In this case SOLA will simply
deliver your soap response to the client requestor.

210

SOLA Developer User’s Guide

7

Required Copybooks

The copybook SOLACUV?2 is passed to the custom program in the status container. You will
need to retrieve it into the custom program, update the information in the data area and place it
back into the status container. This is used to report status information from the custom
program and maps the area passed to the application linkage.

Note: When SOLA 6.0 PTF SFX-6116 and IDE Release Version 6.1.10 are applied, you will
also get following copybook updates as a part of SAMPLIB:

XMLDOMWT1 - Interface for new DOM API (We have added new 88 level items so the flags
match old interface).
XMLCUV12 - Copybook that maps the area passed to Application linkage

The following are the contents of the SOLACUV2 copybook:

05 CU-RETURN-CD PIC S9(04) BINARY.

88 CU-RETURN-NORMAL VALUE +0.

88 CU-THROW-FAULT VALUE -1.

88 CU-CUSTOM-FAULT VALUE -2.
05 CU-RETURN-MSG PIC X(100).
05 CU-CHANNEL-NM PIC X (16) VALUE 'SOLA-CUSTOM'.
05 CU-STATUS-CONTAINER PIC X (16) VALUE 'SOLA-STATUS'.
05 CU-STATUS-LEN PIC S9(09) BINARY.
05 CU-REQ-CONTAINER PIC X (16) VALUE 'SOAP-REQUEST'.
05 CU-REQUEST-LEN PIC S9(09) BINARY.
05 CU-RESP-CONTAINER PIC X (16) VALUE 'SOAP-RESPONSE'.
05 CU-RESPONSE-LEN PIC S9(09) BINARY.
05 CU-FAULT-CONTAINER PIC X(l6) VALUE 'SOAP-FAULT'.
05 CU-FAULT-LEN PIC S9(09) BINARY.

The names of the SOAP-RESPONSE and SOAP-FAULT containers can be overridden by your
custom program if you wish. Other container names need to remain the same.

Faults

You can throw two types of faults. If you set the CU-RETURN-CD to -1 SOLA will throw the
message contained in the CU-RETURN-MSG area as a SOAP Fault (your program need not
create an actual SOAP fault). You can alternately set the CU-RETURN-CD to -2 and SOLA will
retrieve your custom SOAP Fault from the CU-FAULT-CONTAINER and send it to the
requestor.

Sample Program

For a sample custom program, see Appendix D.

211

SOLA Developer User’s Guide

7

Creating a Web Service from a Custom Program

This section will describe the steps necessary to create a web service from a DOM API
program.

Step 1 — Mainframe Preparation/Coding Custom Program

PPT Entries

To work with SOLA, DOM API programs require a PPT entry in the WOR region that points to the
AOR region. Prior to SOLA 6.1 PTF SFX-6116 and IDE Release Version 6.1.10 the remote PPT
definition for custom program invokes XMLPC200 on AOR region. This is the SOLA 5.1 model
and should continue to be used for support those legacy programs. To exploit the new DOM API
interface (SOLA 6.1 model) the remote PPT definition has to be setup to invoke XMLPC202. If
using the Container model the remote PPT definition should invoke the actual Custom program
(as with most common DPL entries).

WOR AOR
PPT Entry PPT:
Version 1: DEFINE PROGRAM (XMLPC202)
DEFINE PROGRAM (program name) LANG (LE)
LANG (LE) STATUS (Enabled)

STATUS (Enabled)

REMOTE REGION (yourRegion) PCT:
REMOTE NAME (XMLPC202) DEFINE TRANSACTION (yourTranId)
REMOTE TRANID (yourTranId) PROGRAM (DFHMIRS)
Version 2: (using containers) PROFILE (DFHCICSA)
DEFINE PROGRAM (program name) STATUS (Enabled)
LANG (LE)

STATUS (Enabled)

REMOTE REGION (yourRegion)
REMOTE NAME (yourProgramName)
REMOTE TRANID (yourTranId)

212

SOLA Developer User’s Guide

7

Step 2 - Testing the Program

It is recommended that you test the program using the SOLA Raw Tester before creating a web
service. For instructional purpose, you can use the sample program “Convmph” that is shipped
with SOLA. This sample program uses the DOM API to consume and create XML, and also uses
the XML format conversion program to convert data into and out of XML string notation. It has
one simple function, to convert miles per hour into kilometers per hour. The program accepts a
single value as input and creates a single value as output.

Convmph demonstrates using the DOM API to retrieve a value, convert the value, use it in a
calculation, create an output XML document and include the output value in the document.
Sending a SOAP fault is also demonstrated.

Convmph expects an input XML message like the one below:
<mph>value</mph>

Before executing the XML input message, wrap it in a SOAP message as follows.

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ConvMph xmIns="http://convMPH..SOLAsoa.com/CU/CONVMPH/ ">
<mph>value</mph>
</ConvMph>
</soap:Body>

</soap:Envelope> The namespace must
specify “CU” followed by

the program name

Access the raw tester by
clicking the SOAP Test
button on the button bar. This
will display the raw test panel.
Enter the request shown above into the test field, using a value of 100 as input.

w Project V" soaP T-.-{b ,_L Maonitor Search

213

SOLA Developer User’s Guide

e

Binding EndPoint: |01 PUBLIC TEOP(1445)
ADD USERMNAME TOKEN ENCRYPT PASSWORD ENCRYPT BODY FORMAT XML

<acap:Envelope xmlns:acap='http://schemas.xml=cap.org/soap/envelope/ ">
<soap:Body> -
<convMPH xmlns="http://convMPH. convMPHClass . x4ml.soa.com/CU/ CONVHMEHR" >
smph>value<;/mph>
</ convMEH>
</ apap:Body>
</acap:Envelope>

TEST RESET Soap Action: I
Figure 1 — Test SOAP Request

Click = TEST " {0 test the program.

Assuming everything is set up correctly, Convmph will return a SOAP response (in a new
browser window), in which 100 mph has been correctly converted to 160.93 kph.

214

SOLA Developer User’s Guide

e

Step 3 - Import Custom Program

A T el e S_elect _the_project you wish to import to and
right-click it. From the pop-up menu, select
Environments{ TEST) * PROGRAM ~ Import Program. If you wish to create the
5/ Directory program in a new project, first follow the steps
[§] .analysis -~ for creating a new project on page 22.
4[] -aDemoProject
(5] .common Import Program In order to import a program into a project, you
ﬂ'@ .commonLM Show Project History must be an authorized user of that project.
Gl -commonLihiew Filter by Project Once the program is imported, you can drag
4[5 ImSOLA_1029 and drop the program from one project to
SIEY mikesTests SR * | another. However, you must also be an
: Il% :tf;;tqfsl SR authorized user of the project you wish to move
AP AuthProfecto] Delete Project the program into.

After you select Import Program, the Import panel will be displayed under a tab in the
workspace. This panel can be used to import any program type that SOLA supports.

The default program type is commarea, so use the Other Import Types menu to select
Custom.

Home Import *

Importing Commarea - Bottom Up Producer | | Other Import T v

k< Commarea b
Projecss @ Container b
Program Name: |Please enter a P'd @ callable ’
Override Name: Optional, Usually l é IMS Message b
Language: COBOL g3 outbound
Host Code Page: 037(Default Code [B8MS 3270
Enumerations: Include [} stored Procedure
Environment: TEST k= Adhocsgql
Program Description: [FN custom
Structure Name: |Please enter a strf SCheSu=uon
Class Name: [F‘Ic-.—)s».: enter a class name. l
Dataset/Listing Name: [Plv.,-ac».- enter a listing or dataset name. l

IMPORT RESET

The Import panel will change to display the Custom Program import panel.

215

SOLA Developer User’s Guide

N7

Importing Custom - Bottom Up Producer a Other Import Types ™

Project: SolaDemo Class Name:

Program: Method:

Class Desc: Category: Misz -
SOLA Binding EndPoint: 1 PUBLIC CICA{ 1443) -

Fleaze enter input XML without SOAP Envelope / Body / method tag.
Only enter input parameters in xml form
Example: =Bossld=BESD891=/Bossld=<Accnt>=1234=/Accnt==Flg=Y=</Flg=

ANALYZE

The Import panel consists of a series of fields used to provide information about the source
program and the destination SOLA program that will be created.

= Project: the name of the project to which the imported methods/operation will belong.
This is pre-populated based on the project from which you accessed the import screen
and cannot be changed.

m Program: the name of the program to which the new method will belong. Unlike bottom
up commarea analysis, you cannot create a program on its own.

m Method: the name of the method/operation to be created.

= Class Name: when you create a web service from a DOM API program, it will be
exposed as a method. Distributed systems classify methods as belonging to a class.
Therefore, SOLA requires that you assign a class name to the program to which this
method belongs.

m Class Description: a brief description of the program.

® |nput field: this is the large empty field towards the bottom of the panel. This is where
you insert the XML input that the DOM API program requires to run. Just as with other
program types, SOLA requires a valid sample input value to run the program. When the
web service you create is published, consumers will be able to submit any value they

216

SOLA Developer User’s Guide

chose. When entering the input, use XML format without a SOAP envelope, body or
method tags.

m Category: the category (type) of program. Options vary by installation.
m SOLA Binding Endpoint: the mainframe endpoint in which the program will run.

When you have filled in all of the required information, click ANALYZE

Importing Custom - Bottom Up Producer E Qther Impart Types

Project: Solalnstall Clazz Mame: ConvertSpeed
Program: CONVMPH Method: convmph
Class Desc: Convert MPHto KPH Category: Misc
SOLA Binding EndPoint: 1PUBLIC CICA{ 1443) -

Flease enter input XML without SOAP Envelope / Body / method tag.

Cnly enter input parameters in xml form
Example: =Bossld>BESDE91«</Bossld=<fAccnt=1234=/Accnt=<Flg=Y</Flg=

<mph>100</mph>

AMALYZE I}

Custom programs use the standard (bottom up) commarea analyzer, and analysis is performed
the same way.

217

SOLA Developer User’s Guide

7

Test Harness

SOLA Developer uses two testing tools to test web services; the quick tester and the raw tester.

m Quick Tester: used to test a specific method. The quick tester runs the web service
and asks for the inputs the web service requires, then makes a soap call and provides
the SOAP response as raw XML. The tester also provides comprehensive configuration
capabilities, allowing the user the make changes to xml structure for debugging
purposes. It is considered good practice to test every web service that you create.

m Raw Tester: used to test raw XML. Users can copy and paste XML (SOAP Request,
etc.) into the Raw Tester, edit it as necessary, and send it as a SOAP request. SOLA
will then query the target legacy program and send a SOAP response as raw XML. This
testing facility is very useful for testing customizations and tweaks in situations where the
user either cannot or does not want to make changes using one of the SOLA analyzers.

218

SOLA Developer User’s Guide

7

Quick Tester

To access the quick tester, click on the method you want = £ JoutnamEX
to test and select “Quick Test” from the pop-up menu. = sOLABPO4
R _ 2
This will display the quick test panel. o =how Method Schems
The purpose of the quick test panel is to display the = @ 5C Show Methed History
method’s required inputs, have the user enter values for + @) ¢ Quick Test
those inputs and then submit the SOAP request to the = i 5 ¢ \fb -
legacy application, just as the web service would if it were A iS¢ View WSDL
in production. The user can also make chgngefs to the = s¢ Copy Method
XML structure for debugging purposes, using either drag 554 Delete Method
and drop functionality or manually editing the XML. In afsy
this manner, you can experiment with the web service, 368 sam Re-Analyze Method
figure out what it needs to make it work, and then go - (3 CONVERT
back to analysis and make those changes. The Quick S .
Tester supports HTTPS. convertTemp
Home Quick Test '*
Method Name: GetBPO4Detalls Binding EndPoint: TORE -
TreeView | Gridview FormView Saved Tests
= € soap:Envelope -
= € soap:Body
= € GetBP04Details
= € In-IMSMsg-Area-2
= € In-IMS5Msg-Fld1-X-2
ff
= € In-IM5Msg-Fld2-X-2 =
= € In-IMSMsg-Area-1
= € In-IMSMsg-Fld1-X-1
= € In-IMSMsg-Fld2-5-1
4 I 3

TEST SHOW SOAP XML = SAVE SOAP XML

The quick test panel has three views, any one of which can be used to enter values for the
required inputs. There is also a saved tests view, detailed below.

m Tree View: this is the default view and is a compromise between simplicity and
configurability. The inputs are clearly displayed and easily configured and there is a

219

SOLA Developer User’s Guide

certain amount of customization you can do with the XML structure by dragging and
dropping tree items.

m Grid View: this is the simplest to use but least configurable view. You cannot change
anything, but the inputs are all laid out in a neat table for ease of use.

m Form View: this is the least user friendly but most configurable view. The SOAP
request is shown as raw xml. To make changes to the inputs, you have to change the
XML manually. This allows for tremendous customization (you can change the XML
however you like) but is not very easy to use.

m Saved Tests: when configuring a test, you can use the button =~ SAVE SOMP XML
to save the information you entered. The Saved Tests tab contains a list of saved tests,
and clicking on a test in this list will restore the saved configuration information. You can
also delete saved tests using the W icon.

Tree View
The tree view is the default view and is a compromise between simplicity and configurability.

TreeView GridView Formview Saved Tests

= € soap:Envelope -
= E_ soap:Body
= € GetBP04Details
= & In-IMSMsg-Area-2
= € In-IMSMsg-Fld1-X-2
Fof
= € In-IMSMsg-Fld2-X-2

m

= € In-IMSMsg-Area-1
= € In-IMSMsg-Fld1-X-1
= € In-IMSMsg-Fld2-S-1
L | I I

TEST SHOW SOAP XML | SAVE SOAP XML

The first and default view (shown above) displays the same XML structure tree that you saw in
the commarea analyzer, though it only shows the input half. For every tree item that was
described in analysis as a variable input (an input without a fixed value) will have either a text
box (if there were no enumerations/restrictions) or a drop down menu (if there were
enumerations).

220

“I’ SOLA Developer User's Guide

e Grr—— QuickTest of methods having enumerated schema
smame ¢ It€MS is Now displayed in a drop-down box with
valid enumerated values for selection by user.

Method Name: nameSearch

TreeView Gridview Formriview Saved Tests

= € SOAP-ENV:Envelope
= € SOAP-ENV:Body
= € nameSearch
= € BossID

e

= € Searchvalue

= = CESS-METHOD

You can also drag and drop items from one position in the tree

to another to experiment with XML structure (as seen in the = %:‘*:;:“ —
illustration on the right). Keep in mind, however, that if you Se E‘:ﬁd
discover a fault in your original structure and can successfully = & € searchType

execute the web service with a new structure you've created in
the quick test panel, you will have to go back to analysis and
make the same changes there.

E E SearchType

Grid View

The second view is the grid view, which shows all of the inputs as either text boxes or drop

down menus, but does not show the XML structure or allow you to tweak the positioning of the
tree items.

TreeView GridView FormWiew Saved Tests

Mame Value 1
In-IMSM=g-Fid1-X-1
In-IMSH=g-Fld1-X-2
In-IMSM=g-Fid2-5-1
In-INSMeg-Fid2-X-2

<[m = b
TEST SHOW SOAP XML = SAVE SOAP XML
This is the simplest and least configurable view mode to use. The only thing you have to do is
enter the required inputs.

221

SOLA Developer User’s Guide

7

Form View

The third and last view is the form view, which displays the SOAP request as raw XML. This is
the most configurable view as you can make whatever changes you want to the XML directly.
In many ways, this is like the raw test panel (described later in this chapter), but it is pre-
populated with the method’'s SOAP request, minus the user configurable variables.

TreeView Gridview FormView | Saved Tests

<soap:Envelope ¥xmins:soap="http://schemas.xmisoap.org/soap/envelope/ = -
=soap:Body=
=GetBP04Details
xmins="http://GetBP04Details. SOLABPO4 Class. x4 ml.s0a.com/IM/SOLABP D4/ TXSWBODG =
<In-IM5Msg-Area-2 =
=In-IM5Msg-Fld1-¥-2 = </ In-IMSMsg-Fld1-¥-2 =
=In-IM5Msg-Fld2-¥-2 = </ In-IMSMsg-Fld2-¥-2 =
=/In-IM5Msg-Area-2=
<In-IMSMsg-Area-1=
=In-IMSMsg-Fld1-%-1 ==/In-IMSMsg-Fid1-¥-1 >
<In-IMSMsg-Fld2-5-1 ==/ In-IMSMsg-Fid2-5-1 =
={In-IMSMsg-Area-1=
=/GetBP 04 Details>
=/soap:Body=
< /soap:Envelope:=

m

4 1L} 3

TEST SHOW SOAP XML | SAVE SOAP XML

To use this view, enter the inputs directly into the XML and make whatever changes you need in
case the web service doesn’t work. Using this view requires an understanding of XML.

Testing the Method

Home Quick Test ' *

H Method Name: QACAS91M Bindi EndPoint: [01 PUBLIC T60P(1445 [~] :'l_i
Once you have configured the e Fndrem e =l
Il’lpUtS USII’lg one Of the th ree TreeView Gridview FormView Saved Tests
V|eW tyPES C|ICk TEST to = € soap:Envelope

! = € soap:Body
send the SOAP request. 5 € QacaseM
= £ INPUTS
=2 g TEST-CHARACTERS-IN

You can also view the SOAP Freez

request that the web service will
send to the legacy application
by clicking SHOW SOAP XML |

. < >
The response will be returned

as a SOAP response in a new
browser window (or tab) as seen here:

TEST SHOW SOAP XML SAVE SOAP XML

222

-

SOLA Developer User’'s Guide

v

<?xml version="1.0" encoding="UTF-8"7>
<l-- StartTime(2014-06-28-12.48.51.000292) EndTime(2014-06-28-12.48.51.000355) ElapsedTime(63 milliseconds)
-
<Envelope xmins="http:/ fschemas.xmlsoap.org/soap/envelope/">
- <Body>
- <QACA991MResponse
xmilns="http:/ /QACA991M.CLASS QACA991P.x4ml.soa.com/CASQACA9P/QACASILT" >
- <QUTPUTS>
<TEST-CHARACTERS-OUT>€155.25</TEST-CHARACTERS-OUT =
<fOUTPUTS>
</QACA991MResponse>
<fBody>

</Envelope>

223

SOLA Developer User’s Guide

7

Raw Tester

To access the raw tester, click
the SOAP Test button on the
button bar. This will display the
raw test panel.

w Project W SOAP Tt'{b ‘I_J‘ Muonitor Search L

Binding EndPoint: |o1 PUBLIC TEOP{ 1445}
ADD USERNAME TOKEN ENCRYPT PASSWORD ENCRYPT BODY FORMAT XML
<soap:Envelope xmlns:scap="http://schemas.xmlsoap.org/soap/envelope/ ">
<zaoap:Body>
<Encoding xmlns="http://Encoding.Encoder.x4ml.=oa.com/CA/QACASSE/QACASSTL >
<INPUTS>
<TEST-CHARACTERS-IN»>€155,25</TEST-CHARACTERS-IN>
</INPUTS>
</Encoding>
</z0ap:Body>
</=zoap:Envelope>
TEST RESET Soap action: | CAQAGAZIFIQACARETIICCR-UTF-B/HCF: 1140

The Raw Test screen is used to test a piece of SOAP code in its raw state (i.e. SOAP code can
either be manually entered or pasted for testing). Tests initiated from this screen use http as a
transport. The Raw Tester does not support HTTPS.

The raw tester has options not available in the quick tester:
ADD USERMAME TOKENM Click this button to add a WS-Security header to your SOAP

message, with your mainframe Userld and password in the WS-
Security header.

ENCRYPT PASSWORD Click this button to encrypt the password text of Username Token
ENCRYPT BODY Click this button to encrypt the entire body of the SOAP XML.
FORMAT XML

Click this button to indent and make the XML more readable.

224

e

SOLA Developer User’s Guide

To test a piece of SOAP code, Click on " crap 10er @nd the SOAP Tester tab will be
presented with the large text box in the workspace. either paste it into the
large text box or manually enter it. Click TEST to send the SOAP call.

Home

Binding EndPoint:

SOAP Tester '*

ADD USERNAME TOKEN

01 PUBLIC TBOPY(1443)

ENCRYPT PASSWORD ENCRYPT BODY FORMAT XML

NOte: Binding EndPoint: [ot PuBLIC TROR(14453
Soap ADD USERNAME TOKEN ENCRYPT PASSWORD ENCRYPT BODY FORMAT XML
ACtiOh iS <302§;§g\:7;231;§ xmlns:soap="http://schemas.xmlsoap.ory/soap/envelope/ ">
required <Encoding xmlns='http://Encoding.Encoder.x4ml.=oa.com/CA/QACASSP/QACRO9TL >
if using a <IN<PE:;—CHARACTERS—IN>€155.25<ITEST—CHARACTERS—IN>

Host <Semenings

Code </=oap:Body>

Page </ =zoap:Envelopel

other \

than the .

default

EBCDIC

Host

Code

Page 37.

Host

Code

Pages

are TEST RESET Soap Action: FcNaAcmwaAcm‘mccP:UTF-a.rHCP:um
defined

and setup in the Property File located in the codepages xml file; these are defined with a
property name of ‘targetCodePages’.

Right clicking on the Project Name in the Directory Tree will list all properties associated with
the Project. Scroll down the list and you will see all code pages that have been defined under
property name ‘targetCodePages’ if other than the default code page 37 is being used.

> DemoProject

targetCodePages=[{ value: "1140", descr: "1140(US

Canada EUR)" }, 1 value: "1141", descr: "1141({Russia)" ¥]

JemoProject
targetCodePages [{ value: "1140", descr: "1140(US Canada ...

templatePDS

225

SOLA Developer User’s Guide

7

Monitoring and Logging

SOLA offers a complete set of monitoring, logging and error reporting tools. The SOLA run-time
automatically logs every transaction in the SOLA Monitor log, which is designed to handle high-
volume transactions while not adding overhead to a transaction. The run-time does this by
logging transactions to an in-memory structure (a CICS user-maintained data table (UMT)).
Background transactions spool this data from the UMT to a DB2 table.

Any time the SOLA run-time detects an error (SOAP fault, program abend, parsing error, etc.) it
logs a message in the SOLA Error log. The SOLA Error log is written directly to a DB2 table. It
contains the full input SOAP message, the error message and a link to the transaction in the
SOLA Monitor log.

Transaction Logs

You can search the transaction logs by — 5 5
clicking the Monitor Search button on i - '*’QF_F:':,””' Search | & Erro
the button bar.

This will display the monitor search panel.

Home Monitor Search *

TOR EndPoint: |01PUBLIC T60P(1445) =l
Start Date: 2014-05-16 [3 Start Time: 00.00.00 v
End Date: 2014-05-16 [9 End Time: 23.59.59 v

Program I Method Name: I
Name:

: = Request IP
Program Type |-AlTypes- Addr: I
TOR System [— AOR System l—
ID: ID:
Trans ID: I TOR Task No: |

3

Elapsed (ms) E Max Records: F‘CO Result IDHWLVW vl

Type:
DHTML View

To conduct a search of the transaction log, enter search parameters using the search fields to
narrow the scope of your search. You can also conduct a search with the default (mostly blank)
settings, though this may take some time to complete and may result in a very long list of
transactions.

The following is a description of the search fields:
® TOR EndPoint: narrows the search to transactions within a matching TOR region.

226

SOLA Developer User’s Guide

B Start Date and End Date: the start and end dates are automatically populated with the
current date, though these values can be changed if necessary. All transactions are
stamped with the date and time at which they take place and only transactions that took
place on or after the start date and on or before the end date will be returned.

® Start Time and End Time: the start and end times are automatically populated with the
current system time and can be changed by manually entering a time (hh.mm.ss). All
transactions are stamped with the date and time at which they take place, and only
transactions that took place at or after the start time and at or before the end time will be
returned.

B Program Name: narrows the search to transactions executing this program.

® Method Name: narrows the search to transactions generated by the execution of the
specified method.

B Program Type: narrows the search to transactions initiated by a
method executed by the specified program type. Options are All | -AlTypes- =]
Types listed in the illustration to the right:

Commaras
Callabla
Containar
BM 53270
CunBousnd
AdhocS0OL
Ms

EFEL
Tgadpiml
Custom

B Request IP Addr: narrows the search to transactions generated in
response to a request that originated from an IP address matches the specified IP
address (if the request came via HTTP).

B TOR System ID: narrows the search to transactions with a matching TOR system Id.
B AOR System ID: narrows the search to transactions with a matching AOR system Id.
B Trans ID: narrows the search to transactions with a matching transaction Id.

® TOR Task No: unique identifier that is given to each unique instance of a program
running in a TOR.

B Elapsed (ms): filter's the search to transaction’s that are long running based on
‘Elapsed (ms)’ by specifying the threshold for filtering the records based on task elapsed
time.

B Max Records: specify Max number of records (up to 9999) that need to be extracted for
analyzing monitoring data. Monitoring data can be extracted into an Excel spreadsheet
with Result Type ‘EXCEL view'. This gives the flexibility to the administrator to exploit
Excel based filtering, pivoting & graphing tools to mine into the monitoring statistics.

227

SOLA Developer User’s Guide

7

B Result Type: specifies how the results will be displayed, either as DHTML (normal
view) or as an Excel spreadsheet. Selecting Excel will download the results and open
MS Excel (if installed), displaying the data in an Excel spreadsheet.

Once you have specified your search parameters, click SEARCH

The results of the search will be displayed below the monitor search panel. If the list exceeds
the available screen size, then you will need to scroll to see all of the search results.

Home: Monitor Search '*
TOR EndPoint: |01 PUBLIC TE0R(1445) =]
Start Date: 2014-01-01 |[® Start Time: 00.00.00 »
End Date: 2014-05-16 [= End Time: 23.59.59 w
E.Iraonaga:m W Method Name: I—
Program Type Im ijgr_":eﬂ e I—
TOR System I— AOR System I—
I 1D:
Trans ID: I— TOR Task No: I—
Elapsed {ms=] h Max Records: [900 _Fl’f;sgl:t Im
SEARCH RESET
Task Date Task Time :::;rg:;am Method Name ¥;ngéram :lsquester
2014-05-09 18.01.08 SOoLACADL commareaTlest cha 10.5.20.39
2014-04-24 22.09.09 SOoLACADL QA1005M1 cha 10.5.20.39
2014-04-24 18.06.42 SOLACADL QA1ZCAM1 cA 10.5.20.39
2014-04-24 16.42.56 SOLACADL commareaTlest CcA 10.5.20.116
2014-04-21 10.52.19 SOLACADL QA1005M1 CA 10.5.20.39
2014-03-05 08.45.16 SOLACADL QA1007M1 CA 10.5.20.35
2014-03-01 21.40.50 SOLACADL QA11CMO1 cA 10.5.20.35
2014-02-28 17.57.45 SOLACADL QA10CMOZ ca 10.5.20.35
2014-02-28 16.56.59 SOoLACADL QA10CMOZ cha 10.5.20.35
2014-02-28 13.44.00 SOLACADL QA10CMO1 cA 10.5.20.35
2014-02-28 08.44.45 SOLACADL QA1005M1 CA 10.5.20.35
<]
The information is organized under a series of
columns: Task Date Task Time
B Task Date: the day the transaction was 2008-06-19 07.12.42
generated, represented as yyyy-mm-dd.
Clicking on the date for a specific % 07.12.31
transaction displays the search details panel 5008-06-1 07.10.44

that contains very detailed information about
the transaction.

B Task Time: the time the transaction was generated, represented as hh.mm.ss.

228

SOLA Developer User’s Guide

® Program Name: the program whose execution generated the transaction.
® Method Name: the name of the method whose execution generated the transaction.

B Program Type: the category (type) of program whose execution generated the
transaction.

B Requester IP: the IP Address of the originating request (responsible for executing the
method that generated the transaction, if it comes via HTTP).

To get detailed information about a specific transaction, click on the transaction date. This will
display the search detail panel.

Home Search Transactions '*/|| Search Detail *

Task Date: 2008-06-19 Task Time: 07.12.31 Egﬁgf‘m SOLACAQ7

Method Name: DotNetSearch ¥;?ng:am CA Request Addr: 10.5.20.24

TOR System 0, AOR System TOR Trans ID: XML

1D: 1D:

AOR Trans ID: TOR Task No: 1198.0 AOR Task No: 0.0

AOR Task s) HTTP Status

Time: 0 milliseconds Task Elapsed: 10 Code: 403

Abend Code: No Abend Request Size: 1199 bytes g;rg?onse 336 bytes
==First =Prev Next> Last=>

This panel contains detailed information about a specific transaction organized under the
following headings:

B Task Date: the date (yyyy-mm-dd) of the transaction.

B Task Time: the time (hh.mm.ss) of the transaction.

® Program Name: the program whose execution generated the transaction.

B Method Name: the method whose execution generated the transaction.

® Program Type: the type of the program whose execution generated the transaction.

B Request Addr: the IP Address of the originating request (responsible for executing the
method that generated the transaction).

229

SOLA Developer User’s Guide

B TOR System ID: unique identifier for the TOR region where the transaction originated.
B AOR System ID: unique identifier for the AOR region where the transaction originated.
B TOR Trans ID: unique identifier given to each program that runs in a TOR.

® AOR Trans ID: unique identifier given to each program that runs in an AOR.

B TOR Task No: unique identifier that is given to each unique instance of a program
running in a TOR.

B AOR Task No: unique identifier that is given to each unique instance of a program
running in an AOR.

B AOR Task Time: how long it took to execute the program in the AOR, accurate to +/- 5
milliseconds.

B Task Elapsed: the total end to end time (AOR+TOR) that it took to execute the program,
accurate to +/- 5 milliseconds.

B HTTP Status Code: the HTTP response code generated as a result of the transaction
(e.g. 200 — OK, 403 — Auth Failure, etc.)

B Abend Code: the mainframe abend code if the program abnormally terminates (i.e.
abnormally ends - abends).

B Request Size: the size of the input SOAP XML in bytes.

B Response Size: the size of the output SOAP XML in bytes.

The links at the bottom of the panel allow you to navigate through all the transactions in the list.

< < First <Prev Next> Last>>
<<First: show details for the first transaction in the list.
<Prev: show details for the previous transaction.

Next>: show details for the next transaction.

Last>>: show details for the last transaction.

230

SOLA Developer User’s Guide

7

Error Logs

You can search the error logs by Search |~ (Error Search [@] Browse Da
clicking the Error Search button on J‘@
the button bar.

This will display the error search panel.

o Mew Froject W SOAP Tast ,'_L Monitor Search '.'.I_L Error Search r_,_;g'. Erowse Dataset !.:{I..' Admin Menu Iﬁ

Home Error Search '#

TOR EndPoint: |o1PuBLIC TROP(1445) | =]
Start Date: 2012-12-13 |[F Start Time: 00.00.00 A
End Date: 2012-12-13 |[F End Time: 23.59.59 w
Program Mame: I Method Mame: I
Program Type: Im Result Type: Im
Additional Filters: [audit [T Schema Warnings I Errors: I
SEARCH RESET
< | i

To conduct a search of the error log, enter search parameters using the search fields to narrow
the scope of your search. You can also conduct a search with the default (mostly blank)
settings.

The following is a description of the search fields:

B TOR EndPoint: narrows the search to errors generated within a matching TOR region.

B Start Date and End Date: the start and end dates are automatically populated with the
current date, though these values can be changed if necessary. All errors are stamped
with the date and time at which they take place, and only errors that took place on or
after the start date and on or before the end date will be returned.

® Start Time and End Time: the start and end times are automatically populated with the
current system time and can be changed by manually entering a time (hh.mm.ss). All
errors are stamped with the date and time at which they take place, and only errors that
took place at or after the start time and at or before the end time will be returned.

B Program Name: narrows the search to errors generated by the specified program.

® Method Name: narrows the search to errors generated by the specified method.

231

SOLA Developer User’s Guide

7

® Program Type: narrows the search to errors generated by a method executed by the
specified program type. Options are All Types, Commarea, Callable, BMS3270,
Outbound, AdhocSQL, TgadpXml or Custom.

B Result Type: specifies how the results will be displayed, either as html (normal view) or
as an Excel spreadsheet. Selecting Excel will download the results and open MS Excel
(if installed), displayed the data in an Excel spreadsheet.

B Additional Filters: narrows the search to include only Audit Information, Schema
Warnings or specific Error codes.

Once you have specified your search parameters, click. SEARCH

The results of the search will be displayed below the error search panel. If the list exceeds the
available screen size, then you will need to scroll to see all of the search results.

Home Error Search '*

TOR EndPaint: |orpusLcTaoR(1445) =]

Start Date: 2012-12-10 |[H Start Time: 00.00.00 w

End Date: 2012-12-17 [F End Time: 23.59.59 b

Program Mame: W Method Mame: I—

Program Type: m Result Type: Im

Additional Filters: [~ audit [~ Schema Warnings I¥ Errors: I

SEARCH RESET

Error Date Error Time Program Name Method Name Program Type
2012-12-11 04.16.14 SOLACADS nameSearch CA
2012-12-11 04.08.49 SOLACADS nameSearch CA
2012-12-11 04.08.36 SOLACADS nameSearch CA

The information is organized under a series of columns: Error Date Error Time

® Error Date: : the day the error was generated, 2012-12-11 04.16.14
represented as yyyy-mm-dd. Clicking on the date

o . . 2012-12-11 04.08.49
for a specific error displays the search details

panel that contains very detailed information 2012-12-11 04.08.36
about the error. @

232

SOLA Developer User’s Guide

® Error Time: the time the error was generated, represented as hh.mm.ss.
B Program Name: the program that generated the error.
B Method Name: the name of the method that generated the error.

B Program Type: the category (type) of program that generated the error.

To get detailed information about a specific error, click on the error date. This will displays the
search detail panel.

Error Date: 2012-12-11 Error Time: 04.08.36
Program Mame: SOLACADS Method Name: nameSearch Monitor Detail...
Program Type: CA Error Code: 0 Task Mumber(8448)

10.5.20.35

SCAESSSE XMLPCOS80-5000 Tor:T&0P Task: 2445
Code:-00006 Inbound request refused by Host / UsernameToken or HITP
Authorization header not found

==First =Prev Next> Last>>

This panel contains detailed information about a specific error organized under the following
headings:

® Error Date: the date (yyyy-mm-dd) of the error.
® Error Time: the time (hh.mm.ss) of the error.
B Program Name: the parent program of the method that caused the error.

B Method Name: the method that caused the error.

233

SOLA Developer User’s Guide

® Program Type: the category of the parent program of the method whose execution
caused the error.

B Error Code: the error code of the generated error.

B Task Number: the TOR task number of the task that caused the error.
the AOR, accurate to +/- 5 milliseconds.

This panel may contain an error display field that contains additional debugging information.

<7xml wversion="1.0" encoding="utf-g8"7
»zoap:Envelope
¥mlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
¥xmlns:xs3i="http://www.w3.org/ 2001 /¥MLEchema-instance™
¥xmlns:xsd="http://www.w3.org/ 2001 /¥MLEchema"»<30ap : Body><GetDocid
¥xmlns="http://www.dsd.ml.com/x4ml /CCUPCOS0,/Custom" »<Account>62890439
< /hocounty»</GetDocid></2o0ap :Body></3n0ap :Envelope>

Custom API didnot build the XML (TPCT/XMLPCOOQO)

This field is divided into two panes. The bottom pane displays the mainframe error message,
while the top pane displays the input XML that caused the error.

The links at the bottom of the panel allow you to navigate through all the errors in the list.

= < First = Prev Next> Last>=>
<<First: show details for the first error in the list.
<Prev: show details for the previous error.

Next>: show details for the next error.

Last>>: show details for the last error.

234

SOLA Developer User’'s Guide

Dataset Browsing

SOLA Developer has a facility that carch | (3] Brewss Dataset | GF A
allows users to browse mainframe bl {F_")
datasets. To access this facility, click

the Browse Dataset button on the button bar.

This will display the browse dataset panel.

Home Browse Dataset '#

ISFF Library:

Project SOLADEMO
Group:

Tvpe:

Member

Other Partitioned. Segquential or V5AM Data Set:

This panel is designed to look and function just like a mainframe terminal. The panel is
comprised of a series of fields that you can use to enter information about the sequential
dataset or PDS member that you wish to brose.

When you have filled out the required fields, click BROWSE

The following is a description of the panel’s fields:

® Project, Group, Type and Member: these fields are used for searching for PDS
members. The majority of mainframe PDS names use three qualifiers, Project, Group
and Type. These fields are required when attempting to view PDS members.

® Fully Qualified Name: this field is used when searching for sequential datasets of
PDSs. This field is required attempting to view sequential datasets.

235

SOLA Developer User’s Guide

7

Orchestration

Orchestration is a separately priced option. Documentation on the Orchestration feature will be
supplied on request.

236

SOLA Developer User’s Guide

7

Administration

SOLA Developer is equipped with a comprehensive suite of administrative functions that pertain
to the development tool, it's environment variables and access controls.

There are two administration consoles, the admin menu and the access controls menu:

B Admin Menu: this console contains administrative tools for configuring system files and
properties, managing dictionary settings, viewing log files and creating custom schemas.

® Access Controls Menu: this console contains administrative tools for managing
access control groups, user access lists and alternate ids, as well as accessing the user
activity log.

237

e

SOLA Developer User’s Guide

Admin Menu

To access SOLA Developer’'s
administration functions, click on the
Admin Menu button in the button bar.

This will display the admin console.

% B 5

v R mecaor (S,

SOLA Property File Editor

Cntx Root Path Name

finst

finst * -
SELECT UPDATE RESET

Property Name Property Value

rse Dataset (31‘ Admin P@L 3 Bocess Cr

Dictionary Create Installation Custom
Controls Environment Security Schema

File Name
.

Property Descr

w

The admin console is comprised of five panels, accessed by icon tabs. The default icon tab is
Property File Editor. Click on a different icon tab to open the other admin panels.

r This icon tab opens user registration panel, where you can register a new SOLA

4 user.

Add User

238

SOLA Developer User’s Guide

File Editor

Property
Editor

&

Dictionary
Controls

e

Logs

B Traces

Q.‘.‘
W]
o 8
Creabe
Environmeant

Custom
Schema

Installation
Security

This icon tab opens the file editor panel, which you can use to browse and edit
system files such as debugging.xml and endpoints.xml. This is very similar to the
property editor panel, except that it displays and allows you to edit the entire file,
rather than the properties from that file.

This icon tab opens the property editor panel, which you can use to browse and
edit system properties, such as UDDIPassword, FTPSite, SOLASOAPAddress
and more. This panel is very similar to the file editor panel, except that it extracts
properties from a system file and displays only those properties rather than the
entire contents of the file.

This icon tab opens the dictionary control panel where you can make changes to
the various global dictionaries, upload dictionary files and download global
dictionary files to your local machine.

This icon tab opens the logs and traces panel, where you can gain quick access to
SOLA log and trace files.

This icon tab opens the Create Environment panel, which you can use to create
custom environments (test, production, etc.).

This icon tab opens the custom schema panel, where you can configure new or
existing custom properties for projects, users, programs and more.

This icon tab lets you change the SOLA installation password (SOLAIN) when
logged in either as SOLAIN or an Administrator.

239

SOLA Developer User’s Guide

7

File Editor

The Property / File Editor panels are very similar to one another and serve the same purpose;
the editing of system files. The file editor provides access to the entire file, whereas the
property editor extracts system properties from the file you are editing and displays them as
fields. Which of the two you use depends on your own preferences.

adduser Ednor | Fledtor | gTE%. Tomwols Emironment aeanme’ Sehems
SOLA File Editor

SELECT RESET UPDATE DELETE
Cntx Root Path Name File Name

Jfinst

finst * - bl

The top portion of the screen is used to locate the file you wish to view or change. You can
either manually enter information into the upper fields, or use the lower menus to select
locations from a list. Start with the CntxRoot menu to select a root. Doing so will populate the
other two menus.

Cnitx Root Path Name File Name
finst Jsystem /Dictionary01 xml SELE(
fingt - Jaystem - /Dictionaryl1 xml -

<?xml wversion="1.0" encoding="UIF-8"7>
<filesystem id="Dictionary0l"™>
«Dictionary0l xmlns:listc="http://www.=s0a.com/PropertyList/ =0l

240

SOLA Developer User’s Guide

e

Once you have located a file, click SELECT

The contents of the file will be displayed in the large text box.

B 5 k@ &8 =

Mo o Plebior %, ey Ce sl Quon
SOLA File Editor

SELECT RESET UPDATE DELETE
Cnix Root Path Name File Name
finst J=ystem fDictionany01.xm
finst J=ystam - [Dictionany0i.xml ~
<?xml wversion="1.0" encoding="UTF-8"7?> o

<filesystem id="Dicticnary0l™:> (=1
<Dictionary0l zmlns:list="http://www.soa.con/Propertylist/=ola"
xmlns="http://wWww.3o0a.com/Propercyltem/sala>
<property name="AccessMethod" walue="AccessMethodl"”" descr=""
status="4"/>
<list:Applicacionfrea>
<property name="Applicationfrea” value="Applicationfireal"™

descr="" status="4"/>
<property name="Applicationfirea”™ wvalue="ApplicationfArealz"
descr="" status="A"/>

<flist:hpplicationArea
<propercy name="ApplyPenalty” wvalue="ApplyPenalcyl" descr=""
status="A"/>
<list:AuthorizationIDData>
<property name="AuthorizationIDData™

wvaluse="AuthorizationIDDatal" descr="" status="4"/>
<property name="AuthorizationIDData™
wvaluse="AuthorizationIDDataZ" descr="" status="4"/>
<flist:AuthorizationIDData> -
When you wish to save your changes, click LPDATE
If you want to undo your changes, click RESET
If you want to delete the file, click DELETE . This action is not undoable!

241

SOLA Developer User’s Guide

7

Property Editor

The Property / File Editor panels are very similar to one another and serve the same purpose,
the editing of system files. The file editor provides access to the entire file, whereas the
property editor extracts system properties from the file you are editing and displays them as
fields. Which of the two you use depends on your own preferences.

Home | Admin *

@ B 53 %X § & § o

Property N Logs Dictionary Craats Iristaliation Custom

Add Uiser Editor File Editor & Traces Controls Ervironment I.__e.ul.“.r. Schema

SOLA Property File Editor A
Cnix Root Path Name File Name
| st ” symimm | | =ndpalnss xm |
=] [men] B

SELECT UPDATE RESET

Property Name Property Value Property Descr
[FrPutaze | [FazanE | [PaBenE AcTVE]
[Freed= | [renanmirranE 21 | [Maintreme Fipgener | i
[opensce=sEnsFant | [HT TP MAINERAME:1 443101 CRMMLXMLFCO00 | [o4 PuBLIC ToRS! 1423] im]
[opensccssEnsrant | [FrTrnanERAME 1 s 0 ICaRMLIML FTO00 | [PuBLIG TSaRY 1445 1] i
[Dpenacc=ssEneFont | [HT TR AN RAME: 14 4B:5 I CNMLIGLFCOD0 | [pzPuBLIC ToRC 144z |
[ooenacoessEnemont | [TTE AR AME S d53zIcRNMLIN SC000 | [e=PuBLIC TR 422 | i
[opensce=sEnsFant | [HT TP MAINE RAME:1 454/01 CRMMLXMLFCO00 | [z PuBLIC ToRY 14541] im]
| rp—— [T T 1 [Errr—— 1 =

The top portion of the screen is used to locate the file whose properties you wish to view or
change. You can either manually enter information into the upper fields, or use the lower
menus to select locations from a list. Start with the CntxRoot menu to select a root. Doing so
will populate the other two menus.

SOLA Property File Editor

Cnitx Root Path Name File Name
an Fﬂrﬂem I
[t =] [erstem =] I
feodepages xml
SELECT UPDATE RESET Mdebugging xrml

Micticnary 01 xmi

MDictionary02 xmi
Property Name Property Value DictionaryQ3xmi [DESCr
| | Jendpaints.xmi |
Antegration xml
MadiClient.xml
Once you have located a file, click SELECT

The file’s properties will be displayed as fields in the property editor. You can make whatever
changes you want by changing the values in the Property Name fields, or adding a Property
Value and Description to a blank field.

242

SOLA Developer User’'s Guide

T

SOLA Property File Editor
Calx Roal Path Hame File Hame
fret frrem famgora i
[[poen =] e

e oo]

Property Hame Proper Property Descr
| feanoos a Plaarse Confm Lipdate [[}
[pensoif fes e N B
et E prwie |
| er— | E _Im | | |
(= [3

Note: For a complete description of each Property Name and their allowable values please
refer to the SOLA Administration Guide.

To add a blank row so that you can create a new property, click the icon and select a
property name from the drop down.

To delete an existing blank row or property, click that row’s corresponding @ icon.

Home = Admin *
Sl
B 3 hkE @B =
aadGaer | | Ty | [mmianae || oA | | e tnsaoton || Cusom
Property Name Property Value Property Descr
[Frevacs] [FazanE] [PAssnEjAcTvE | 7} A
[Fresee] [oaansRAME 2!] [mentrame Fogener | i
OesAccessEncPont | [HTTP MANFRAME 1 443.CIC XMUXMLPCO00 04 PUBLIC TORE(1443 7
OpenAccessEacPont | TP MANFRAVE 14450108 XA XA PCR00 [= Pusuic veoe 1aes)] W
[OpenrzcessEaciont | [P AN RAME 1 45.C/C8 XN PCE00] [GZPusuic ToRct 1aa] 7
|ooenaccessencrom: | [HTTR I MANFRAME 1453 CIC3XMLXMLACO0 | |os PusuiC TORR! 452 | i
Openaccesstnciont | [FrremansRANE TesaciCa xR =Co00 C3 PUSLIC TORY 1454) 7
OpenAccessEncPent | [T ANFRAME 1245 CICaXMUXVECO00 [RestAsTeseng i
[ooenAccessEacPomt] [pmo BVITRO-580.8C48 mackCLAZS_CACAZIPBRCIngName] [mocx] 1)
[OoenaccessEncPont | [HTTPAMANFRAME 1 445/CICE XMLBNPCO0D | |vTEsT | i
[ResticrecAccessEncPeid [HTTPIMANFRAME 1445 CICE XMLIXMLPCO0I "Request=DECRYPT | |12 PRAVATE Cecrypt Tec| W
[ResticseciccessEncPei] [FT TP AT RANE 1 445 CICE XMLIXMLPCO01 T Requestmsgect] [FEPRvATE speaiTece] 7}
[ResticecAccessEncPeid [HTTP MAINFRAME 1 £33 CICE XML 3 XV PCO03 T Requesimacect *5 PRIVATE 8000l TORY] il
[Rescmcrcomsinarar [AT7F NTAGEGXNE | LiEiaa AmEene [FrRvaEArxzeny @
[ReswicesaccessEnceai] [FTTF NITAGE-GXSE0 < 44t 3cie BOAPERner | [[ZPRVATE 20AF 2en] 7}
[Resticecaccessenceed [P mANFRAVE T e CIC e XM XML P o0 | [csPRvATE ToRE(174 1)
A oif [HTTPE:IMAINFRAME 1745/ CICEXMUXMLPCCCO | |08 PRIVATE TEOR(1745 7
Pl [HTTPEMANFRAME 1748.CICEXMUXMLPCOOC | [c7 PRvATE TORCK 174! 7}
[ResticsecAccessencmcid [FrrPeMANFRAVE 1753 CICE XMUXMLPCE0] [fePRVATE TORRI 175 I
[RestricreaAccessEacPaoid [HTTPEIMAINFRAME 1754.CICEXMUXMLPCICC | [c& PRAVATE TORK 1754 7
oARestAGIrss | [HTTF MANFRAME 1348 [] I
:W] [HTTR MANFRAME 1445 CICE XWL XML PCI00 [foRmaser | 7]
]] ® X

243

~¢|’ SOLA Developer User's Guide

When you wish to save your changes, click UPDATE and then confirm the Update
by clicking OK.

If you want to undo your changes, click RESET

If you want to delete the file whose properties you are editing, click DELETE

WARNING: this action is not undoable.

244

SOLA Developer User’s Guide

e

Add User

The Add User panel is used to register a user account with SOLA Developer. Once you
successfully log in, you must enter the required registration information to use SOLA Developer.

L B 3 K & 5 =

Property B Logs Dictionary Create Installation Custom
Add User : Editor Flle Editor g Traces Controls Environment Security Schema

User ID: | |

User Type: SOLA Administrator ¥

First Name: | |

Last Name: | |

Work Phone: | |

Cell Phone:
Division:
Email:

CREATE RESET

Your first name, last name and work phone number are required. You can also supply your cell
phone, division and email address.

245

SOLA Developer User’s Guide

7

Dictionary Controls

The SOLA Dictionary is used during analysis to replace cryptic variable names with names that
are more easily understood. For example, a COBOL variable called “LK-CLNT-NM” could be
replaced with “ClientName”. Once values are defined, SOLA can attempt to automatically
replace matching variable names with the specified definitions or to present a drop down menu
with close matches if more than one match is found.

Note: Throughout this section all references to COBOL also apply to PLI/I.

Property { Dictionary ! Create Installation Custom
Add User Editor File Editor g Traces | Controls | Environment Security Schema

Upload Local Dictionay File
Browse dictionary files:

UPLOAD

Dictionary Control Panel

COBOL Mame b

UPDATE DELETE ALL DOWNLOAD
Mame Internally Generated Walue
T 1k 4051430402240
Imj 40 4250681077760
W ABER 5324567366144
W ABEND 5324503389504
W AEND 5324503389504
W AC 5324163399360
(] ACCESS 5326135707776
(] ACCOUNT 5326055280000
(] ACCOUNTS 5326056738808
(] ACCT 5326159470528
(] ACCTNO 5326195114656
Imj ACCTNUM 5326196468008
4

The dictionary panel is divided into two sections, the main dictionary control panel below and
the upload section above.

246

SOLA Developer User’s Guide

7

Selecting Dictionary Type

The Dictionary menu is used to select the data from one of the four SOLA dictionaries.

Direct Map

iDirect Map

COBOL MName

Standard Hame

Common Abbreviations

B Direct Map: shows a list of COBOL field names and the equivalent schema names that
they should be substituted for.

B COBOL Name: shows an internally maintained list of tokens that are used by the
dictionary to conduct match searches. A token is a part of a COBOL field name that is
derived by splitting the name at the hyphens (or underscores in the case of PL/l). For
example, the COBOL field name WS-ACCT-NUM consists of three tokens, WS, ACCT
and NUM. This list contains two columns, Name and Internally Generated Value. The
Name column contains the COBOL token, and the Value column contains an internally
calculated number that SOLA’s heuristic algorithm calculates. Although this is an
internal list, it can be added to.

B Standard Name: shows an internally maintained list of tokens that are used by the
dictionary to conduct match searches. A token is a part of a schema name that is
derived by splitting the name at the capitalized letters. For example, the schema name
AccountNumber consists of two tokens, Account and Number. This list contains two
columns, Name and Internally Generated Value. The Name column contains the
standard token, and the Value column contains an internally calculated number that
SOLA’s heuristic algorithm calculates. Although this is an internal list, it can be added
to.

B Common Abbreviations: This dictionary contains a list of abbreviations used in SOLA’s
tokenizing processing logic for parsing COBOL copybook fieldnames. If a COBOL token
matches a common abbreviation, then that abbreviation will be substituted for the token.

Uploading and Downloading Dictionary Files

The SOLA dictionary has the capability to add to its contents by uploading text files and to
export its contents by allowing users to download the contents as a text file. Uploaded files are
applied to the currently selected dictionary type (Direct Map, COBOL Name, etc.) and are
appended to existing data. When downloading, only the currently selected dictionary is
exported.

The file format for both downloaded files and files to be uploaded is as follows: .txt file, plain
ASCII text, ~ (tilde) delimited and carriage return separated.

247

SOLA Developer User’s Guide

7

Upload Local Dictionay File

Browse dictionary files: cA\S0LAles customdictionary dic Browse. ..

UPLOAD \ﬂ_n)

To upload a dictionary file (and append that file to the existing dictionary), either manually enter
a file name (including full path) or use the Browse button to locate a file using Windows

explorer.
When you are finished, click UPLOAD
To download the currently selected dictionary, click DOWNLOAD

Working with the Dictionary Control Panel

The data shown on the Add to Dictionary screen is organized under two column headings. The
column on the left is always called Name, while the column on the right can be called either
Rename or Internally Generated Value, depending on which of the four dictionary types you
are looking at.

B Name: this column contains a list of variable names that need to be replaced with more
human-readable names when performing analysis.

B Rename: this column contains the schema equivalent to the value in the Name
column. These entries can be defined by the user or automatically populated by SOLA.

® Internally Generated Value: this column contains a numerical code generated by
SOLA to identify the value in the Name column. This is not changeable and is used only
by SOLA.

You can create additional rows of data to add new values to the dictionary, or you can delete
either blank rows or existing name/value pairs.

To create additional rows, click the button. To remove an unwanted blank row or to delete a
name/value pair, click the W putton.

You can also make changes to dictionary values (except internally generated values) by
modifying the contents of the field you want to change.

248

SOLA Developer User’s Guide

Direct Map -
UPDATE DELETE ALL DOWNLOAD

MName Rename
mam NTR TotalCounter w
WS-5QLLC0DE SequelCode '@'
WS5-5QLLCODE SglCode ()
WS5-SEARCH-WVALUE SearchValue)

NS SEARCH-TYPE [i

You can sort the dictionary by either the “Name” or “Rename” columns in the Direct Map and
Common Abbreviations dictionaries and by the “Name” column in the COBOL Name and
Standard Name dictionaries. To sort by either column, click once on the column name link to
sort in ascending order (a-z) and again to sort in descending order (z — a).

Using Wildcards with the Direct Map Dictionary

The Direct Map dictionary is capable of utilizing wild card characters in its matching algorithm.
There are two types of wild card characters used by the Direct Map dictionary; % and "

%: the % character can be used either before, after or surrounding a dictionary tag.
It is similar to the * character in Windows searches. If it appears before a tag, then
any item that ends with that tag will be considered a match. If it appears after a tag,
then any item that starts with that tag will be considered a match. If it surrounds a tag
(appears before and after), then that tag can appear anywhere in the item for it to be
considered a match.

Example:

%YZ - Possible matches: XYZ, WXYZ, etc.
WX% - Possible matches : WXYZ, WXY, etc.
%A% - Possible matches: ACCT, BATCH, COMMAREA, etc.

Using the % wildcard character means that every item that matches the tag in the Name
column (%XYZ, etc.) will be replaced with the value in the Rename column when the
dictionary is applied.

N1 the " character is used for exclusions at the token level. The dictionary will
remove matching dash delimited tokens from COBOL names. When using the »
character, nothing should be entered in the Rename field (the ~ is for exclusions, not
renames).

Example:

249

SOLA Developer User’s Guide

LK applied to LK-ACCT-NUM would result in ACCT-NUM.

Using the " wildcard character means that all tokens matching the tag in the Name
column (LK", etc.) will be stripped from all COBOL names when the dictionary is applied.

Mame Rename
%COMMAREAS, Commarea [}
LK™ 1}
ws w
I}
When you wish to save your changes, click UPDATE

250

SOLA Developer User’s Guide

e

Logs & Traces

The Logs and Trace Files panel provides quick and easy access (view or delete only) to SOLA
log and trace files. These same files can be viewed and edited from the Property/File Editor
screen. However, if your goal is to view or delete the files as quickly as possible, the Logs and
Trace Files screen should be used. These files contain information for SOLA Developer activity
only.

= New Project v SOAP Test iy, Monitor Search v._\ Emor Search ’_,\ Browse Dataset 'L," Admin Merw 3 Acoess Controls

Home Admin *

ﬁ g &K B & & T
s
Property p Logs Dictiopary Create Instailation Custom
AOG‘ User Ednor ¥ e & Traces Controls Environment Sacurity Schema

The criteria below will be applied to either{ "Select” or "Delete” }, for the processing of message logs.

|FromBegmang[v] |ToEndng [v]

Yorl withins Erowser | v SELECT Or you may apply this criteria to delete log files >>> DELETE

The Logs and Trace Files screen contains three pull down menus that are used to quickly select
a path and file name.

Once you've selected a file, you can select the date range of the data you would like listed. The
default is 90 days if you choose From Beginning.

" New Propct v SOAP Test _&u.v.v:-- Search % Enor Search 4_(Browse Dataset Q-' Admen Meru a Accesa Conwois E n

Ea‘”‘»‘-‘(ﬂ@-@“

Property I e Editor Dictionary Create Instalation Castom
Ao Hs(Edeor So & rr) e Controls Enviconment Socurty Schema

The criteria below will be applied to either{ "Select” or "Delete” }, for the processing of message logs.

Home

ToEnang | v

E
i

Or you may apply this criteria to delete log files >>> DELETE

25141108

251

SOLA Developer User’s Guide

7

Select from the dropdown how you want your data to be returned.

*‘V"‘“'-."" V'J:J-P’-n: '_;U-t.l.- Sewin _‘ (rw Sewn ‘ Dy rwne Daranet i\.‘ Adrwr Mery 8L<-u:-¢$-n B u

B 34 8§ &8 =

Property Voo Uotor Lege Cwtcrary Create Ltageton Corom
AAS Uner (ator - A Dicen Contoraly t rvrorsert Securty Scherma

The criteria below will be applied to either{ "Select” or "Delete”), for the precessing of message logs.

Mome

[fontert o [w] Prombepenrgiv] [Tofoong (v

SELECT Or you may apply this criteria to delete log files >>> OELETE

View the file by clicking SELECT
Text within Notepad You can also delete the file by clicking DELETE
Html within Browser WARNING: this action is not
Excel Spreadshest undoable.

252

SOLA Developer User’s Guide

7

Custom Schema

The custom schema panel allows you to create custom properties for projects, programs,
methods, users or environments.

“ B 5 k @ @ 8§ =

Property i Logs Dictionary Create Installation Custom
Add User Editor (Al (LT & Traces Controls Environment Security Schema

Custom Schema Properties{ Environ Level)

Retrieve Properties ¥ Add Property Save Changes

Rowld Property Name Data Type Minimum Length ¥ Maximum Length Descripticn Action

1 one_test string 0 10 DELETE
2 PackageMum string 0 10 DELETE
3 EnviranProp string 0 10 DELETE

SOLA maintains a schema of properties for each of these categories and the administrator has
the opportunity to modify those properties and use the new values. For example, let’s say your
company uses a home grown change management system called XYZ. In XYZ, all changes are
grouped together according to the programmer’s hair color. The administrator could define a
new user property called “hairColor” and that property could then be used when Finalizing an
Analysis to categorize the change for XYZ.

In the image above, the Custom Schema panel is displaying environment properties. To modify
user properties, click on the Retrieve Properties drop down, and choose User.

Custom Schema Properti Options are:
Retrieve Properties ™ | Add © =Project: pick this option to create custom properties for
Enviran projects. These properties will apply to all projects and will be
_ fy Nan appended to the default properties.
Project ot
Program eNurm mProgram: pick this option to create custom properties for
Method Prop programs. These properties will apply to all programs in every
project and will be appended to the default properties.
User
o

mMethod: pick this option to create custom properties for
methods. These properties will apply to all methods and will be
appended to the default properties.

m User: pick this option to create custom properties for user accounts. These properties
will apply to all users and will be appended to the default properties.

253

SOLA Developer User’s Guide

7

® Environment: pick this option to create custom properties for SOLA Developer
environments (e.g. Test, Stage, Prod, etc.). These properties will apply to all SOLA
Developer environments and will be appended to the default properties.
When you have selected an object to add properties to, the panel will display the existing

properties for that object. The properties are organized under columns. These columns
correspond to the value fields in the top part of the panel.

® Rowid: a sequence number
= Property Name: the name of the custom property.

= Data Type: the type of data the property can contain. Options are string, int, short and
Boolean.

= Minimum Length: the property’s minimum length in bytes.
® Maximum Length: the property’s maximum length in bytes.
= Description: a free form, optional description.

® Action: a DELETE action button.

s~ | Add Pramerty | Save © You can add properties by clicking the Add Property
= button, which adds a blank row at the bottom of the screen.
Click inside the blank row and enter values in the value fields. When you have entered all
required information, click Save Changes. Your new property will be displayed under the
property columns.

Custom Schema Properties(Environ Level)

Retrieve Properties ™ Add Property Save Changes

Rowlid Property Name Data Type Minimum Length Maximum Length Description Action

1 one_test string 0 10 DELETE
2 PackageMum string 0 10 DELETE
3 EnviranProp string 0 10 DELETE
4 " hairColor string 0 1 ack, blonde, brown, ﬂub DELETE

You can delete any property row, including the ones you’ve just added, by clicking DELETE in
the Action column.

If you close the panel before clicking the Save Changes button, your changes will be lost.

254

SOLA Developer User’s Guide

7

Create Environment

The create environment panel lets you create SOLA environments that are then linked to
backend environments using the promote.jcl file.

S0LAY Q' o New Project W SOAP Test ._J\ Maonitor Search '.'J\ Errar Search r_._;i Browse Dataset '.JBL' Admin Menu ﬁ Access Controls

soLA | uoor || Fle || patset %2 Home || Admin ®

| Environments{ TEST)} = | on = A a V5D B
’—.. i I ‘M S 2 i
5) TEST Cp v o £l
Property . Logs Dictionary Create Installation Custom

10) STAGE Add User Editor File Editor g Jraces Controls Environment Iscc_.,iu Schema
14) PROD
15) PROD1 Environment Name: |Enter 1-8 Character Environment Name |
27) SwBl Sequence:] hd

(Promote Migration): |Promoted programs wil be moved to next stage | ¥
(Demote Migration): | Demoted programs wil be moved to prior stage | ¥

Description: |Enter 3 description of the new environment

CREATE RESET

To create an environment, select an environment code, a sequence, promote and demote
option, then enter a brief description such as test, production, etc.

® Environment Code: the environment code is a one letter code that represents the
environment. The code serves solely as an identifier for the environment, so choose
whatever code you want.

m Seguence: the sequence represents the environment promotion hierarchy. The lower
the sequence number, the lower the environment in the hierarchy. Typically, test
environments occupy the lower rungs in the hierarchy, QA or stage environments
somewhere in the middle and production environments occupy the highest rungs (and
therefore would have the highest sequence numbers). It is recommended that you
stagger your sequence numbers (e.g. 1,5 and 9 instead of 1,2 and 3) so that you will
have room for additional environments. Sequence numbers do not have to be
sequential (1,14, 58 is the same as 1,2,3).

® Promote Migration: choose to ‘Move’ or ‘Copy’ programs to the ‘next’ stage.

m Demote Migration: choose to ‘Move’ or ‘Copy’ programs to the ‘prior’ stage.

When you have made your selections, click CREATE to create the environment.

255

SOLA Developer User’s Guide

7

You can filter the view in the SOLA Developer directory to
show projects that have programs belonging to a specific
environment by using the Environments menu.

SOLA | upDI || Fle || Datase [#//#

| Environments(TEST) ™

. . 5) TEST
Once you have created your environments, you need to edit 0 STAGE{*_“] Release
promote.jcl to tie the SOLA Developer environments with the o 2%
backend environments. The file promote.jcl gets executed o) pRODE [renee
whenever you promote or demote a program from one SR
environment to another. For instruction on how to edit = (@ DEPTXYZ

promote.jcl, consult the SOLA Administration Guide.

- To Promote or Demote programs, use the directory tree
menus. Click on the program name and select ‘Promote’
or ‘Demote’ from the menus. If the ‘actionOnPromote’ or
‘actionOnDemote’ environment attribute was set to ‘M’
=l E Promote during the creation of the environment, Promote will

D

=", Directory #
= E Accounts

advance the program to the next ‘higher’ environment in
the sequence, and likewise, Demote will move the
el Delete program to the previous or ‘lower level’ environment in the

emote

=T Analvs sequence. After promote and successful ‘move’ the
A [navEs program object in the lower level is expired.

i'E Reimport

o £ YDEMG? Note: One exception by default is Demote from the

highest level (e.g. Prod) will always be forced to ‘copy’.

After Demote and successful ‘move’ the program object in

the ‘higher’ level environment is expired, except if it is from
the ‘highest level’ environment (e.g. Prod).

If the ‘actionOnPromote’ or ‘actionOnDemote’ environment attribute was set to ‘C’ during the
creation of the environment, Promote will Copy the program to the next ‘higher’ environment in
the sequence, and likewise, Demote will Copy the program to the previous or ‘lower level
environment in the sequence. After promote and successful ‘copy’ the program object in the
‘lower level’ is retained, and after demote and successful ‘copy’ the program object in the ‘higher
level is retained.

Deleting Environments

You cannot delete environments using SOLA Developer. You will need to use Resource
Manager.

256

i

r SOLA Developer User’s Guide

Installation Security

The installation security icon tab lets you change the change the SOLA installation password
(SOLAIN) when logged in either as SOLAIN or an Administrator.

B 53 4% ¥ &8 =

P‘I“DpEl‘t';l' ~ LQ-QS chtlonar',-' Create Installation Custom
Add User Editor File Editor & Traces Controls Environment Security Schema
SOLA Property File Editor
Cnitx Root Path Name File Name
finst
finst * - - @

To change the installation password, go to the Admin menu screen and select SOLA Installation
Security:

S B 59 K @ & =

. Logs Dictionary Create
Add User Editor File Editor

Installation Custom
& Traces Controls Environment

Security Schema

A password change dialog box will appear. Provide the necessary information and click
Change.

Change Installation Password
Current Password: sessse

New P; d:

Retype Password: |oooooool |

Change H Reset][Cancel]

257

SOLA Developer User’s Guide

7

Access Controls

To access SOLA Developer’s access Menu | B Accens Controls
control functions, click on the Access {ﬁ?
Controls button in the button bar.

This will display the access controls console.

Access Controls
User Access Lsar Alternate
List Activity Log 1Ds

User Activity Search

Application ID: SOLA - Activity Type: SignCn -
Activity Date From: 200805329 & Activity Time From: 00.00.00
Activity Date To: 2008-03-23 & Activity Time To: 235555

SOLA End Point: Soap Request:

User Name:

All fields are optional. Use any combination of search fields.

Use wildcard characters (percent "%%" and/or underscore "_") during ywour search.
SEARCH RESET

The access controls console is comprised of four panels, accessed by icon tabs. The default
icon tab is Access Groups. Click on a different icon tab to open the other access controls

panels.

This icon tab opens the user access list panel, which is used in conjunction with
ﬁ the access control groups panel to control user access to regions by selecting
ey 0 which access control groups each user account has access to within each project
T List (i.e. at the project level).
This icon tab opens the user activity search panel which can be used to search
the SOLA user activity log for specific activities that match specified search
Do parameters.
Activity Log

mainframe ftp access to make full use of SOLA’s functionality (give them ftp

ﬂ i This icon tab opens the alternate ids panel, which is used to allow users without
access from within SOLA only).

Alternate
1Ds

258

SOLA Developer User’s Guide

7

User Access List
The User Access List panel is used to display and/or remove user access.

24 New Project | W SOAP Test 4, Monitor Search | Y Eror Search | [g| Browse Dataset (3 Admin Menu ﬁ Access Controls | [E

klle Home || Access Controls '*

1.8 (4 o

Alternate
Activity Log 1Ds

user A ghow Users Access

=|[5][%

Applicd

Activity Group Name Userld User Name Operation Type Resource Id Resource Name Action

Activity DefaultUsers 2013-08-23-00.28.09.870006 TESTUSR PROGRAMMER 2014-03-27-15.53.30.251757 AuthProject02 Remove ﬂ
DefaultUsers 2013-08-23-00.28.09.870006 TESTUSR TEST 2008-07-17-00.53.17.391043 SWB501Project Remove

SOLA E ProjectAdmin 2013-12-16-09.54.10.260003 UQA7 0001-01-01-00.00.00.000000 Remove

User iy ProjectAdmin 2013-12-16-09.54.31.150004 UQAS 0001-01-01-00.00.00.000000 Remove
ProjectAdmin 2013-08-22-17.22.47.131410 uQAg PROGRAMMER 2013-08-20-09.16.25.290583 QATEST-V6.1.10.1 Remove
RegularUsers 2013-08-24-02.10.26.830008 CRXIN1 PROGRAMMER 2013-04-17-03.45.08.240023 .common Remove

SEAH RegularUsers 2013-08-24-02.12.17.540005 CRXIN2 PROGRAMMER 2013-08-13-00.06.14.370049 .commonLM Remove
RegularUsers 2014-02-21-13.39.59.210469 DJS1956 0001-01-01-00.00.00.000000 Remove
RegularUsers 2014-02-03-10.24.15.750001 DJS1982 IMPORT 0001-01-01-00.00.00.000000 Remove
RegularUsers 2014-01-31-12.06.38.110981 DJS2000 PROGRAMMER 2014-01-06-15.46.53.810951 QATEST-V6.2.1 Remove ';I
] L

Each existing SOLA user account is listed in Group Name order, and for each user account,
every Project/Resource which the account has access to is listed along with the users Operation
Type. SOLA Administrators have global access to all group names (this means all operation
types for all projects).

All information displayed on the Show Users Access screen is described below.
Note: Columns containing Timestamps are informational only.

The following describes key User Access information:

® Group Name: The User Access Group Name that the User is defined within when the
User Access is created.

o RegularUsers —When user access is created in Resource Manager it can be
created as a RegularUser or a SOLAAdmin. RegularUser’s can later be
drag/dropped to another group such as ProjectAdmin’s, etc.

o DefaultUsers — A user access is also created in Resource Manager by right
clicking at the Directory level and will be placed in the same location as a
RegularUser. These type users are listed at the bottom of the User Access List
when you click on the Users tab in Resource Manager.

o SOLAAdmin — a user defined here has access to all Groups.

m User Name: the name the user was given when it was created and is associated with
the user Id.

= Operation Type: for each user Id and listed individually on a separate row, the type of
operation a user is authorized to perform within SOLA.

259

SOLA Developer User’s Guide

7

® Resource Name: Within the Developer Directory tree the project/resource name that
each User has access to, to perform certain operations on programs/methods within the
project. This access can be defined differently for a user from one project to another. An
example of this is a user can be defined as a Programmer in one project with access as
a ProjectAdmin to another project.User

= Action: The only allowable action here is to remove a user’s access from a specific
Group or Project by clicking on the Remove option.

260

SOLA Developer User’s Guide

7

User Activity Log

The user activity log panel is used to search through SOLA’s user activity log in the same way
that the monitor search panel (page 226) is used to search SOLA’s transaction log.

Access Controls
User ACCess LIser Altarnate
List Activity Log IDs

User Activity Search

Application ID: SOLA - Activity Type: SignCn -
Activity Date From: 20080529 & Activity Time From: 00.00.00
Activity Date To: 2008-05-253 w Activity Time To: 235959

S0OLA End Point: Soap Request:

User Name:

All fields are optional. Use any combination of search fields.
Use wildcard characters (percent "%:" and/or underscore "_") during your search.

SEARCH RESET

To conduct a search of the activity log, enter search parameters using the search fields to
narrow the scope of your search. You can also conduct a search with the default (mostly blank)
settings, though this may take some time to complete and may result in a very long list of
activities.

The following is a description of the search fields:
= Application ID: currently, the only option is SOLA.

= Activity Type: narrows the search to activities of the specified type. Options are:
SignOn: user sign-on.
Error Search: error log search.
Monitor Search: monitor (transaction) search.
Testing: quick test or raw test.
Import: importing a program.
Analysis: method analysis.
Delete: deletion of a project, program or method.

= Activity Date From and Activity Date To: the start (activity date from) and end
(activity date to) dates are automatically populated with the current date and can be
changed by manually entering a date (yyyy-mm-dd). All activities are stamped with the

261

SOLA Developer User’s Guide

date and time at which they take place, and only activities that took place on or after the
start date and on or before the end date will be returned.

m Activity Time From and Activity Time To: the start and end times are automatically
populated with the current system time and can be changed by manually entering a time
(hh.mm.ss). All activities are stamped with the date and time at which they take place,
and only activities that took place at or after the start time and at or before the end time
will be returned.

m SOLA End Point: narrows the search to activities that involve a request with the
specified end point.

m SOAP Request: if an activity involves a SOAP request sent through the SOLA website,
then this field can be used to narrow the search based on a part of that SOAP request.
For example, if you populate this field with the word “SOLA”, then any activity that
involved a SOAP request with the word SOLA in any context will be returned (provided it
matches any other search parameters that are specified).

= User Name: narrows the search to the activities of the specified user.
Once you have specified your search parameters, click SEARCH
The results of the search will be displayed below the activity search panel. If the list exceeds

the available screen size, then you will need to scroll to see all of the search results.

The information is organized under a series of columns:

® Appl ID: the application involved in the activity. Clicking on the application ID for a
specific activity displays the search details panel that contains very detailed information
about the activity.

m Activity Type: the type of activity. Option are:

SGN: user sign-on.

MON: monitor (transaction) search.

LOG: error log search.

TST: quick test or raw test.

DEL: deletion of a project, program or method.
TRC: atrace initiated by an administrator.

. Row Number: each activity is assigned a sequence number, which is displayed here.
= User Name: the user involved in the activity.

m User Date: the day the activity took place expressed as yyyy-mm-dd.

262

SOLA Developer User’s Guide

7

= User Time: the time the activity took place expressed as hh.mm.ss.

m End Point: the end point in which the activity took place.
To get detailed information about a specific activity, click on the activity’s application ID. This
will displays the search details panel.
The search details is a series of fields that contain data about a specific user activity, along with
a large field that contains the soap request that was sent to the SOLA soap server as a part of

the activity (if there was one).

The information is organized under the following headings:
= Application ID: currently, the only option is SOLA.

Activity Type: narrows the search to activities of the specified type. Options
are:

SGN: user sign-on.

MON: monitor (transaction) search.

LOG: error log search.

TST: quick test or raw test.

TRC: atrace initiated by an administrator.

= User Name: the user account that triggered the activity.
= Activity Date: the date (yyyy-mm-dd) of the activity.
® Activity Time: the time (hh.mm.ss) of the activity.
® SOLA End Point: the mainframe end point where the activity took place.
The links at the bottom of the panel allow you to navigate through all the activities in the list.
<< First <Prewv Next> Last> >
<<First: show details for the first activity in the list.
<Prev: show details for the previous activity.
Next>: show details for the next activity.
Last>>: show details for the last activity.

Alternate IDs

263

SOLA Developer User’s Guide

e

The Alternate User IDs panel is used to define mainframe Ids that have FTP access.

Access Controls
User Access Lser Alternate
List Activity Log 1Ds

abc T (]
]

Once defined, these IDs can be added to a user Id at the project level to allow users without
mainframe ftp access to make full use of SOLA Developer’s functionality (give them ftp access
from within SOLA Developer only). FTP access is necessary for browsing datasets, importing
programs, and for finalizing an analysis.

Fill in the required fields to add an alternate ID.

= Alternate User Id: enter a mainframe user Id that has mainframe ftp access. This can,
but does not have to, be an existing SOLA user.

= Password: the password associated with the ID.

To add additional fields, click the button. To remove an unwanted blank field or to delete an
user ID/password pair, click the T button.

264

7

SOLA Developer User’s Guide

Appendices

Appendix A: Schema and Copybook Generation

Datatype Mapping and Copybook Generation Rules

The following table lists schema datatypes and how they are handled by SOLA when importing
WSDL and generating a copybook to be used for outbound requests.

Datatype Action Programmer Notes
Response

string Gets generated as User can modify the
PIC X(01), unless a “len” property during
maxLength facet is analysis*.
specified in the
schema restriction.

boolean Gets generated as User can put 'true' or | SOLA Analyzer
PIC X(05). A 'false' or ‘1’ and ‘0’ assumes canonical
comment is added to values. The SOLA
the copybook runtime doesn’t
specifying two validate this field.
possible values.

decimal Gets generated as A user can influence | SOLA validates this
PIC S9(1) COMP-3, this field by changing | field while converting
unless totalDigits the “precision” and from XML to packed
and/or fractionDigits “scale” properties decimal format. Non
facets are specified in | during analysis. numeric data is
the schema rejected.
restriction.

float Gets generated as A user can influence | SOLA validates this
PIC S9(1) COMP-3, this field by changing | field while converting
unless totalDigits the “precision” from XML to packed
facet is specified in property during decimal format. Non
the schema analysis. numeric data is
restriction. rejected.

double Gets generated as A user can influence | SOLA validates this
S9(13)v9(4) COMP-3, | this field by changing | field while converting
unless total Digits the “precision” from XML to packed
facet is specified in property during decimal format. Non
the schema analysis. numeric data is
restriction. rejected.

265

7

SOLA Developer User’s Guide

duration Gets generated as A user can influence | This field is treated
PIC X(256). this field by changing | as a string by SOLA.
the “len” property Validation is not
during analysis*. We | performed.
recommend that the
user follows the
lexical or canonical
representation.
dateTime Gets generated as A user can influence | This field is treated
PIC X(25). A this field by changing | as a string by SOLA.
comment is added to | the “len” property dateTime validation
the copybook during analysis*. We | is not performed.
showing a sample recommend that the
format such as 2009- | user follows the
11- lexical or canonical
18T09:27:01.2317. representation.
time Gets generated as A user can influence | This field is treated
PIC X(14). A this field by changing | as a string by SOLA.
comment is added to | the “len” property time validation is not
the copybook during analysis*. We | performed.
showing a sample recommend that the
format such as user follows the
12:00:00-05:00 lexical or canonical
representation.
date Gets generated as A user can influence | This field is treated
PIC X(16). A this field by changing | as a string by SOLA.
comment is added to | the “len” property date validation is not
the copybook during analysis*. We | performed.
showing a sample recommend that the
format such as 2002- | user follows the
10-10+05:00 lexical or canonical
representation.
gMonthDay Gets generated as A user can influence | This field is treated
PIC X(13). A this field by changing | as a string by SOLA.
comment is added to | the “len” property month day validation
the copybook during analysis*. We | is not performed.
showing a sample recommend that the
format such as --11- | user follows the
01-04:00 lexical or canonical
representation.
gMonth Gets generated as A user can influence | This field is treated
PIC X(13). A this field by changing | as a string by SOLA.
comment is added to | the “len” property month validation is
the copybook during analysis*. We | not performed.
showing a sample recommend that the
format such as --11- user follows the
01-04:00 lexical or canonical
representation.

266

SOLA Developer User’s Guide

gDay Gets generated as A user can influence | This field is treated
PIC X(5). A comment | this field by changing | as a string by SOLA.
is added to the the “len” property day validation is not
copybook showing a | during analysis*. We | performed.
sample format such recommend that the
as ---31 user follows the
lexical or canonical
representation.
gYear Gets generated as A user can influence | This field is treated
PIC X(10). A this field by changing | as a string by SOLA.
comment is added to | the “len” property year validation is not
the copybook during analysis*. We | performed.
showing a sample recommend that the
format such as 2009- | user follows the
05:00 lexical or canonical
representation.
gYearMonth Gets generated as A user can influence | This field is treated
PIC X(13). A this field by changing | as a string by SOLA.
comment is added to | the “len” property year month
the copybook during analysis*. We | validation is not
showing a sample recommend that the | performed.
format such as 2009- | user follows the
10+05:00 lexical or canonical
representation.
hexBinary Gets generated as User will have to This field is treated

PIC X(256).

convert this field
programmatically.

as a string by SOLA.
SOLA doesn’t
directly support this
datatype. No
validation is
performed

base64Binary

Gets generated as
PIC X(256).

A user can influence
this field by changing
the “len” property
during analysis*.
Adjust “len” according
to the rule that 4
bytes of XML data
will get converted to
three bytes of binary
data, and vice-versa.

SOLA converts
Base64 to binary
and vice-versa.
Base64 validation is
performed and an
error is thrown if
there is a violation.

anyURI Gets generated as A user can influence | This field is treated
PIC X(256). this field by changing | as a string by SOLA.
the “len” property No validation is
during analysis*. performed
QName Gets generated as A user can influence | This field is treated

PIC X(256).

this field by changing
the “len” property
during analysis*.

as a string by SOLA.
No validation is
performed

267

7

SOLA Developer User’s Guide

NOTATION

Gets generated as
PIC X(256).

A user can influence
this field by changing
the “len” property
during analysis*.

This field is treated
as a string by SOLA.
No validation is
performed

normalizedString

Gets generated as
PIC X(256).

A user can influence
this field by changing
the “len” property
during analysis*.

This field is treated
as a string by SOLA.
No validation is
performed

PIC S9(09) COMP.

token Gets generated as A user can influence | This field is treated
PIC X(256). this field by changing | as a string by SOLA.
the “len” property No validation is
during analysis*. performed.
integer Gets generated as Numeric validation is

performed when
mapping from XML
to fullword binary.

NonPositivelnteger

Gets generated as
PIC X(256).

User will have to
convert this field
programmatically.

This field is treated
as a string by SOLA.
SOLA doesn’t
directly support this
datatype. No
validation is
performed

Negativelnteger

Gets generated as
PIC X(256).

User will have to
convert this field
programmatically.

This field is treated
as a string by SOLA.
SOLA doesn’t
directly support this
datatype. No
validation is
performed

nonNegativelnteger

Gets generated as
PIC X(256).

User will have to
convert this field
programmatically.

This field is treated
as a string by SOLA.
SOLA doesn’t
directly support this
datatype. No

PIC S9(09) COMP.

validation is
performed
long Gets generated as Numeric validation is
PIC S9(18) COMP-3. performed when
mapping from XML
to packed decimal.
short Gets generated as Numeric validation is
PIC S9(04) COMP. performed when
mapping from XML
to halfword binary.
int Gets generated as Numeric validation is

performed when
mapping from XML
to fullword binary.

268

SOLA Developer User’s Guide

byte

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated

as a string by SOLA.

SOLA doesn’t
directly support this
datatype. No
validation is
performed

UnsignedByte

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated

as a string by SOLA.

SOLA doesn’t
directly support this
datatype. No
validation is
performed

Unsignedint

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated

as a string by SOLA.

SOLA doesn’t
directly support this
datatype. No
validation is
performed

UnsignedLong

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated

as a string by SOLA.

SOLA doesn’t
directly support this
datatype. No
validation is
performed

UnsignedShort

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated

as a string by SOLA.

SOLA doesn’t
directly support this
datatype. No
validation is
performed

Positivelnteger

Gets generated as
PIC X(256).

User will have to
convert this field

programmatically.

This field is treated

as a string by SOLA.

SOLA doesn't
directly support this
datatype. No
validation is
performed

269

7

SOLA Developer User’s Guide

Other Restrictions—Numeric Facets

maxLength is used to define the length of a field during copybook generation

length is used to define the length of a field during copybook generation

pattern if the pattern is resolvable length will be derived from it.

enumeration gets converted to 88 level condition-name in the copybook. If the field
type is string the field length will be derived from the maximum length of
the enumeration values,

whiteSpace ignored

maxinclusive ignored

maxExclusive ignored

minExclusive ignored

mininclusive ignored

totalDigits precision in the copybook is derived from totalDigits

fractionDigits

scale in the copybook is derived from fractionDigits

Other Constraints

minOccurs SOLA doesn’t handle minOccurs automatically. It requires the
programmer to specify “excludeif’ during analysis
maxOccurs converted to the occurs clause in the copybook, unless Custom, then all

input and output arrays in Custom programs will get generated with
maxOccurs="unbounded".

General Restrictions
B SOLA doesn’t support RPC style WSDL. Document-literal is the only style that’s

supported.

B SOLA doesn’t support non-SOAP bindings.

B SOLA discards array occurrences that exceed the value set during analysis. No warning

is produced when data is discarded.

® The only XML schema to mainframe datatype transformations are based on the
supported mainframe datatypes, such as character (XML normalization), binary
(halfword and fullword) and packed decimal (numeric nibbles and sign nibble). An
enhancement to Analysis has been made in release 6.3.4 so User can now change to
any other compatible datatype during analysis and retain it, and if not compatible the
datatype will be overridden with defaults. The default is for Numeric {short, int, long}
based on precision, and the user can change to Decimal.

B Choice schema indicators are not supported.

270

SOLA Developer User’s Guide

7

Appendix B: Refreshing Templates in the SOLA STC

The SOLA STC uses “Templates” to store run-time meta data. A Template is an Assembler
Data-Only Load Module. For performance reasons, the SOLA STC manages the loading and
caching of Templates. Ordinarily this isn’t an issue, but when you change a Template you need
to refresh the Template in the SOLA STC.

The SOLASTC provides two methods of refreshing a template:
® A manual method intended to be used by a programmer

® A web service method intended to be used for integration with a Change Management
system.

Manually Refreshing a Template

CICS provides the ability to “NewCopy” a program with the CEMT transaction. SOLA IMS
Container provides the same ability to “NewCopy” a template (the only user modifiable
component hosted in the SOLA STC), but instead of providing a transaction SOLA provides a
refresh button on the Quick Test pane.

After “Analyzing” a new method, right click on the Method and choose “Quick Test to bring up
the Quick Test pane. In the upper right of the pane is a “refresh” button. Pressing this button
refreshes the Template in the SOLA STC identified by the Binding Endpoint.

Home Quick Test '*

e
Method Name: nameSearch Binding EndPoint: | 50L1 v i

TreeYiew Gridiew Farrmiew Saved Tests

= E'_ soap:Envelope
=] E'_ soap: Body
= E'_ nameSearch
= € ws-B0SS-1D

=l E, WE-SEARCH-YALUE

< >

TEST SHOW SOAP XML SAVE SOAP XML

Refreshing a Template Using the Web Service Interface

SOLA provides integration points with your Change management system. One of those points
is the “NewCopy” web service. By integrating the “NewCopy” service, you will be able to ensure
that a template is available for use.

271

SOLA Developer User’s Guide

7

The following web service request can be executed against the SOLA STC to refresh the
template:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ObjectService xmlns="http://project.ObjectFinder.x4mlsoa.com/SL/XMLPC804/">
<Operation>select</Operation>
<ObjectType>SOLAUtil</ObjectType>
<Object objectType="SOLAUtil" operationType="newCopy"
programNm="[TemplateName]"/>
</ObjectService>
</soap:Body>
</soap:Envelope>

Replace [TemplateName] with the name of your template. The service can be executed from

any web services client, including the SOLA Test Harness. Many customers use a SOLA
Outbound Service from the SOLA Batch Container.

272

SOLA Developer User’s Guide

7

Appendix C: Overriding IMS Connect parameters on the
soap:Header

IMS Connect parameters are specified at the Container Group level. See the Resource
Manager User’s Guide for information on specifying IMS Connect parameters for a Container
Group.

The programmer has the ability to override IMS Connect parameters by specifying the
parameters to be modified on the soap:Header of the input soap request. The following
example shows how a programmer can override the IMS Connect exit to replace the value for
IMSCIRMMsgld (which may have been specified on the Container Group) with a new value of
SAMPLE.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<IMSConnectParm>
<IMSCIRMMsgId>*SAMPLE*</IMSCIRMMsgId>
</IMSConnectParm>
</soap:Header>
<soap:Body>
<sampleSOLAIMSMain
xmlns="http://sampleSOLAIMSMain.sampleSOLAIMSMain.x4ml.soa.com/IM/SOLAIMO1/SOA#IMO1">
<feet>5</feet>
<inches>6</inches>
<fahrenheit>77</fahrenheit>
</sampleSOLAIMSMain>
</soap:Body>
</soap:Envelope>

The allowable values that can be specified on the soap:Header are:

<IMSConnectParm>
<IMSCCommitMode><0 or 1></IMSCCommitMode>
<IMSCSyncLevel><none or confirm></IMSCSyncLevel>
<IMSCDataStoreID>...</IMSCDataStoreID>
<IMSCfgdn>...</IMSCfgdn>
<IMSCIPaddress>...</IMSCIPaddress>
<IMSCport>...</IMSCport>
<IMSCTCPip>...</IMSCTCPip>
<IMSCNumSessions>
<IMSCIRMMsgId>8characters</IMSCIRMMsgId>
<IMSCIRMClientID>8characters</IMSCIRMClientID>
<IMSCIRMTermID>8characters</IMSCIRMTermID>
<IMSCIRMUserID>8characters</IMSCIRMUserID>
<IMSCIRMPasswd>8characters</IMSCIRMPasswd>
<IMSCIRMGroup>8characters</IMSCIRMGroup>
<IMSCIRMTran>8characters</IMSCIRMTran>

</IMSConnectParm>

273

http://schemas.xmlsoap.org/soap/envelope/
http://samplesolaimsmain.samplesolaimsmain.x4ml.soa.com/IM/SOLAIM01/SOA#IM01

SOLA Developer User’s Guide

7

CommitMode and SynclLevel Combinations supported by SOLA

1. CommitMode = 0 (Commit-then-Send) & SynclLevel = Confirm
This is the default combination enforced by SOLA runtime.

To specify this combination on the soap request pass the
following in <soap:Header>

<soap:Header>
<IMSConnectParm>
<IMSCCommitMode>0</IMSCCommitMode>
<IMSCSyncLevel>confirm</IMSCSyncLevel>
</IMSConnectParm>
</soap:Header>

2. CommitMode = 1 (Send-then-Commit) & SyncLevel = None

To specify this combination on the soap request pass the
following in <soap:Header>

<soap:Header>
<IMSConnectParm>
<IMSCCommitMode>1</IMSCCommitMode>
<IMSCSyncLevel>none</IMSCSyncLevel>
</IMSConnectParm>
</soap:Header>

3. CommitMode = 1 (Send-then-Commit) & SyncLevel = Confirm

To specify this combination on the soap request pass the
following in <soap:Header>

<soap:Header>
<IMSConnectParm>
<IMSCCommitMode>1</IMSCCommitMode>
<IMSCSyncLevel>confirm</IMSCSyncLevel>
</IMSConnectParm>
</soap:Header>

274

SOLA Developer User’s Guide

7

Appendix D: Sample Custom Program

The following program contains comments that will help you use this sample program to
construct your own custom programs for use with SOLA.

000100 IDENTIFICATION DIVISION. 12/12/97
000200 PROGRAM-ID. SOLACUEX. TGWPC045
000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500 == == o *

000501* This is a sample 'Hello World' program which demonstrates the *

000502* basics of writing a SOLA Custom Program (Version 2). *

000503* This simple program accepts a 'Function' code from SOAP *

000504* request and depending of the value of the code does one of thex*

000505* following: *

000506%* *

000507* Function: HW - Throws a SOAP Response 'Hello World' *

000508* Function: HWF - Throws a SOLA soap fault (return code = -1) *

000509* Function: HWCEF - Throws a Custom SOAP fault (return code = -2)*

000510%* *

000511* Following is a sample of what the SOAP request for this *

000512* program would look like: *

000513* *
000514*<soap:Envelope *

000515* xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> *

000516* <soap:Body> *

000517* <helloWorld *

000518* xmlns="http://helloWorld.SolaExamples.x4ml.soa.com/CU/SOLACUEX/">
000519* <Function>HW</Function> *

000520* </helloWorld> *

000521* </soap:Body> *
000522*</soap:Envelope> *

000523* ————————— - *

000530*———————————— *

000600 WORKING-STORAGE SECTION.

000700* ——=—————— - m *

000800

000900 01 WS-MISC-DISP-DATA. 00301003
001000 05 WS-CHANNEL-NM PIC X (16) VALUE 'SOLA-CUSTOM'.

001100 05 WS-STATUS-CONTAINER PIC X(l6) VALUE 'SOLA-STATUS'.

001600 05 WS-FUNCTION PIC X(04) VALUE SPACES. 14800003
001610 05 WS-ABCODE PIC X (04) VALUE SPACES. 14800003
001700 05 WS-RESP-EDIT PIC 77Z7ZZ9. 00390799
001800 05 WS-RESP2-EDIT PIC ZZZZ9. 00390899
001900 05 WS-DOM-RC-EDIT PIC Z7Z7ZZ9. 00390899
002000 05 WS-SOAP-NS PIC X (41) VALUE

002100 'http://schemas.xmlsoap.org/soap/envelope/"'.

002200 05 WS-METHOD-NS.

002300 10 FILLER PIC X (31) VALUE

002400 'http://helloWorld.SolaExamples.'.

002500 10 FILLER PIC X (23) VALUE

002600 'x4mlsoa.com/CU/SOLACU24" .

002700

002800 01 WS-MISC-BINARY-DATA. 00301003
002900 05 WS-SUB PIC S9(04) VALUE +0 BINARY. 00301003
003000 05 WS-RESP PIC S9(09) BINARY VALUE +0. 00520099
003100 05 WS-RESP2 PIC S9(09) BINARY VALUE +0. 00530099
003200 05 WS-STATUS-LEN PIC S9(09) BINARY VALUE +0. 00530099
003300

275

SOLA Developer User’s Guide

s

003400 01 WS-MISC-POINTERS. 00090003
003500 05 WS-CONTAINER-PTR USAGE IS POINTER VALUE NULL. 00053192
003600 05 WS-Dom-Ptr-Req USAGE IS POINTER VALUE NULL. 00053192
003700 00270003
003800 01 WS-SWITCHES. 01200099
003900 05 WS-TAG-FOUND-SW PIC S9(04) BINARY VALUE +0. 01260099
004000 88 TAG-NOT-FOUND VALUE +1. 01270099
004100 88 TAG-FOUND VALUE +2 +3 +4. 01280099
004200 88 TAG-DATA-FOUND VALUE +3. 01290099
004300 88 NO-TAG-DATA VALUE +4. 01300099
004400 00270003
005100 COPY XMLDOMWI .

005200

005500*——————————— = *

005600 LINKAGE SECTION.

005700* === *

005800

005900 01 SOLA-Status-Area.

006000 COPY SOLACUV2.

006100

006200 01 SOAP-REQ-RESP PIC X (1000000).

006300

006400 === == *

006500 PROCEDURE DIVISION.

006600 ———— = *

006700 CONTINUE.

006800 ——————m *

006900 0000-MAINLINE.

007000* === *

007100

007200 PERFORM 0010-GET-SOLA-STATUS-AREA

007300 THRU 0010-EXIT

007400

007500 PERFORM 0020-GET-SOAP-REQUEST

007600 THRU 0020-EXIT

007700

007800 PERFORM 0030-PARSE-SOAP-REQUEST

007900 THRU 0030-EXIT

008000

008100 PERFORM 0100-PROCESS-SERVICE-REQUEST

008200 THRU 0100-EXIT

008300

008400 PERFORM 0200-PUT-SOAP-RESPONSE

008500 THRU 0200-EXIT

008600

008700 PERFORM 0300-PUT-SOLA-STATUS-AREA

008800 THRU 0300-EXIT

008900

009000 GO TO 9999-RETURN

009100

009200 CONTINUE.

009300

009400 OOOO-EXIT.

009500 EXIT.

009600

009700 ——————mm e * 14978300
009800 0010-GET-SOLA-STATUS-AREA.

009900 ——————mmm e * 14978300
010000 46
010100 EXEC CICS

010200 HANDLE ABEND

010300 LABEL (9999-HANDLE-ABEND)

010400 END-EXEC

276

SOLA Developer User’s Guide

7

010500

010600 MOVE LOW-VALUES TO WS-CHANNEL-NM 03
010700

010800%* Get the channel associated with this transaction.

010900

011000 EXEC CICS ASSIGN

011100 CHANNEL (WS-CHANNEL-NM) 03
011200 RESP (WS-RESP)

011300 RESP2 (WS-RESP2)

011400 END-EXEC

011500

011600 IF (WS-RESP NOT = +0) OR

011700 (WS-CHANNEL-NM = SPACES OR LOW-VALUES) 03
011800 GO TO 9999-RETURN 02530003
011900 END-IF

012000

012100%* Get the SOLA Status container from that channel. The

012110%* contents of this container are described in COBOL copybook

012120%* SOLACUV2. This data structure will later be modified and

012130%* placed back into this container to communicated back to

012140%* SOLA the proper action to take (i.e. Throw a SOAP Response,

012150* a SOLA Fault, or a Custom Fault.

012200

012300 MOVE 'SOLA-STATUS' TO WS-STATUS-CONTAINER 03
012400 MOVE LENGTH OF SOLA-Status-Area TO WS-STATUS-LEN 02960000
012500

012600 EXEC CICS GET

012700 CONTAINER (WS-STATUS-CONTAINER) 03
012800 SET (WS-CONTAINER-PTR)

012900 FLENGTH (WS-STATUS-LEN)

013000 RESP (WS-RESP)

013100 RESP2 (WS-RESP2)

013200 END-EXEC

013300 46
013400 IF WS-RESP NOT = DFHRESP (NORMAL)

013500 GO TO 9999-RETURN 02530003
013600 END-IF

013700

013800 SET ADDRESS OF SOLA-Status—-Area TO WS-CONTAINER-PTR 02960000
013900 SET CU-Return-Normal TO TRUE

014000 MOVE SPACES TO CU-RETURN-MSG

014100 46
014200 CONTINUE. 10750046
014300 10760046
014400 0010-Exit. 10770046
014500 EXIT. 10780046
014600 10790046
014700* —————m e * 14978300
014800 0020-GET-SOAP-REQUEST.

014900*——————————— - * 14978300
015000 46
015010%* Retrieve the raw (unencrypted SOAP Request which was placed* 14978300
015011~ into this container by SOLA. Once retrieved, you may use * 14978300
015012%* any means you wish to interogate its contents (we suggest * 14978300
015013~* using the provided SOLA Soap Parser and API XMLPC112. * 14978300
015020 46
015100 EXEC CICS GET

015200 CONTAINER (CU-REQ-CONTAINER) 03
015300 SET (WS-CONTAINER-PTR)

015400 FLENGTH (CU-REQUEST-LEN)

015500 RESP (WS-RESP)

015600 RESP2 (WS-RESP2)

015700 END-EXEC

277

7

SOLA Developer User’s Guide

015800
015900
016000
016100
016200
016300
016400
016500
016600
016700
016800
016900
017000
017100
017200
017300
017400
017500
017600
017700
017800
017900
018000
018100
018200*
018300
018400*
018500
018510*
018511*
018512*
018520
018600
018700
018800
018900
019000
019100
019200
019300
019400
019500
019600
019700
019800
019900
020000
020100
020200
020300
020400
020500
020600
020700
020800
020900
021000
021100%*
021200
021300%*
021400
021410%*
021420%*

IF WS-RESP NOT = DFHRESP (NORMAL)
SET CU-Throw-Fault TO TRUE
MOVE WS-RESP TO WS-RESP-EDIT
MOVE WS-RESP2 TO WS-RESP2-EDIT
STRING 'Error getting SOAP Request container, RESP = '
WS-RESP-EDIT
', RESP2 = '
WS-RESP-EDIT
DELIMITED BY SIZE
INTO CU-RETURN-MSG
END-STRING
PERFORM 0300-PUT-SOLA-STATUS-AREA
THRU 0300-EXIT
GO TO 9999-RETURN
END-IF

SET ADDRESS OF SOAP-REQ-RESP TO WS-CONTAINER-PTR
CONTINUE.

0020-Exit.
EXIT.

0030-PARSE-SOAP-REQUEST.

In this case the program will used the SOLA provide parser *
and DOM API (XMLPC1l12). First the request must be parsed *
into the DOM Tree as follows: *

SET WS-DOM-PARSE TO TRUE

SET WS-DOM-HANDLE TO NULL

MOVE +0 TO WS-DOM-CONTROL

MOVE CU-REQUEST-LEN TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC
, WS-DOM-MSG
, WS-DOM-HANDLE
, WS-DOM-FUNCTION
, WS-DOM-CONTROL
, WS-DOM-TAG-NAME
, SOAP-REQ-RESP
, WS-DOM-VALUE-LENGTH

IF WS-DOM-RC NOT = 0
GO TO 9000-X-PROG-WITH-DOM-ERROR
END-IF
SET WS-Dom-Ptr-Reqg TO WS-DOM-HANDLE
CONTINUE.
0030-Exit.
EXIT.

0100-PROCESS-SERVICE-REQUEST.

The following code shows an example of how to now use the *
SOLA DOM API to interogate the contents of the SOAP

46

02530003

02960000

46
10750046
10760046
10770046
10780046
10790046
14978300

14978300

14978300
14978300
14978300

06203899
06203999
06204099
06205099
06206099
06208099
06209099
06210099
06220099
06230099
06240099
02960000
18880099
06270099
06280099

06530199
06530275
06530399

10750046
10760046
10770046
10780046
10790046
14978300

14978300
10790046
14978300
14978300

278

SOLA Developer User’s Guide

7

021430%* request. (See the sample SOAP request at the top of this * 14978300
021431~* program) * 14978300
021440

021500 SET WS-DOM-GET-ELEMENT-BYTAG TO TRUE 16354099
021600 MOVE 'helloWorld' TO WS-Dom-Parent 18850099
021700 MOVE 'Function' TO WS-DOM-TAG-NAME

021800

021900 PERFORM 6000-Call-Dom-Api 18730099
022000 THRU 6000-EXIT 18730099
022100

022200 IF TAG-NOT-FOUND OR NO-TAG-DATA 01270099
022300 SET CU-Throw-Fault TO TRUE

022400 MOVE 'Function not found' TO CU-RETURN-MSG

022500 PERFORM 0300-PUT-SOLA-STATUS-AREA

022600 THRU 0300-EXIT

022700 GO TO 9999-RETURN 02530003
022800 END-IF

022900

023000 MOVE WS-DOM-VALUE (1:WS-DOM-VALUE-LENGTH) TO WS-FUNCTION 20660099
023100

023200 EVALUATE WS-FUNCTION

023300 WHEN 'HW'

023400 PERFORM 1000-SAY-HELLO-WORLD

023500 THRU 1000-EXIT

023600

023700 WHEN 'HWE'

023710~ This is the easiest way to send a SOAP fault from

023720%* a custom program. Simply place the Fault message

023730%* you wish to comunicate in the CU-RETURN-MSG area

023740%* and set the CU-RETURN-CD to -1 (CU-Throw-Fault).

023750%* Then just place the status control block back into

023760%* the SOLA Status container and SOLA will do the rest.

023800 SET CU-Throw-Fault TO TRUE

023900 MOVE 'Sorry, World is offline' TO CU-RETURN-MSG

024000 PERFORM 0300-PUT-SOLA-STATUS-AREA

024100 THRU 0300-EXIT

024200 GO TO 9999-RETURN 02530003
024300

024400 WHEN 'HWCE'

024410%* This will demonstrate a technique for taking

024420%* complete control of the SOAP Fault that you will

024430%* send back to the requestor.

024500 GO TO 9100-THROW-HELLO-WORLD-FAULT

024700

024701 WHEN OTHER

024702 SET CU-Throw-Fault TO TRUE

024703 MOVE 'Invalid Function Code' TO CU-RETURN-MSG

024704 PERFORM 0300-PUT-SOLA-STATUS-AREA

024705 THRU 0300-EXIT

024706 GO TO 9999-RETURN 02530003
024707

024720

024800 END-EVALUATE

024900

025800 CONTINUE. 10750046
025900 10760046
026000 0100-Exit. 10770046
026100 EXIT. 10780046
026200 10790046
038600*———————— = * 14978300
038700 0200-PUT-SOAP-RESPONSE.

038800*%—————————— * 14978300
038900

279

SOLA Developer User’s Guide

7

038910%* This code will place the SOAP Response (built by this * 14978300
038920%* program into the CU-RESP-CONTAINER. In this case the * 14978300
038930%* CU-RETURN-CD should be set to zero (CU-RETURN-NORMAL) . * 14978300
038940~* It is this return code that will instruct SOLA to retrieve *

038941~ the contents of this container and deliver the SOAP *

038942~* Response back to the requestor. *

038970

039000 MOVE 'SOAP-RESPONSE ' TO CU-RESP-CONTAINER 03
039100 05620099
039200 EXEC CICS PUT

039300 CONTAINER (CU-RESP-CONTAINER) 03
039400 From (SOAP-Reg-Resp) 05617200
039500 FLENGTH (CU-RESPONSE-LEN) 05620099
039600 RESP (WS-RESP)

039700 RESP2 (WS-RESP2)

039800 END-EXEC

039900

040000 IF WS-RESP NOT = DFHRESP (NORMAL)

040100 SET CU-Throw-Fault TO TRUE

040200 MOVE WS-RESP TO WS-RESP-EDIT

040300 MOVE WS-RESP2 TO WS-RESP2-EDIT

040400 STRING 'Error putting SOAP Response container, RESP = '

040500 WS-RESP-EDIT

040600 ', RESP2 ="'

040700 WS-RESP-EDIT

040800 DELIMITED BY SIZE

040900 INTO CU-RETURN-MSG

041000 END-STRING

041100 PERFORM 0300-PUT-SOLA-STATUS-AREA

041200 THRU 0300-EXIT

041300 GO TO 9999-RETURN 02530003
041400 END-IF

041500

041600 CONTINUE. 10750046
041700 10760046
041800 0200-Exit. 10770046
041900 EXIT. 10780046
042000 10790046
042100*—==————————— = * 14978300
042200 0300-PUT-SOLA-STATUS-AREA.

042300* - === * 14978300
042400

042410~ The status control block (described in copybook SOLACUV2) * 14978300
042420%* MUST be placed back into the CU-STATUS-CONTAINER to let * 14978300
042430%* SOLA know what steps should be taken. * 14978300
042470

042500 EXEC CICS PUT

042600 CONTAINER (CU-STATUS-CONTAINER) 03
042700 From (SOLA-Status-Area) 00
042800 FLENGTH (CU-STATUS-LEN)

042900 RESP (WS-RESP)

043000 RESP2 (WS-RESP2)

043100 END-EXEC

043200

043300 IF WS-RESP NOT = DFHRESP (NORMAL)

043400 GO TO 9999-RETURN 02530003
043500 END-IF

043600

043700 CONTINUE. 10750046
043800 10760046
043900 0300-Exit. 10770046
044000 EXIT. 10780046
044100 10790046

280

SOLA Developer User’s Guide

7

0441 10* ————————m * 14978300
044120 1000-SAY-HELLO-WORLD.

044130 ———————— * 14978300
044140 20662899
044141~ Following is an example of how you could use the SOLA DOM * 14978300
044142~* API to build a complete SOAP Response to be deliverd back * 14978300
044143~ to the requestor. * 14978300
044144

044150 SET WS-DOM-CREATE-DOC TO TRUE 18280099
044160 MOVE SPACES TO WS-DOM-PARENT 18300099
044170 MOVE +0 TO WS-Dom-Rc 18310099
044180 , WS-Dom-Control 18320099
044190 , WS-DOM-VALUE-LENGTH 18330099
044191 , WS-DOM-PLACE-HOLDER

044192 MOVE 'soap:Envelope' TO WS-DOM-TAG-NAME 18392099
044193 SET WS-Dom-Handle TO NULL 18340099
044194 18350099
044195 PERFORM 6000-Call-Dom-Api 18730099
044196 THRU 6000-EXIT 18730099
044197 18350099
044198 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
044199 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
044200 MOVE 'xmlns:soap' TO WS-DOM-TAG-NAME 18860099
044201 MOVE WS-SOAP-NS TO WS-DOM-VALUE 18870099
044202 MOVE LENGTH OF WS-SOAP-NS TO WS-DOM-VALUE-LENGTH 18330099
044203 18350099
044204 PERFORM 6000-Call-Dom-Api 18730099
044205 THRU 6000-EXIT 18730099
044206 18350099
044207 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
044208 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
044209 MOVE 'soap:Body' TO WS-DOM-TAG-NAME 18860099
044210 MOVE SPACES TO WS-DOM-VALUE 18870099
044211 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
044212 18350099
044213 PERFORM 6000-Call-Dom-Api 18730099
044214 THRU 6000-EXIT 18730099
044215 18350099
044216 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
044217 MOVE 'soap:Body' TO WS-Dom-Parent 18350099
044218 MOVE 'helloWorldResponse' TO WS-DOM-TAG-NAME 18860099
044219 MOVE SPACES TO WS-DOM-VALUE 18870099
044220 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
044221 18350099
044222 PERFORM 6000-Call-Dom-Api 18730099
044223 THRU 6000-EXIT 18730099
044224 18350099
044225 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
044226 MOVE 'helloWorldResponse' TO WS-Dom-Parent 18350099
044227 MOVE 'xmlns' TO WS-DOM-TAG-NAME 18860099
044228 MOVE WS-METHOD-NS TO WS-DOM-VALUE 18870099
044229 MOVE LENGTH OF WS-METHOD-NS TO WS-DOM-VALUE-LENGTH 18330099
044230 18350099
044231 PERFORM 6000-Call-Dom-Api 18730099
044232 THRU 6000-EXIT 18730099
044233 18350099
044234 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
044235 MOVE 'helloWorldResponse' TO WS-Dom-Parent 18350099
044236 MOVE 'MessageToWorld' TO WS-DOM-TAG-NAME 18860099
044237 MOVE 'Hello World' TO WS-DOM-VALUE 03728701
044238 MOVE +11 TO WS-DOM-VALUE-LENGTH 18330099
044239 18350099
044240 PERFORM 6000-Call-Dom-Api 18730099

281

SOLA Developer User’s Guide

7

044241 THRU 6000-EXIT 18730099
044242 18350099
044243~ Finalize will retrieve a copy of the completed SOAP Response.

044244 18350099
044245 SET WS-DOM-FINALIZE TO TRUE 05614899
044246 MOVE +0 TO WS-DOM-VALUE-LENGTH 05614999
044247 05615099
044248 PERFORM 6000-CALL-DOM-API 05616099
044249 THRU 6000-EXIT 05617099
044250 05617199
044251 SET ADDRESS OF SOAP-Reg-Resp TO WS-DOM-VALUE-PTR 05617200
044252 MOVE WS-DOM-VALUE-LENGTH TO CU-RESPONSE-LEN 05620099
044253 05620099
044254 CONTINUE. 10750046
044255 10760046
044256 1000-Exit. 10770046
044257 EXIT. 10780046
044258 10790046
04442 9% —————m e * 18720099
044430 6000-Call-Dom-Api. 18730099
044440% —— === * 18740099
044500 18750099
044600 MOVE +0 TO WS-TAG-FOUND-SW 18770099
044700 18800099
044800 CALL WS-DOM-API USING WS-Dom-Rc 18810099
044900 , WS-Dom-Msg 18820099
045000 , WS-DOM-HANDLE 18830099
045100 , WS-Dom-Function 18840099
045200 , WS-Dom-Parent 18850099
045300 , WS-DOM-TAG-NAME 18860099
045400 , WS-DOM-VALUE 18870099
045500 , WS-Dom-VALUE-LenGTH 18880099
045600 18940099
045700 EVALUATE WS-DOM-RC 18950099
045800 WHEN +0 18960099
045900 IF WS-Dom-VALUE-LenGTH > +0 18970099
046000 SET Tag-Data-Found TO TRUE 18980099
046100 ELSE 18990099
046200 SET NO-TAG-DATA TO TRUE 19000099
046300 END-IF 19020099
046400 19030099
046500 WHEN +4 19040099
046600 SET Tag-Not-Found TO TRUE 19050099
046700 19060099
046800 WHEN OTHER 19070099
046900 GO TO 9000-X-PROG-WITH-DOM-ERROR

047000 19060099
047100 END-EVALUATE 19270099
047200 19280099
047300 CONTINUE. 19290099
047400 19300099
047500 6000-EXIT. 19310099
047600 EXIT. 19390099
047700 19400099
055800*——=———————— - * 14713189
055900 9000-X-PROG-WITH-DOM-ERROR.

056000*-—=——————————— - * 14713189
056100

056200 SET CU-Throw-Fault TO TRUE

056300 MOVE WS-DOM-RC TO WS-DOM-RC-EDIT 19110099
056400

056500 PERFORM VARYING WS-SUB FROM LENGTH OF WS-DOM-MSG BY -1

056600 UNTIL WS-SUB = +1

282

SOLA Developer User’s Guide

7

056700 OR WS-DOM-MSG (WS-SUB:1) > SPACES

056800 CONTINUE

056900 END-PERFORM

057000

057100 STRING 'Error in DOM API, RC = ' 19160099
057200 WS-DOM-RC-EDIT 19170099
057300 ', DOM MSG = ' 19190099
057400 WS-DOM-MSG (1 :WS-SUB) 19190099
057500 DELIMITED BY SIZE 19200099
057600 INTO CU-RETURN-MSG

057700 END-STRING 19240099
057800 20679999
057900 PERFORM 0300-PUT-SOLA-STATUS-AREA

058000 THRU 0300-EXIT

058100 20679999
058200 GO TO 9999-RETURN 02530003
058300 20679999
058400 CONTINUE. 20680099
058500 20680199
058600 9000-Exit. 20680299
058700 EXIT. 20681099
058800 20681199
0588l0*%———————————— * 18720099
058820 9100-THROW-HELLO-WORLD-FAULT.

058830*%————=—————————— * 18720099
058831 20681199
058832%* Following is an example of how you could use the SOLA DOM * 14978300
058833* API to build a complete SOAP Fault to be deliverd back to * 14978300
058834~ the requestor. Note that in order to instruct SOLA to send * 14978300
058835* this fault document back to the request you will need to * 14978300
058836* set the CU-Return-Cd to -2 in the SOLA Status area. * 14978300
058837

058854 SET WS-DOM-CREATE-DOC TO TRUE 18280099
058855 MOVE SPACES TO WS-DOM-PARENT 18300099
058860 MOVE +0 TO WS-Dom-Rc 18310099
058870 , WS-Dom-Control 18320099
058880 , WS-DOM-VALUE-LENGTH 18330099
058890 , WS-DOM-PLACE-HOLDER

058891 MOVE 'soap:Envelope' TO WS-DOM-TAG-NAME 18392099
058892 SET WS-Dom-Handle TO NULL 18340099
058893 18350099
058894 PERFORM 6000-Call-Dom-Api 18730099
058895 THRU 6000-EXIT 18730099
058896 18350099
058897 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
058898 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
058899 MOVE 'xmlns:soap' TO WS-DOM-TAG-NAME 18860099
058900 MOVE WS-SOAP-NS TO WS-DOM-VALUE 18870099
058901 MOVE LENGTH OF WS-SOAP-NS TO WS-DOM-VALUE-LENGTH 18330099
058902 18350099
058903 PERFORM 6000-Call-Dom-Api 18730099
058904 THRU 6000-EXIT 18730099
058905 18350099
058906 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058907 MOVE 'soap:Envelope' TO WS-Dom-Parent 18350099
058908 MOVE 'soap:Body' TO WS-DOM-TAG-NAME 18860099
058909 MOVE SPACES TO WS-DOM-VALUE 18870099
058910 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
058911 18350099
058912 PERFORM 6000-Call-Dom-Api 18730099
058913 THRU 6000-EXIT 18730099
058914 18350099
058915 SET WS-DOM-APPEND-CHILD TO TRUE 06937099

283

SOLA Developer User’s Guide

7

058916 MOVE 'soap:Body' TO WS-Dom-Parent 18350099
058917 MOVE 'soap:Fault' TO WS-DOM-TAG-NAME 18860099
058918 MOVE SPACES TO WS-DOM-VALUE 18870099
058919 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
058920 18350099
058921 PERFORM 6000-Call-Dom-Api 18730099
058922 THRU 6000-EXIT 18730099
058923 18350099
058924 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058925 MOVE 'soap:Fault' TO WS-Dom-Parent 18350099
058926 MOVE 'faultcode' TO WS-DOM-TAG-NAME 18860099
058927 MOVE 'soap:Client' TO WS-DOM-VALUE 03728701
058928 MOVE +11 TO WS-DOM-VALUE-LENGTH 18330099
058929 18350099
058930 PERFORM 6000-Call-Dom-Api 18730099
058931 THRU 6000-EXIT 18730099
058932 18350099
058933 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058934 MOVE 'soap:Fault' TO WS-Dom-Parent 18350099
058935 MOVE 'faultstring' TO WS-DOM-TAG-NAME 18860099
058936 MOVE 'ERROR101-World Problem' TO WS-DOM-VALUE 03728701
058937 MOVE +24 TO WS-DOM-VALUE-LENGTH 18330099
058938 18350099
058939 PERFORM 6000-Call-Dom-Api 18730099
058940 THRU 6000-EXIT 18730099
058941 18350099
058942 05620099
058943 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058944 MOVE 'soap:Fault' TO WS-Dom-Parent 18350099
058945 MOVE 'detail' TO WS-DOM-TAG-NAME 18860099
058946 MOVE SPACES TO WS-DOM-VALUE 03728701
058947 MOVE +0 TO WS-DOM-VALUE-LENGTH 18330099
058948 18350099
058949 PERFORM 6000-Call-Dom-Api 18730099
058950 THRU 6000-EXIT 18730099
058951 18350099
058952 18350099
058953 SET WS-DOM-APPEND-CHILD TO TRUE 06937099
058954 MOVE 'detail' TO WS-Dom-Parent 18350099
058955 MOVE 'e:message' TO WS-DOM-TAG-NAME 18860099
058956 MOVE 'Sorry, World is offline (My Fault)' TO WS-DOM-VALUE 03728701
058958 MOVE +34 TO WS-DOM-VALUE-LENGTH 18330099
058959 18350099
058960 PERFORM 6000-Call-Dom-Api 18730099
058961 THRU 6000-EXIT 18730099
058962 18350099
058963 SET WS-DOM-SET-ATTRIBUTE TO TRUE 06939099
058964 MOVE 'e:message' TO WS-Dom-Parent 18350099
058965 MOVE 'xmlns:e' TO WS-DOM-TAG-NAME 18860099
058966 MOVE 'http://www.dsd.ml.com/x4ml/fault' TO WS-DOM-VALUE 18870099
058967 MOVE +33 TO WS-DOM-VALUE-LENGTH 18330099
058968 18350099
058969 PERFORM 6000-Call-Dom-Api 18730099
058970 THRU 6000-EXIT 18730099
058971 18350099
058972* Finalize will retrieve a copy of the completed SOAP Fault.

058973 18350099
058974 SET WS-DOM-FINALIZE TO TRUE 05614899
058975 MOVE +0 TO WS-DOM-VALUE-LENGTH 05614999
058976 05615099
058977 PERFORM 6000-CALL-DOM-API 05616099
058978 THRU 6000-EXIT 05617099
058979 05617199

284

7

SOLA Developer User’s Guide

058980 SET ADDRESS OF SOAP-Reg-Resp TO WS-DOM-VALUE-PTR 05617200
058982 SET CU-CUSTOM-FAULT TO TRUE

058983 MOVE 'SOAP-FAULT' TO CU-FAULT-CONTAINER 03
058984 MOVE WS-DOM-VALUE-LENGTH TO CU-FAULT-LEN 05620099
058985 20681199
058986* Place the completed fault into the CU-FAULT-CONTAINER.

058987 20681199
059006 EXEC CICS PUT

059007 CONTAINER (CU-FAULT-CONTAINER) 03
059011 From (SOAP-Reg-Resp) 05617200
059013 FLENGTH (CU-FAULT-LEN) 05620099
059014 RESP (WS-RESP)

059015 RESP2 (WS-RESP2)

059016 END-EXEC

059017

059018 IF WS-RESP NOT = DFHRESP (NORMAL)

059019 SET CU-Throw-Fault TO TRUE

059020 MOVE WS-RESP TO WS-RESP-EDIT

059021 MOVE WS-RESP2 TO WS-RESP2-EDIT

059022 STRING 'Error putting SOAP Fault container, RESP = '

059023 WS-RESP-EDIT

059024 ', RESP2 ="'

059025 WS-RESP-EDIT

059026 DELIMITED BY SIZE

059027 INTO CU-RETURN-MSG

059028 END-STRING

059032 END-IF

059033

059034~ Now place the proper status into the CU-STATUS-CONTAINER

059035

059036 PERFORM 0300-PUT-SOLA-STATUS-AREA

059037 THRU 0300-EXIT

059038 20679999
059039 GO TO 9999-RETURN 02530003
059040 20679999
059041 CONTINUE. 10750046
059042 10760046
059046 9100-Exit. 10770046
059047 EXIT. 10780046
059048 10790046
059182 ————mm * 14713189
059183 9999-HANDLE-ABEND. 14720003
0591 90* —— === * 14730003
059200 14740003
059300 EXEC CICS HANDLE ABEND 14750003
059400 CANCEL 14760003
059500 END-EXEC. 14770003
059600 14780003
059700 EXEC CICS ASSIGN 14790003
059800 ABCODE (WS-ABCODE) 14800003
059900 END-EXEC 14810003
060000 14820003
060100 SET CU-Throw-Fault TO TRUE

060200 MOVE WS-RESP TO WS-RESP-EDIT

060300 MOVE WS-RESP2 TO WS-RESP2-EDIT

060400 STRING 'Abend in program SOLACU24, Code = '

060500 WS-ABCODE 14800003
060600 DELIMITED BY SIZE

060700 INTO CU-RETURN-MSG

060800 END-STRING

060900 02750003
061000 PERFORM 0300-PUT-SOLA-STATUS-AREA

061100 THRU 0300-EXIT

285

e

SOLA Developer User’s Guide

061200

061300 GO TO 9999-RETURN

061400

061500 CONTINUE.

061600

061700 9999-HANDLE-ABEND-X.

061800 EXIT.

061900

062000*——==———————————
062100 9999-RETURN.

062200*——————————————
062300

062400 EXEC CICS

062500 RETURN

062600 END-EXEC.

02750003
02530003
14880003
14890003
14900003
14920003
14930003
14940003
14950003
14960003
14970003
14980003
14990003
15000003
15010003

286

