akana

by Perforce

SOLA DOM API Parser

Reference

Support for
architectural

standards

Global dictionary,
WSDL first

WS-Security

Standards-based
security
enforcement &
management

High
performance
WS-Policy SOAP and
Standards-based REST

i/ APl engine

enforcement &
management

Change
& release
management

Orchestration
& microflows

Version control,
backups & migration

Revision: August 2017

Copyright © 2020 by Perforce, Inc.

Management
console &
dashboard

SLA, monitoring,
logging & audit controls

Web 2.0
development
environment

Registry

UDDI, WSRR

‘r' SOLA DOM APT Parser Reference

Table of Contents

Table Of CONEENES. .o i e e i
The SOLA DOM AP ..ttt e s a s s e e e aa e s n e aeaaneans 1
Definition Of tEIMS .t e ea 3
SOLA DOM API FUNCLIONS 1.ttt ss s s sisessnnsssnnnssnnnssnnassnnnes 5
COBOL COPYDOOKS ...ttt e e 13
S A8 [T O Yo PP 15
SOLA DOM API REfEIENCE 1.viitiiriieiiiteieeeiseaesneaneseareaneaneaneaneaneaneanees 17
INVOCAtioN Of SEIVICES...iiiiii i i 17
VariAbIES v s 17
Variable Definitionscuviiiii i 19
API Descriptions — XML Inquiry FUNCLIONScccvvviiiiiiiinine e 23
GEtALEIDULE . e 23
GetAttribULEAdArESS v 28
getAttributeAddressById......cviriieii i 32
GetAF I DULEAITAY e e 34
getAttributeById 37
getElementAddressS ..o 40
getElementAddressById.oovveiiiii e 44
getElementByld.....oooiiiiii i 47
getElementByTagName ..o e 51
getElementByXPath ... 56
GEENAMESPACE ..ttt 61

1 1 1= 63
resetSelectAttrNOdES. ... 65
resetSelectNOAESvii i 67
SElECtALEINOAES .. it 69
SeleCtAttrNOdESAdAIrESS . vt e 76
SEIECENOAES . .uviiiii i e 83
SeleCtNOAESAAAIESS ..ot 91
API Descriptions — XML Creation and Modification Functions 97
APPENACRIIA ... 97
appPeNdChildBefore. ... 101

F=]0] 01=T Lo (@1 71 Lo | 1 PP 104
ApPPENATEXENOAE ..o e e s 108

(o =TT =1 o Yol U] o o 1= | G 112
fINAlIZE Lo e 116
getXMLLENGth .o 118

SOLA DOM API Parser Reference

(=] 0 0101V 7=\ Lo T 1= 120
L] 0 =7 PP 122
SEEALEFIDULE. . e 126
S\ = g g T=E] o= Lol P 130
UpdateALtribULe ..o 134
UpdateTeXtNOAE ..o 138
API Descriptions — Miscellaneous FUNCtions.........cccviiviiiiiiiciiineennns 141
LTSI e =T 1= 141
Data Conversion Utility XMLPCL107viiiiiiiiiiiiii i i siaennnenneaas 143
INErOdUCEION v 143
USING XMLPCL07 ettt ettt e e s n e e e aneaaneas 143

r' SOLA DOM API Parser Reference

The SOLA DOM API

The Document Object Model (DOM) is a specification designed by the World-
Wide-Web Consortium (W3C) to provide an object oriented and vendor
independent way to inquire on and modify XML documents. DOM works by
loading the entire XML document into memory and then converting the
document into a tree structure. Inquiring on, modifying and creating a new
XML document is done using methods provided by the DOM specification.

SOLA provides the SOLA DOM API to inquire on, modify and create XML
documents. The SOLA DOM API is a "DOM like” API that implements the
functionality of DOM in a format that is easily used by procedural languages
like COBOL. The SOLA DOM API can be used by CICS transactions and batch
jobs. It provides functions to inquire on an XML document repeatedly in any
direction and modify an existing document. The API also provides methods to
create new XML documents. This document lists all the features of the SOLA
DOM API and provides many samples for use in mainframe programs running
in CICS and batch.

In most cases, the SOLA DOM API is identical for CICS and batch programs.
In those instances where the APIs differ, the differences will be noted in the
text.

Advantages

The SOLA DOM API provides an easy and efficient way for any mainframe
program to process XML documents. Performance (CPU utilization and
memory consumption) was a major focus in the design and development of
the SOLA DOM API. To keep CPU consumption to a minimum, the SOLA DOM
API is highly optimized and is written entirely in Assembler for z/OS. The
SOLA DOM API has a relatively small memory footprint for the DOM tree due
to the fact that it parses the XML document and normalizes it in place without
requiring any additional memory to hold the node values. The DOM tree
contains pointers to the parsed and normalized document, thereby holding the
memory footprint to a minimum.

The SOLA DOM API makes it easy for the mainframe programmer to produce
well-formed XML without the need to perform complex string manipulations.
Without the SOLA DOM API, the programmer would have to follow the XML

‘r’ SOLA DOM API Parser Reference

specifications provided by the W3C which can be a time consuming and
daunting task.

For example, the following table shows incorrect XML formations that will be
rejected by an XML parser:

<SSN#>212-99-9654</SSN#> The element name can’t contain
“#” Character in XML version 1.0

<SecurityName>AT&T The special entity “&” should be

</SecurityName> represented as &

Because the SOLA DOM API conforms to the W3C specifications, XML
documents created using the SOLA DOM API will always be valid and well
formed.

‘r' SOLA DOM API Parser Reference

DEFINITION OF TERMS

Each node in the DOM tree is associated with and
can be referenced by a unique identifier (the node
identifier) for that node. The identifier (a binary
fullword) is a unique, non changing value that can
be used to uniquely identify each node within an
XML document.

Please be aware that the identifier is only unique
within a given XML document; there is no
guarantee that an identifier is unique across
Node Identifier documents. Also, the identifier is only
maintained, and is only guaranteed not to change,
during the time that a node exists in the DOM
tree. Should you externalize an XML document
and then subsequently parse it again, there is no
assurance that a node’s id will be preserved, nor
should there be any expectation that it will be
unique across other XML documents.

Throughout this document, the node identifier is
referred to as WS-DOM-NODE-ID.

A document contains at least one element.
Elements are delimited by start-tags and end-
tags, or, for empty elements by an empty-
Element Node element tag. Each element has a name and may
have a set of attributes and a text node. An
element that contains other elements and/or
attributes is called a complexType element.

An element node that has children. The children
complexType Element can be elements or attributes. An element node
containing only text (and no other child) is not a
complexType element.

An attribute node is a child of an element node.

Attribute Node Each attribute has a name and a value.

l SOLA DOM API Parser Reference

The text value of an element is known as a text
node. The SOLA DOM API doesn't independently
Text Node maintain text nodes within the DOM tree.

Instead, a text node is managed using an element
node.

Namespace nodes are managed independently by
Namespace Node the SOLA DOM API. A namespace node has a
namespace alias and a namespace value.

XPath uses path expressions to select a node in
an XML document. The node is selected by
following a path or steps. The XPath expression
follows a simple grammar that describes a node to
be searched for by means of its place within the
logical structure of the XML document.

XPath Expression

Namespace nodes are managed independently by
the SOLA DOM API. A namespace can be
obtained by using the getNamespace function.
Additionally, the SOLA DOM API also includes
functions to set a namespace. An update
namespace function is not available in the current
release. Currenly,the only way to update a
namespace is to remove it using the removeNode
function and set it again using the set function.
Further capabilities to manage namespaces are
scheduled for future releases of the SOLA DOM
API.

Namespace

Throughout this document the term first is used
to describe which node will be retrieved whenever
more than one node satisfies a set of search
criteria. In this context, first refers to the first
First (logically) node in the XML document that meets
the search criteria. If a node satisfying the same
search criteria is inserted before another node
that also satisfies the criteria, the newly inserted
node would then be considered to be first.

SOLA DOM API Parser Reference

The term “Null” is used throughout this document
to refer to a value that causes a variable to be
Null ignored. The SOLA DOM API considers a variable
to be null if the first four bytes of the variable are
set to binary zeros.

A sequence number is the relative position of a
node in the tree and can change when nodes are
inserted or deleted before it. This differs from the
unique node identifier which is a non-changing
identifier that can be used to uniquely identify a
node.

Sequence Number

SOLA DOM API FUNCTIONS

.‘r Ml The SOLA DOM API distinguishes between element, attribute and
=

‘ S} namespace node identifier. These three node identifiers are

SOLA™ maintained separately. Text node identifier is not maintained

separately.

The SOLA DOM API is an assembler program callable from any mainframe
program. The API supports inquiry and modification of XML documents as well
as the creation of new XML documents.

The API is case sensitive, so when using the API the case of the function
names must be maintained. For this reason we recommend using the
XMLDOMWS copybook 88 levels to set the WS-DOM-FUNCTION value.

XML Inquiry Functions

This function retrieves the value for a given
getAttribute attribute name in a name/value pair.

This function can be used in CICS and batch.

l SOLA DOM API Parser Reference

This function is identical to getAttribute, except
that the attribute address is returned in place of
getAttributeAddress the attribute value.

This function can be used in CICS and batch.

The getAttributeAddressById function is identical
) to getAttributeByld, except that the attribute
getAttributeAddressById value address is returned in place of the attribute
value.

This function can be used in CICS and batch.

This function retrieves an array containing all the

getAttributeArray attributes for a given element node.

This function can be used in CICS and batch.

This function retrieves an attribute and its value

getAttributeById using a given node Id.

This function can be used in CICS and batch.

This function is identical to

getElementByTagName, except that the element
value address is returned in place of the element
getElementAddress value.

This function can be used in CICS and batch.

The getElementAddressByld function is identical
to getElementBylId, except that the element value
getElementAddressBylId address is returned in place of the element value.

This function can be used in CICS and batch.

This function retrieves an element and its child

getElementById text node using a given node Id.

This function can be used in CICS and batch.

l SOLA DOM API Parser Reference

The getElementByTagName retrieves an element

getElementByTagName node by its tag name.

This function can be used in CICS and batch.

This function retrieves an element and its child

getElementByXPath text node for a given XPath expression.

This function can be used in CICS and batch.

This function retrieves the value of a namespace
associated with a namespace unique node
getNamespace identifier.

This function can be used in CICS and batch.

This function parses, normalizes and creates the

Parse tree structure for a given input XML document.

This function can be used in CICS and batch.

This function is used to reset the internal counters
used by the selectAttrNodes function. The
function should only be used in conjunction with
resetSelectAttrNodes the selectAttrNodes function when it is operating
in an iterative mode.

This function can be used in CICS and batch.

This function is used to reset the internal counters
used by the selectNodes function. The function
should only be used in conjunction with the
resetSelectNodes selectNodes function when it is operating in an
iterative mode.

This function can be used in CICS and batch.

This function is used to inquire on either the total

number of attribute nodes in an XML document, to
get a particular attribute in the sequence or

selectAttrNodes retrieve attributes iteratively.

This function can be used in CICS and batch.

N

r’ SOLA DOM API Parser Reference

This function is identical to selectAttrNodes,
except that the address of the attribute value is
selectAttrNodesAddress returned instead of the value of the attribute.

This function can be used in CICS and batch.

This function is used to inquire on either the total

number of element nodes in an XML document, to
get a particular element in the sequence or

selectNodes retrieve elements iteratively.

This function can be used in CICS and batch.

This function is identical to selectNodes, except
that the address of the element is returned
selectNodesAddress instead of the value of the element.

This function can be used in CICS and batch.

.’I’i The SOLA DOM API creates XML in codepage 37 (EBCDIC).
z

‘r’ SOLA DOM API Parser Reference

XML CREATION AND MODIFICATION FUNCTIONS

This function appends a new child element to a
specified parent element. Optionally, a text node
appendChild value can be attached to the element.

This function can be used in CICS and batch.

This function is used to add an element before a
particular element. The element node to be

. added will share the same parent as the element
appendChildBefore that it is to be appended before.

This function can be used in CICS and batch.

This function is identical to appendChild, except
that it will also insert a newline character into the
appendChildNL gggiment before appending the child element

This is a batch only function.

This function is used to add a child text node to
an element node.

appendTextNode
This function can be used in CICS and batch.
This function creates the root element of an XML
createDocument document.

This function can be used in CICS and batch.

SOLA DOM API Parser Reference

The finalize function is used to finalize and
optionally retrieve a newly created XML document.
Finalize will convert the DOM tree into an XML
stream, as it does so all open tags will be closed
and the document will be made ready to be
externalized. The finalize function returns a
finalize pointer to the XML document.

Once finalized, the document can be accessed
with the address pointer. Alternatively, the
document can be accessed using the retrieve
function.

This function can be used in CICS and batch.

This function retrieves the length of the completed

getXMLLength XML document.

This is a batch only function.

This function removes any type of node (element,
attribute or namespace node) from an XML

document. To remove text nodes, use the
removeNode updateTextNode function.

This function can be used in CICS and batch.

This function finalizes the document and then gets
the complete (if appendChildNL was not used)
document and copies it to a data area that you
provide. The SOLA DOM API will then release any
storage space used by the DOM tree and internal
retrieve control block.

If appendChildNL was used then the retrieve
function will fetch the document in pieces, each
piece ending in a newline.

This function can be used in CICS and batch.

This function is used to add and attach attributes
setAttribute (name/value pairs) to an element.

This function can be used in CICS and batch.

10

N

r’ SOLA DOM API Parser Reference

This function is used to add and attach a

namespace to an element.
setNamespace

This function can be used in CICS and batch.

This function is used to update the text of an

existing attribute. Changing the attribute name is
. not allowed (to change the name of an attribute

updateAttribute you must first remove and then set the attribute).

This function can be used in CICS and batch.

This function is used to change the value of or to
remove an existing text Node under an element
updateTextNode node.

This function can be used in CICS and batch.

1"

‘r' SOLA DOM API Parser Reference

Miscellaneous Functions

This function frees any storage that has been
acquired by the DOM parser and SOLA DOM
freeStorage API.

This function can be used in CICS and batch.

12

‘r’ SOLA DOM API Parser Reference

COBOL COPYBOOKS

Copybook Name: XMLDOMWS

Programs that use the SOLA DOM API need to copy the copybook
XMLDOMWS which is shipped with the product and can be found in the
SAMPLIB directory. The following are the contents of this copy member:

01 WS-DOM-API-WORK-FIELDS.

05 WS-DOM-API PIC X(08) VALUE 'XMLPC1l12'.
05 WS-DOM-RC PIC S9(04) BINARY.
05 WS-DOM-MSG PIC X (80).
05 WS-DOM-HANDLE USAGE IS POINTER.
05 WS-DOM-HANDLE-NUM REDEFINES
WS-DOM-HANDLE PIC S9(8) COMP VALUE O.
05 WS-DOM-FUNCTION PIC S9(4) COMP-4.
* Create Functions.

88 WS-DOM-CREATE-DOC VALUE +1.

88 WS-DOM-APPEND-CHILD VALUE +2.

88 WS-DOM-APPEND-CHILD-BEFORE

VALUE +3.

88 WS-DOM-APPEND-CHILDNL VALUE +4.
88 WS-DOM-APPEND-TEXT-NODE VALUE +5.
88 WS-DOM-SET-ATTRIBUTE VALUE +6.
88 WS-DOM-SET-NAMESPACE VALUE +7.
88 WS-DOM-UPDATE-ATTRIBUTE VALUE +8.
88 WS-DOM-UPDATE-TEXT-NODE VALUE +9.

88 WS-DOM-REMOVE-NODE VALUE +10.
* Value 11 and 12 are reserved for future use.
88 WS-DOM-FINALIZE VALUE +13.
88 WS-DOM-FREE-STORAGE VALUE +14.
* Inquiry Functions.
88 WS-DOM-PARSE VALUE +15.
88 WS-DOM-SELECT-NODES VALUE +16.
88 WS-DOM-GET-ATTRIBUTE VALUE +17.

88 WS-DOM-SEL-ATTR-NODES VALUE +18.
88 WS-DOM-GET-ATTRIBUTE-ID VALUE +19.
88 WS-DOM-GET-ATTRIBUTE-ARRAY

VALUE +20.
88 WS-DOM-SEL-ATTR-NODES-ADR

VALUE +21.
88 WS-DOM-GET-ATTRIBUTE-ADR-ID

VALUE +22.
88 WS-DOM-GET-ATTRIBUTE-ADR

VALUE +23.
88 WS-DOM-RESET-SELECT-NODES

VALUE +24.
88 WS-DOM-RESET-SELECT-ATTR-NODES

VALUE +25.
88 WS-DOM-GET-NAMESPACE VALUE +26.
88 WS-DOM-GET-ELEMENT-BYTAG

VALUE +27.

13

SOLA DOM API Parser Reference

88 WS-DOM-GET-ELEMENT-XPATH

VALUE +28.
88 WS-DOM-GET-ELEMENT-ID VALUE +29.
88 WS-DOM-GET-ELEMENT-ADR VALUE +30.
88 WS-DOM-GET-ELEMENT-ADR-ID
VALUE +31.
88 WS-DOM-SEL-NODE-ADR VALUE +32.
88 WS-DOM-RETRIEVE VALUE +33.
88 WS-DOM-GET-XML-LEN VALUE +34.
05 WS-DOM-PARENT PIC X(256).

05 WS-DOM-SEQUENCE REDEFINES WS-DOM-PARENT.

10 WS-DOM-SEQ PIC S9(04) BINARY.
10 WS-DOM-CONTROL REDEFINES WS-DOM-SEQ
PIC S9(04) BINARY.
10 FILLER PIC X (254).
05 WS-DOM-TAG-NAME PIC X (256).

05 WS-DOM-NMS-ALIAS REDEFINES WS-DOM-TAG-NAME PIC X (256) .
05 WS-DOM-VALUE-LEN-X.
10 WS-DOM-VALUE-LENGTH PIC S9(08) BINARY.
05 WS-DOM-VALUE PIC X (256).
05 WS-DOM-VALUE-PTR REDEFINES WS-DOM-VALUE.
10 WS-DOM-VALUE-PTR USAGE IS POINTER.
10 WS-DOM-ADDRESS REDEFINES
WS-DOM-VALUE-PTR PIC S9(08)
10 WS-DOM-VALUE-LITERAL PIC X (252).
05 WS-DOM-NAMESPACE REDEFINES WS-DOM-VALUE PIC X (256) .
05 WS-DOM-NODE-ID PIC S9(08) BINARY.
05 WS-DOM-ELEMENT-ID REDEFINES WS-DOM-NODE-ID

BINARY.

PIC S9(8) BINARY.
05 WS-DOM-ATTRIBUTE-ID REDEFINES WS-DOM-NODE-ID
PIC S9(8) BINARY.
05 WS-DOM-XML-LENGTH REDEFINES WS-DOM-NODE-ID
PIC S9(08) BINARY.
05 WS-DOM-NMS-NODE-ID PIC S9(8) BINARY.
05 WS-DOM-CHILD-ELEM-COUNT PIC S9(08) BINARY.
05 WS-DOM-ATTR-NODE-COUNT PIC S9(08) BINARY.
05 WS-DOM-PARENT-NODE-ID PIC S9(08) BINARY.
05 WS-DOM-NODE-TYPE PIC S9(4) COMP.
88 WS-DOM-ELEMENT-NODE VALUE 1.
88 WS-DOM-ATTRIBUTE-NODE VALUE 2.
88 WS-DOM-NAMESPACE-NODE VALUE 3.
05 WS-DOM-MAX-LENGTH PIC S9(08) BINARY.
05 WS-DOM-PLACE-HOLDER PIC S9(08) BINARY VALUE 0.
05 FILLER PIC X(77).

14

‘r' SOLA DOM API Parser Reference

RETURN CODES

All function calls include the WS-DOM-RC. The following are the possible
return code values received from the API call:

RC Value Meaning

0 Successful - No messages issued.

+1 A ComplexType element has ended or a Message Set has
ended.

+2 Entire DOM Tree is traversed. SOLA DOM API will reset the
iterator.

+3 Text node already exists. No action taken.

+4 Inquiry node Not found - Messages were issued in field
WS-DOM-MSG
Returned data is bigger than allowed. Data truncated to

+5 .
the specified Length.

15

‘r’ SOLA DOM API Parser Reference

RC Value Meaning

Failed - failed message returned in WS-DOM-MSG.

The following are the possible values for WS-DOM-MSG
field:

e Attribute not found

The SOLA DOM API call doesn't conform to call

syntax

Element tag name not specified

The function specified is not supported

Input error

The namespace value is not specified

Neither parent name or parent node is specified

Node identifier doesn't exist

Node type not recognized

Not enough memory to create the tree

Parent not found

Parent node identifier does not exist

Parse failed due to XML Syntax error

Reference node identifier doesn t exist

Root element tag name not specified

Sequence value not specified

Specified Length of input xml is zero

Specified parent node doesn't exist

Specified parent node identifier doesn't exist

Specified attribute node identifier doesn't exist

Specified attribute node doesn't exist

Specified namespace node identifier doesn't exist

Seq too high (The sequence values is higher than

the total number element nodes in the document)

e XPath starts with a “/” but root element name
doesn’t match

+8

SOLA DOM API abended. Abend code - XXXX (four
character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

+12

16

‘r’ SOLA DOM API Parser Reference

SOLA DOM API Reference

This chapter contains a description of syntax conventions and return codes for
each of the SOLA DOM API calls, followed by a detailed description of each
call.

INVOCATION OF SERVICES

<, The color red depicts optional variables while the color blue,

.f’ =8 underlined, depicts required variables. For example, this variable is
. g required; wS-DOM-VALUE-LENGTH, and this variable is optional; ws-

SOLA DOM-NODE-ID.

Each API is implemented as a CALL. For illustration purposes, each CALL is
shown using COBOL syntax. The actual CALL can be implemented in any
language that follows the register 1 parmlist convention.

Included in each API description is an example of its use in COBOL.

The basic SOLA DOM API call syntax is as follows:

CALL WS-DOM-API USING

WS-DOM-RC, /* return code */

WS-DOM-MSG, /* error message */
WS-DOM-HANDLE , /* Pointer */

WS-DOM-FUNCTION, /* Function requested */
WS-DOM-SEQ/WS-DOM-PARENT, /* Sequence Number/Parent */
WS-DOM-TAG-NAME , /* XML Tag value /*
WS-DOM-VALUE, /* Data */

WS-DOM-VALUE-LENGTH, /* Data length */
WS-DOM-PARENT-NODE-ID, /* Parent node identifier */
WS-DOM-NODE-ID, /* Unique ID in the tree */
WS-DOM-NMS-NODE-ID /* Unique ID for the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Number of children */
WS-DOM-ATTR-NODE-COUNT, /* Attr node count */
WS-DOM-MAX-LENGTH /* Max length to be returned */

This basic syntax is not followed by the createDocument, parse,
getAttributeArray, and removeNode functions. Please refer to the description
of those functions for the call syntax.

Variables

17

‘r' SOLA DOM API Parser Reference

In each of the examples in this section, the API calls are shown using variables
from the copybook XMLDOMWS. Use of this copybook is optional. Because
the API is implemented as a CALL USING VAR1, VAR2 ... VARN, each
parameter in the call is position sensitive and is passed to the API as an
address reference. You can substitute your own variables for the ones
provided in XMLDOMWS. The API is sensitive to the lengths of the binary
integer variables. There is no implied length of character string variables. For
these variables the API relies on the length attribute (for data values) or space
delimited values (tag name values). Consequently there is no limit imposed
by the API for the length of a tag name or a data value.

If a variable is not used but there are variables following that variable that are
used, then this document uses the notation WS-DOM-PLACE-HOLDER in place
of the unused variables. You can substitute any value you wish for WS-DOM-
PLACE-HOLDER, but the position of the variables within the positional variable
list must be maintained.

If an optional variable is not used as input to the function, and is required to
serve as a place holder for a subsequent optional variable, it must have a
value of Null. A non-Null value could imply that the variable is populated with
a significant value. In the examples in this document we use the variable WS-
DOM-PLACE-HOLDER as a place holder for unused variables. This variable is
pre-set to binary zero in the XMLDOMWS copybook (binary zero, or low-
values, is considered to be a null value).

SOLA DOM API calls that don’t conform to the call syntax for the function

being called will result in a return code +8 being returned by the SOLA DOM
API. WS-DOM-MSG will contain a description of the error being returned.

18

‘r' SOLA DOM API Parser Reference

Variable Definitions

Each of the variables used in the CALL format are described below. The
descriptions use the variables from the copybook XMLDOMWS. Throughout
this document, the XMLDOMWS variables are used in each function call
description. You are free to substitute your own variables in place of
XMLDOMWS variables.

A halfword binary variable. Return codes are
WS-DOM-RC described in the Return Codes section on page
15.

A Char(80) variable. When WS-DOM-RC is non-
WS-DOM-MSG zero, this variable will contain the error
message issued by the SOLA DOM API.

A pointer variable. This pointer is used by the
SOLA DOM API to keep track of the DOM tree
and associated control blocks. Before the first
call to the SOLA DOM API to create or parse an
XML document, the DOM Handle should be set
to null. It is possible to manipulate multiple
XML documents simultaneously by managing
multiple DOM handles.

WS-DOM-HANDLE

An S9(4) COMP-4 variable. This variable must
be set to the relevant function call. XMLDOMWS
WS-DOM-FUNCTION Copybook contains a list of functions as 88
levels. We recommend that you set this
variable by using the COBOL SET statement.

This is a space delimited variable. The name of
WS-DOM-PARENT the parent node for a node being added or
updated.

The sequence number to retrieve a node. Can
have multiple uses, as described in each
WS-DOM-SEQ function call. WS-DOM-SEQ redefines WS-DOM-
PARENT in the copybook because they are
mutually exclusive fields.

19

SOLA DOM API Parser Reference

This is a space delimited variable. When using
the append functions, this variable contains the
name of the tag to be added to the XML
document. When using the get by name
functions, this variable contains the name of the
tag to be retrieved from the XML document.
WS-DOM-TAG-NAME When using the get by XPath function, this
variable contains the XPath expression used to
locate the node in the XML document. The
variable WS-DOM-NMS-ALIAS, which is used for
getting and setting a namespace, redefines WS-
DOM-TAG-NAME in the XMLDOMWS copybook.
It is the same field as WS-DOM-TAG-NAME but
is renamed for clarity.

For append and update functions, this variable
contains the data string to be added to or
modified in the XML document. For get
functions this variable is used to receive the
data string to be retrieved from the XML
document. The variable WS-DOM-NAMESPACE,
which is used for getting and setting a
namespace, redefines WS-DOM-VALUE in the
XMLDOMWS copybook. It is the same field as
WS-DOM-VALUE but is renamed for clarity.
WS-DOM-PTR also redefines WS-DOM-VALUE
and is used during *Address functions.

WS-DOM-VALUE

A binary fullword variable. For append and
update functions this variable contains the
WS-DOM-VALUE- length of the data string to be added to or
LENGTH modified in the XML document. For get
functions this variable receives the length of the
data string retrieved from the XML document.

_ _ _ The unique identifier for the parent node. When
‘I:lngI;?Inlg PARENT used, overrides WS-DOM-PARENT. Can have
multiple uses, as described in each function call.

This is the unique ID of a node. It can be used
to retrieve a node with the getElementById and

_ _ _ getAttributeById functions. It will be returned
WS-DOM-NODE-ID by the SOLA DOM API if the variable is present
on the getElementBy*, getAttributeBy* and
select* function calls.

20

‘r’ SOLA DOM API Parser Reference

WS-DOM-ELEMENT-ID Redefines WS-DOM-NODE-ID. The unique ID of

an element.
WS-DOM-ATTRIBUTE- Redefines WS-DOM-NODE-ID. The unique ID of
ID an attribute.

Redefines WS-DOM-TAG-NAME. This variable is
WS-DOM-NMS-ALIAS used to define the namespace alias, which can

be used in place of the namespace.
Redefines WS-DOM-VALUE. This variable is
used for getting and setting a namespace.
Redefines WS-DOM-VALUE. This variable
contains an address pointer to a value.

This represents the node type. Options are
WS-DOM-NODE-TYPE element node, attribute node or namespace
node.

WS-DOM-NAMESPACE

WS-DOM-VALUE-PTR

This is the unique ID for a namespace node. It
can be used to retrieve a specific namespace. It
WS-DOM-NMS-NODE-ID is returned, if the element node has a
namespace, by the getElement* and
selectNodes functions.

WS-DOM-CHILD-ELEM- A binary fullw_ord variable. If specified, the
number of child elements for a complexType

COUNT element will be returned in this variable.

A binary fullword variable. If specified for the
WS-DOM-ATTR-NODE- getElementBy function calls the number of
COUNT attributes for an element will be returned in this

variable.

A binary fullword variable. If specified, data in
WS-DOM-VALUE will be truncated to this length.
WS-DOM-VALUE-LENGTH will contain the actual
(un-truncated) length of the data.

WS-DOM-MAX-LENGTH

This variable controls how the XML document is
created or parsed. Please see the
CreateDocument and Parse functions for a
desctiption of how this variable is used.

WS-DOM-CONTROL

21

N

r’ SOLA DOM API Parser Reference

A structured variable. WS-DOM-ARRAY is a
variable length table of lengths and addresses.

WS-DOM-ARRAY This structure is used to receive a variable list of
pointers and lengths from the getAttributeArray
function.

A null fullword variable. Because function calls
to the SOLA DOM API use a CALL USING syntax,
the position of the variables in the (USING) list
is important. WS-DOM-PLACE-HOLDER can be
used in the call list in place of an unused
WS-DOM-PLACE- variable when a variable position in the list is
HOLDER not used but variables after that position are
used. The value of WS-DOM-PLACE-HOLDER is
set to null in the copybook although the SOLA
DOM API may not look at the value of the field
for functions where WS-DOM-PLACE-HOLDER is
used.

22

"‘r' SOLA DOM API Parser Reference

API DESCRIPTIONS — XML INQUIRY FUNCTIONS

getAttribute

[cics JIBATCH |

The getAttribute function retrieves the value for a given attribute name in a
name/value pair. The default scope of the attribute name search is the
entire XML document. If multiple instances of the attribute exist in the
XML document, the instance of the attribute corresponding to a sequence
number will be returned.

The default search scope can be overridden in two ways:

« First, by specifying a parent node identifier on input to the
request. The search will then be limited to finding an attribute
with a matching name for the given parent node identifier.

=« Second, by specifying a parent tag name instead of a sequence
number or a parent node identifier. This second search scope will
find the first instance of an attribute with a matching name and
parent tag name combination.

The precedence of search criteria is as follows: parent node identifier has
precedence over parent tag name or attribute sequence number. Parent
tag name and attribute sequence number are mutually exclusive.

After the call the WS-DOM-VALUE will contain the value of the attribute and
WS-DOM-VALUE-LENGTH will be set to the length of the attribute value.

The getAttribute function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */

WS-DOM-SEQ/WS-DOM-PARENT, /* Sequence Number/Parent */
WS-DOM-TAG-NAME, /* Name of the tag to search for */
WS-DOM-VALUE, /* The text node is returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUTE-ID, /* The node identifier will be returned
here */

WS-DOM-PLACE-HOLDER, /* placeholder */

23

SOLA DOM API Parser Reference

WS-DOM-PLACE-HOLDER, /* Placeholder */
WS-DOM-PLACE-HOLDER, /* Placeholder */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the attribute will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-GET-ATTRIBUTE.

WS-DOM-SEQ/WS-DOM-PARENT Input Mandatory
This field instructs the SOLA DOM API to retrieve a particular instance of
an attribute where WS-DOM-TAG-NAME matches a tag name in the
tree. WS-DOM-PARENT can be used instead of WS-DOM-SEQ. When
WS-DOM-PARENT is used, the DOM-API tries to retrieve an attribute for
which the parent and attribute tag name combination match. If WS-
DOM-PARENT-NODE-ID is specified as input (value other than null),
then WS-DOM-PARENT is ignored.

WS-DOM-TAG-NAME Input Mandatory
This field instructs the SOLA DOM API to search for an attribute with a
matching tag name.

WS-DOM-VALUE Output Mandatory
This field will contain the normalized text value of the attribute.

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the text value of the attribute.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. When specified in the call, the parent node
identifier limits the scope of the search (for an attribute name that
matches the WS-DOM-TAG-NAME) to a specific parent node. Please
note that parent node is always an element node. If this field is
specified on the call, then after a successful call, the SOLA DOM API will
populate this variable with the node identifier of the parent element.

WS-DOM-ATTRIBUTE-ID Output Optional

24

‘r’ SOLA DOM API Parser Reference

After a successful call, the SOLA DOM API will populate this variable
with the node identifier of the attribute. This variable is a redefinition of
WS-DOM-NODE-ID.

WS-DOM-PLACE-HOLDER Placeholder Optional
WS-DOM-PLACE-HOLDER Placeholder Optional
WS-DOM-PLACE-HOLDER Placeholder Optional
WS-DOM-MAX-LENGTH Input Optional

This optional field, when specified, tells the SOLA DOM API to truncate
the data in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds
WS-DOM-MAX-LENGTH. A return code of +5 is returned if the returned
data is truncated. In this case, WS-DOM-VALUE-LENGTH contains the
actual data length but the data in WS-DOM-VALUE is truncated to WS-
DOM-MAX-LENGTH.

The following return codes are possible:

RC Value Meaning

0 Successful - No messages issued.

+4 Attribute Not found - Messages were issued in field WS-
DOM-MSG
Returned data is bigger than allowed. Data truncated to

+5 s
the specified Length.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Seq too high (one of the sequence values is
higher than the total number element nodes in
the document)

+8 e Specified parent node identifier doesn’t exist

e Input error

Possible input errors could be:
e The function specified is not supported.
e Attribute name not specified.
e Neither parent name or parent node is specified.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

25

‘r’ SOLA DOM API Parser Reference

Example

In this example an attribute named ‘Type’ is being searched for. The scope
of the search is the entire XML document. The SOLA DOM API will search
for the first attribute that meets this search criterion.

SET WS-DOM-GET-ATTRIBUTE TO TRUE

MOVE 1 TO WS-DOM-SEQ

MOVE 'Type' TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this next example, an attribute named ‘Type’ is being searched for. We
are limiting the search scope to within the parent ‘Transaction’. If there
are multiple instances of the parent element ‘Transaction’, the first such
element is selected.

SET WS-DOM-GET-ATTRIBUTE TO TRUE
MOVE 'Type' TO WS-DOM-TAG-NAME
MOVE ‘Transaction’ TO WS-DOM-PARENT

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this next example, we are searching for an attribute named ‘Type’. We
are limiting the search scope to within the parent that has a unique node
identifier that was saved in SAVED-PARENT-ID.

SET WS-DOM-GET-ATTRIBUTE TO TRUE
MOVE ‘Type’ TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,

26

r’ SOLA DOM API Parser Reference

WS-DOM-PARENT-NODE-ID

In this next example, we are searching for an attribute named ‘Type’. We
are limiting the search scope to within the parent that has a unique node
identifier that was saved in SAVED-PARENT-ID. We are requesting that the
unique node identifier of the attribute be returned.

SET WS-DOM-GET-ATTRIBUTE TO TRUE
MOVE ‘Type’ TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID

27

‘r' SOLA DOM API Parser Reference

getAttributeAddress

| cics NBATGH |

The getAttributeAddress function is identical to getAttribute, except that
the address of attribute value is returned in place of the attribute value.
This can be useful if you don’t want to provide storage for the attribute
value, or where you want to use the XMLDOMWS copybook variables and
the attribute value is greater than 256 bytes.

The getAttributeAddress function retrieves the attribute value address for a
given attribute name in a name/value pair. The default scope of the
attribute search is the entire XML document. If multiple instances of the
attribute exist in the XML document, the instance of the attribute
corresponding to a sequence number will be returned.

The default search scope can be overridden in two ways:

= First, by specifying a parent node identifier on input to the request.
The search will then be limited to finding an attribute with a
matching name for the given parent node.

= Second, by specifying a parent tag name instead of a sequence
number or a parent node identifier. This second search scope will
find the first instance of an attribute with a matching name and
parent tag name combination.

The precedence of search criteria is as follows: parent node identifier has
precedence over parent tag name or attribute sequence number. Parent
tag name and attribute sequence number are mutually exclusive.

After the call, the WS-DOM-VALUE-PTR will contain the address of the
attribute and WS-DOM-VALUE-LENGTH will be set to the length of the
attribute value.

The getAttributeAddress function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */

WS-DOM-SEQ/WS-DOM-PARENT, /* Sequence Number/Parent */
WS-DOM-TAG-NAME, /* Name of the tag to search for */
WS-DOM-VALUE-PTR, /* The address is returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUTE-ID /* The node id will be returned here */

28

‘r' SOLA DOM API Parser Reference

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the attribute will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to Wws-DOM-GET-ATTRIBUTE-ADR.

WS-DOM-SEQ/WS-DOM-PARENT Input Mandatory
This field instructs the SOLA DOM API to retrieve the address of a
particular instance of an attribute where WS-DOM-TAG-NAME matches a
tag name in the tree. WS-DOM-PARENT can be used instead of WS-
DOM-SEQ. When WS-DOM-PARENT is used, the DOM-API tries to
retrieve the address of an attribute for which the parent and attribute
tag name combination match. If WS-DOM-PARENT-NODE-ID is specified
as input (value other than null), then WS-DOM-PARENT is ignored.

WS-DOM-TAG-NAME Input Mandatory
This field instructs the SOLA DOM API to search for an attribute with a
matching tag name.

WS-DOM-VALUE-PTR Output Mandatory
This field will contain the attribute’s address.

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the text value of the attribute.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. When specified in the call, the parent node
identifier limits the scope of the search (for an attribute name that
matches the WS-DOM-TAG-NAME) to a specific parent node. Please
note that parent node is always an element node. After a successful
call, the SOLA DOM API will populate this variable with the node
identifier of the parent element.

WS-DOM-ATTRIBUTE-ID Output Optional
After a successful call, the SOLA DOM API will populate this variable
with the node identifier of the attribute. This variable is a redefinition of
WS-DOM-NODE-ID.

The following return codes are possible:
29

l SOLA DOM API Parser Reference

RC Value Meaning

o Successful - No messages issued.

Attribute Not found - Messages were issued in field WS-
DOM-MSG

Failed.

The following are the possible values for WS-DOM-MSG
field:

+4

e Seq too high (one of the sequence values is
higher than the total number element nodes in
the document)

+8 e Specified parent node identifier doesn’t exist

e Input error

Possible input errors could be:
e The function specified is not supported.
e Attribute name not specified.
e Neither parent name or parent node is specified.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example, an attribute named ‘Type’ is being searched for. The
SOLA DOM API will search for the first attribute that meets this search
criteria.

SET WS-DOM-GET-ATTRIBUTE-ADR TO TRUE
MOVE 1 TO WS-DOM-SEQ
MOVE 'Type' TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

In this next example, an attribute named ‘Type’ is being searched for. We
are limiting the search scope to within the parent ‘Transaction’. If there
are multiple instances of the parent element ‘Transaction’, the first such
element is selected.

30

r’ SOLA DOM API Parser Reference

SET WS-DOM-GET-ATTRIBUTE-ADR TO TRUE
MOVE 'Type' TO WS-DOM-TAG-NAME
MOVE ‘Transaction’ TO WS-DOM-PARENT

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

In this next example, we are searching for an attribute named ‘Type’. We
are limiting the search scope to within the parent that has a unique node
identifier that was saved in SAVED-PARENT-ID.

SET WS-DOM-GET-ATTRIBUTE-ADR TO TRUE
MOVE ‘Type’ TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM- PARENT-NODE-ID

In this next example we are searching for an attribute named ‘Type’. We
are limiting the search scope to the parent that has a unique node identifier
that was saved in SAVED-PARENT-ID. We are requesting that the unique
node identifier of the attribute to be returned, along with the pointer to the
text value of the attribute found.

SET WS-DOM-GET-ATTRIBUTE-ADR TO TRUE
MOVE ‘Type’ TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID
CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID

3N

‘r’ SOLA DOM API Parser Reference

getAttributeAddressBylId

| cics NBATGH |

The getAttributeAddressByld function is identical to getAttributeByld, except
that the attribute value address is returned in place of the attribute value.
This can be useful if you don’t want to provide storage for the attribute
value, or where you want to use the XMLDOMWS copybook variables and the
attribute value is greater than 256 bytes.

The getAttributeAddressByld function retrieves an attribute address and its
value using a given node Id. The node identifier (shown below as WS-DOM-
NODE-ID) is the unique node identifier for the attribute node. It is used to
identify and locate the node in the tree.

The getAttributeAddressByld function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE-PTR, /* The text node is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUTE-ID /* The ID of the node to be retrieved */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the attribute will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-GET-ATTRIBUTE-ADR-ID.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-TAG-NAME Output Mandatory
The tag name of the attribute will be returned here.

WS-DOM-VALUE-PTR Output Mandatory
This field will contain the attribute’s address.

32

l SOLA DOM API Parser Reference

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the text value of the attribute.

WS-DOM-PARENT-NODE-ID Output Mandatory
After a successful call, the SOLA DOM API will populate this variable
with the parent element node identifier.

WS-DOM-ATTRIBUTE-ID Input Mandatory
This field contains the unique node identifier of an attribute. The SOLA
DOM API uses this value to retrieve the attribute details. This variable
is a redefinition of WS-DOM-NODE-ID.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:
+8 Specified attribute node identifier doesn’t exist
Input error
Possible input errors could be:
The function specified is not supported
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example, an attribute that had its unique node identifier saved in
SAVED-NODE-ID is being retrieved.

SET WS-DOM-GET-ATTRIBUTE-ADR-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-ATTRIBUTE-ID

33

‘r’ SOLA DOM API Parser Reference

getAttributeArray

| cics NBATGH |

The getAttributeArray function is used to retrieve an array containing all
the attributes for a given element node. To retrieve the value of all the
attributes for a given element node, you retrieve the array by specifying
the identifier (specified here as WS-DOM-PARENT-NODE-ID) for the parent
element node.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-PARENT-NODE-ID, /* ID of the parent element */
WS-DOM-ARRAY /* Structure to receive the results */

The SOLA DOM API expects the format of the variable WS-DOM-ARRAY to
be a variable length table of lengths and addresses. The following code
fragment defines the format of WS-DOM-ARRAY. The number of
occurrences (shown here as 100) should be set to a value that is sufficient
to contain the maximum number of attributes you expect to receive back
from the function.

01 WS-DOM-ARRAY

05 WS-MAX-COUNT-ALLOWED PIC S9(4) COMP.

05 WS-ACTUAL-NODE-COUNT PIC S9(4) COMP.

05 WS-NODE-ARRAY OCCURS 1 TO 100 TIMES
DEPENDING ON WS-MAX-COUNT-ALLOWED.
10 WS-NODE-NAME-LEN PIC S9(4) COMP.
10 WS-NODE-NAME-ADR USAGE IS POINTER.
10 WS-NODE-VALUE-LEN PIC S9(4) COMP.
10 WS-NODE-VALUE-ADR USAGE IS POINTER.

If the number of attributes exceeds the WS-MAX-COUNT-ALLOWED value,
then the number of attributes returned will be limited to WS-MAX-COUNT-
ALLOWED. WS-ACTUAL-NODE-COUNT will contain the actual count of the
attributes available to be returned. If WS-MAX-COUNT-ALLOWED is set to
a larger size than the number of occurrences of the table then corruption of
storage beyond the table may occur.

The getAttributeArray function can be used in CICS and batch.

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
34

r’ SOLA DOM API Parser Reference

When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the attribute array will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to WwS-DOM-GET-ATTRIBUTE-ARRAY.

WS-DOM-PARENT-NODE-ID Input Mandatory
The SOLA DOM API will retrieve all the attributes for given parent
element node identifier. Please note that a parent node is always an
element node.

WS-DOM-ARRAY Output Mandatory
The structure of this variable is described in the examples section.

The following return codes are possible:
RC Value Meaning

0 Successful - No messages issued.
+4 No attribute exists for the element - Messages were issued
in field WS-DOM-MSG
Failed.
The following are the possible values for WS-DOM-MSG
field:
+8 e Specified parent node identifier doesn’t exist
e Input error
Possible input errors could be:
e The function specified is not supported.
+12 SOLA DOM API abended. Abend code - XXXX (four

character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.

35

‘r’ SOLA DOM API Parser Reference

Example

In this example we are retrieving all of the attributes of an element that
had its unique node identifier saved in SAVED-PARENT-NODE-ID. We are
specifying that a maximum of 100 attributes be returned.

01 WS-DOM-ARRAY

05 WS-MAX-COUNT-ALLOWED PIC S9(4) COMP.

05 WS-ACTUAL-NODE-COUNT PIC S9(4) COMP.

05 WS-NODE-ARRAY OCCURS 1 TO 100 TIMES
DEPENDING ON WS-MAX-COUNT-ALLOWED.
10 WS-NODE-NAME-LEN PIC S9(4) COMP.
10 WS-NODE-NAME-ADR USAGE IS POINTER.
10 WS-NODE-VALUE-LEN PIC S9(4) COMP.
10 WS-NODE-VALUE-ADR USAGE IS POINTER.

SET WS-DOM-GET-ATTRIBUTE-ARRAY TO TRUE
MOVE SAVED-PARENT-NODE-ID TO WS-DOM-PARENT-NODE-ID
MOVE 100 TO WS-MAX-COUNT-ALLOWED

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ARRAY

36

‘r’ SOLA DOM API Parser Reference

getAttributeBylId

| cics NBATGH |

The getAttributeById function retrieves an attribute and its value using a
given node Id. The node identifier (shown below as WS-DOM-NODE-ID) is
the unique node identifier for the attribute node. It is used to identify and
locate the node in the tree.

The getAttributeById function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-TAG-NAME, /* The tag name is returned here */
WS-DOM-VALUE, /* The text node is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */

WS-DOM-ATTRIBUTE-ID, /* The ID of the node to be retrieved */
WS-DOM-PLACE-HOLDER, /* Placeholder */
WS-DOM-PLACE-HOLDER, /* Placeholder */
WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the attribute will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to wS-DOM-GET-ATTRIBUTE-ID.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-TAG-NAME Output Mandatory
The tag name of the attribute will be returned here.

WS-DOM-VALUE Output Mandatory
This field will contain the normalized text value of the attribute.

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the text value of the attribute.

37

r’ SOLA DOM API Parser Reference

WS-DOM-PARENT-NODE-ID Output Mandatory
After a successful call, the SOLA DOM API will populate this variable
with the parent element node identifier.

WS-DOM-ATTRIBUTE-ID Input Mandatory
This field contains the unique node identifier of an attribute. The SOLA
DOM API uses this value to retrieve the attribute details. This variable
is a redefinition of WS-DOM-NODE-ID.

WS-DOM-PLACE-HOLDER Place Holder Optional
WS-DOM-PLACE-HOLDER Place Holder Optional
WS-DOM-PLACE-HOLDER Place Holder Optional
WS-DOM-MAX-LENGTH Input Optional

This optional field, when specified, tells the SOLA DOM API to truncate
the data in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds
WS-DOM-MAX-LENGTH. A return code of +5 is returned if the returned
data is truncated. In this case, WS-DOM-VALUE-LENGTH contains the
full length, but data in WS-DOM-VALUE is truncated to WS-DOM-MAX-

LENGTH.
The following return codes are possible:
RC Value Meaning
0 Successful - No messages issued.
Returned data is bigger than allowed. Data truncated to
+5 e
the specified Length.
Failed.
The following are the possible values for WS-DOM-MSG
field:
+8 e Specified attribute node identifier doesn’t exist
e Input error
Possible input errors could be:
e The function specified is not supported
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example, an attribute that had its unique node identifier saved in
SAVED-NODE-ID is being retrieved.

38

‘r’ SOLA DOM API Parser Reference

SET WS-DOM-GET-ATTRIBUTE-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID

In this next example, an attribute that had its unique node identifier saved
in SAVED-NODE-ID is being retrieved. We are also telling the SOLA DOM
API to truncate the attribute’s text node value should the length of the
value exceed 255 bytes.

SET WS-DOM-GET-ATTRIBUTE-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID
MOVE +255 TO WS-DOM-MAX-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-NODE-ID,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-MAX-LENGTH

39

‘r' SOLA DOM API Parser Reference

getElementAddress

| cics NBATGH |

The getElementAddress function is identical to getElementByTagName,
except that the element value’s address is returned in place of the element
value. This can be useful if you don’t want to provide storage for the
element value, or where you want to use the XMLDOMWS copybook
variables and the element value is greater than 256 bytes.

The getElementAddress function retrieves the address of an element node
by its tag name. If multiple instances of the element exist in the XML
document, the instance of the element corresponding to a sequence
number will be returned.

The default scope of the element tag name search is the entire XML
document. This default search scope can be overridden in two ways:

= First, by specifying a parent node identifier on input to the request.
The search will then be limited to finding a child element with a
matching tag name for the uniquely specified parent node.

= Second, by specifying a parent tag name instead of a sequence
number or a parent node identifier. This second search scope will
find the first instance of an element node with a matching tag name
and parent tag name combination.

The precedence of search criteria is as follows: parent node identifier has
precedence over parent tag name. The parent tag name and element
sequence number are mutually exclusive.

The getElementAddress function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-SEQ/WS-DOM-PARENT, /* Sequence Number/Parent */
WS-DOM-TAG-NAME, /* Name of the tag to search for */
WS-DOM-VALUE-PTR, /* The address will be returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ELEMENT-ID,/* The ID of the node will be returned here */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT /* Num of attributes returned here */

40

7

SOLA DOM API Parser Reference

Variables:

WS-DOM-RC Output Mandatory

Returns status.

WS-DOM-MSG Output Mandatory

When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory

For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the element will be retrieved.

WS-DOM-FUNCTION Input Mandatory

Must be set to ws-DOM-GET-ELEMENT-ADR.

WS-DOM-SEQ/WS-DOM-PARENT Input Mandatory

This field can contain either a tag name or a sequence number. WS-
DOM-SEQ or WS-DOM-PARENT can be used. When it contains a
sequence number it instructs the SOLA DOM API to retrieve the address
of a particular instance of an element where WS-DOM-TAG-NAME
matches a tag name in the tree. When it contains a tag name the DOM-
API tries to retrieve the address of an element for which the parent
name and tag names match.

WS-DOM-TAG-NAME Input Mandatory

This field instructs the SOLA DOM API to search for an element with a
matching tag name.

WS-DOM-VALUE-PTR Output Mandatory

The address of the text value for the element will be returned here.

WS-DOM-VALUE-LENGTH Output Mandatory

When an element has a text node attached, this field will contain the
length of the text node.

WS-DOM-PARENT-NODE-ID Input/Output Optional

This field is optional on input. When specified in the CALL with a value
other than null, the SOLA DOM API will search for a child element with a
matching tag name for this given parent node identifier. On output,
after the call, this field will contain the node identifier of the parent.

WS-DOM-ELEMENT-ID Output Optional

The SOLA DOM API populates this variable with the unique node
identifier of the element found. This variable is a redefinition of WS-
DOM-NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional

This is the unique node identifier for a namespace. If there is a
namespace for the node, the unique node idenifier of the namespace

41

r’ SOLA DOM API Parser Reference

will be returned in this variable. A null value returned in this variable
indicates no namespace.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a Complex Type), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional
If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

The following return codes are possible:

RC Value Meaning
0 Successful - No messages issued.
+4 Element Not Found
Messages were issued in field WS-DOM-MSG
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Seq too high (higher than total number of
element nodes in the document)

+8 e Specified parent node identifier doesn’t exist

e Input error

Possible input errors could be:
e The function specified is not supported.
e Element tag name not specified.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

42

‘r’ SOLA DOM API Parser Reference

Example

In this example an element named ‘Bossid’ is being searched for. WS-
DOM-SEQ is set to +3 because we are want to get the third occurrence of
the Bossid element.

SET WS-DOM-GET-ELEMENT-ADR TO TRUE
MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

In this next example, we are searching for an element named ‘Bossid’. We
are limiting the search scope to within the parent ‘NameSearch’. If there
are multiple instances of the parent ‘NameSearch’, the first such instance
will be selected.

SET WS-DOM-GET-ELEMENT-ADR TO TRUE
MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE ‘NameSearch’ TO WS-DOM-PARENT

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

In this next example, we are searching for an element named ‘Bossid’. We
are limiting the search scope to within the parent that has a parent unique
node identifier that was saved in SAVED-PARENT-ID.

SET WS-DOM-GET-ELEMENT-ADR TO TRUE
MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID

43

‘r’ SOLA DOM API Parser Reference

getElementAddressByld

| cics NBATGH |

The getElementAddressByld function is identical to getElementByld, except
that the element value address is returned in place of the element value.
This can be useful if you don’t want to provide storage for the element
value, or where you want to use the XMLDOMWS copybook variables and
the element value is greater than 256 bytes.

The getElementAddressByld function retrieves the address of an element
node using a given node Id. The node identifier (shown below as WS-
DOM-NODE-ID) is the unique node identifier for the node. It is used to
identify and locate the node in the tree.

The getElementAddressByld function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PLACE-HOLDER, /* placeholder */

WS-DOM-TAG-NAME, /* Element tag name will be returned here */
WS-DOM-VALUE-PTR, /* The text node will be returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* Parent ID returned here */
WS-DOM-ELEMENT-ID, /* The ID of the node to be searched for */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT /* Num of attributes returned here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the element will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to WwS-DOM-GET-ELEMENT-ADR-ID.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-TAG-NAME Output Mandatory
The element tag name will be returned in this field.

44

r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-PTR Output Mandatory
This field will contain the element’s address.

WS-DOM-VALUE-LENGTH Output Mandatory
When an element has a text node attached, this field will contain the
length of the text node.

WS-DOM-PARENT-NODE-ID Output Mandatory
After the call, this field will contain the node identifier of the parent.

WS-DOM-ELEMENT-ID Input Mandatory
This field contains the unique node identifier of the element that the SOLA
DOM API is going to retrieve. This variable is a redefinition of WS-DOM-
NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional
This is the unique node identifier for a namespace. If thereis a
namespace for the node, the unique node identifier of the namespace
will be returned in this variable. A null value returned in this variable
indicates no namespace or default namespace.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a Complex Type), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional
If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

The following return codes are possible:
RC Value Meaning

0 Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:
+8 e Input error
e Node identifier doesn’t exist
Possible input errors could be:
e The function specified is not supported.
+12 SOLA DOM API abended. Abend code - XXXX (four

character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.

45

‘r’ SOLA DOM API Parser Reference

Example

In this example, the address of an element which had its node identifier
saved in SAVED-NODE-ID is being retrieved. At successful completion of
the call the node identifier of the parent node will be returned in WS-DOM-
PARENT-NODE-ID.

If the element has no value, the WS-DOM-VALUE-LENGTH will be zero and
WS-DOM-VALUE-PTR will be null. Itis recommended that WS-DOM-
VALUE-LENGTH be verified before using the value pointer.

SET WS-DOM-GET-ELEMENT-ADR-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-NODE-ID

In this example the address of an element which had its node identifier
saved in SAVED-NODE-ID is being retrieved. At successful completion of
the call the node identifier of the parent node will be returned in WS-DOM-
PARENT-NODE-ID along with the node identifier of the element’s
namespace (if present), the number of child elements, the unique node
identifier of the element’s namespace (if any) and number of attributes
belonging to the element.

SET WS-DOM-GET-ELEMENT-ADR-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-NODE-ID,
WS-DOM-NMS-NODE-ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT

46

‘r’ SOLA DOM API Parser Reference

getElementByld

| cics NBATGH |

The getElementByld function retrieves an element and its child text node
using a given node Id. The node identifier (shown below as WS-DOM-
NODE-ID) is the unique node identifier for the node. It is used to identify
and locate the node in the tree.

The getElementById function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PLACE-HOLDER, /* placeholder */

WS-DOM-TAG-NAME, /* Element tag name will be returned here */
WS-DOM-VALUE, /* The text node will be returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* Parent ID returned here */
WS-DOM-ELEMENT-ID, /* The ID of the node to be searched for */
WS-DOM-NMS-NODE-ID /* Unique ID for the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT, /* Num of attributes returned here */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the element will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-GET-ELEMENT-ID.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-TAG-NAME Output Mandatory
The element tag name will be returned in this field.

WS-DOM-VALUE Output Mandatory
When an element has a text node attached, this field will have a
normalized text value.

47

‘r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-LENGTH Output Mandatory
When an element has a text node attached, this field will contain the
length of the text node.

WS-DOM-PARENT-NODE-ID Output Mandatory
After the call, this field will contain the node identifier of the parent.

WS-DOM-ELEMENT-ID Input Mandatory
This field contains the unique node identifier of the element that the SOLA
DOM API is going to retrieve. This variable is a redefinition of WS-DOM-
NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional
This is the unique node identifier for a namespace. If thereis a
namespace for the node, the unique node identifier of the namespace
will be returned in this variable. A null value returned in this variable
indicates no namespace.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a Complex Type), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional

If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

WS-DOM-MAX-LENGTH Input Optional
This optional field, when specified, tells SOLA DOM API to truncate data
in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds WS-DOM-
MAX-LENGTH. A return code of +5 is returned if the returned data is
truncated. In such case, WS-DOM-VALUE-LENGTH still contains the full
length but data in WS-DOM-VALUE is truncated to WS-DOM-MAX-
LENGTH.

The following return codes are possible:
RC Value Meaning

0 Successful - No messages issued.

Returned data is bigger than allowed. Data truncated to

+5 the specified Length.

48

‘r’ SOLA DOM API Parser Reference

RC Value Meaning
Failed.
The following are the possible values for WS-DOM-MSG
field:
+8 e Input error
e Node identifier doesn’t exist
Possible input errors could be:
e The function specified is not supported.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example, an element which had its node identifier saved in SAVED-
NODE-ID is being retrieved. At successful completion of the call, the node
identifier of the parent node will be returned in WS-DOM-PARENT-NODE-
ID. If the element has a text node, the WS-DOM-VALUE will be populated
with the value of the text node, and WS-DOM-VALUE-LENGTH will be
populated with the length of the text. If the element has no text, the WS-
DOM-VALUE-LENGTH will be null and the WS-DOM-VALUE will contain
spaces.

SET WS-DOM-GET-ELEMENT-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ELEMENT-ID

In this example an element which had its node identifier saved in SAVED-
NODE-ID is being retrieved. At successful completion of the call the node
identifier of the parent node will be returned in WS-DOM-PARENT-NODE-ID
along with the node identifier of the element’s nhamespace (if present), the
number of child elements, the unique node identifier of the element’s
namespace (if any) and number of attributes belonging to the element.

49

r’ SOLA DOM API Parser Reference

We are also telling the SOLA DOM API to truncate the element’s text node
value should the length of the value exceed 255 bytes.

SET WS-DOM-GET-ELEMENT-ID TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID
MOVE +255 TO WS-DOM-MAX-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-NODE-ID
WS-DOM-NMS-NODE-ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT,
WS-DOM-MAX-LENGTH

50

‘r' SOLA DOM API Parser Reference

getElementByTagName

| cics NBATGH |

The getElementByTagName function retrieves an element node by its tag
name. If multiple instances of the element exist in the XML document, the
instance of the element corresponding to a sequence number will be
returned.

The default scope of the element tag name search is the entire XML
document. This default search scope can be overridden in two ways:

= First, by specifying a parent node identifier and a sequence number
on input to the request. The search will then be limited to finding a
child element with a matching tag name for the uniquely specified
parent node. The sequence number further limits the search by
specifying which occurrence of the element with a matching tag
name is returned. If the sequence number specified is greater than
the number of matching elements, an error will be returned.

= Second, by specifying a parent tag name instead of a sequence
number or a parent node identifier. This second search scope will
find the first instance of an element node with a matching tag name
and parent tag name combination.

The precedence of search criteria is as follows: parent node identifier has
precedence over parent tag name. The parent tag name and element
sequence number are mutually exclusive.

The getElementByTagName function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */

WS-DOM-SEQ/WS-DOM-PARENT, /* Sequence Number/Parent */
WS-DOM-TAG-NAME, /* Name of the tag to search for */
WS-DOM-VALUE, /* The text node will be returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ELEMENT-ID,/* The ID of the node will be returned here */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /*Num of child elements returned here*/
WS-DOM-ATTR-NODE-COUNT, /* Num of attributes returned here */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

51

7

SOLA DOM API Parser Reference

Variables:

WS-DOM-RC Output Mandatory

Returns status.

WS-DOM-MSG Output Mandatory

When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory

For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the element will be retrieved.

WS-DOM-FUNCTION Input Mandatory

Must be set to wS-DOM-GET-ELEMENT-BYTAG.

WS-DOM-SEQ/WS-DOM-PARENT Input Mandatory

This field can contain either a tag name or a sequence number. WS-
DOM-SEQ or WS-DOM-PARENT can be used. When it contains a
sequence number it instructs the SOLA DOM API to retrieve a particular
instance of an element where WS-DOM-TAG-NAME matches a tag name
in the tree. When it contains a parent tag name, the DOM-API tries to
retrieve an element for which the parent name and tag names match.

WS-DOM-TAG-NAME Input Mandatory

This field instructs the SOLA DOM API to search for an element with a
matching tag name.

WS-DOM-VALUE Output Mandatory

When an element has a text node attached, this field will contain the
normalized text value.

WS-DOM-VALUE-LENGTH Output Mandatory

When an element has a text node attached, this field will contain the
length of the text node.

WS-DOM-PARENT-NODE-ID Input/Output Optional

This field is optional on input. When specified in the CALL with a value
other than zero, the SOLA DOM API will search for a child element with
a matching tag name for this given parent node identifier. On output,
after the call, this field will contain the node identifier of the parent.

WS-DOM-ELEMENT-ID Output Optional

The SOLA DOM API populates this variable with the unique node
identifier of the element found. This variable is a redefinition of WS-
DOM-NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional

This is the unique node identifier for a namespace. If there is a
namespace for the node, the unique node identifier of the namespace

52

r’ SOLA DOM API Parser Reference

will be returned in this variable. A null value returned in this variable
indicates no namespace.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a Complex Type), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional
If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

WS-DOM-MAX-LENGTH Input Optional
This optional field, when specified, tells SOLA DOM API to truncate data
in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds WS-DOM-
MAX-LENGTH. A return code of +5 is returned if the returned data is
truncated. In such case, WS-DOM-VALUE-LENGTH still contains the full
length but data in WS-DOM-VALUE is truncated to WS-DOM-MAX-
LENGTH.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.
+4 Element Not Found
Messages were issued in field WS-DOM-MSG
Returned data is bigger than allowed. Data truncated to
+5 .
the specified Length.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Seq too high (higher than total humber of
element nodes in the document)

+8 e Specified parent node identifier doesn’t exist

e Input error

Possible input errors could be:
e The function specified is not supported.
e Element tag name not specified.

SOLA DOM API abended. Abend code - XXXX (four
character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

+12

53

‘r’ SOLA DOM API Parser Reference

Example

In this example an element named ‘Bossid’ is being searched for. WS-
DOM-SEQ is set to +3 because we want to get the third occurrence of the
Bossid element.

SET WS-DOM-GET-ELEMENT-BYTAG TO TRUE
MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this next example, we are searching for an element named ‘Bossid’. We
are limiting the search scope to within the parent ‘NameSearch’. If there
are multiple instances of the parent ‘NameSearch’, the first such instance is
selected.

SET WS-DOM-GET-ELEMENT-BYTAG

TO TRUE
MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE ‘NameSearch’ TO WS-DOM-PARENT

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this next example we are searching for an element named ‘Bossid’. We
are limiting the search scope to within the parent that has a parent unique
node identifier that was saved in SAVED-PARENT-ID. When searching for
an element under a specific parent node, a sequence number must be
specified using WS-DOM-SEQ.

54

SOLA DOM API Parser Reference

SET WS-DOM-GET-ELEMENT-BYTAG TO TRUE

MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID
MOVE +1 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID

In this next example we are searching for an element named ‘Bossid’. We
are limiting the search scope to within the parent that has a parent unique
node identifier that was saved in SAVED-PARENT-ID. We are requesting
that the unique node identifier of the element be returned, along with the
number of child elements, the unique node identifier of the element’s
namespace (if any), and number of attributes belonging to the element.
We are also telling the SOLA DOM API to truncate the element’s text node
value should the length of the value exceed 255 bytes.

SET WS-DOM-GET-ELEMENT-BYTAG TO TRUE

MOVE 'BossId' TO WS-DOM-TAG-NAME
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID
MOVE +255 TO WS-DOM-MAX-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ELEMENT-ID,
WS-DOM-NMS-NODE-ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT,
WS-DOM-MAX-LENGTH

55

‘r' SOLA DOM API Parser Reference

getElementByXPath

 oics B

The getElementByXPath function retrieves an element and its child text
node for a given XPath expression. Additionally, a sequence can be
specified to get a particular occurrence of the element node.

Simple and limited XPath expressions are allowed in the WS-DOM-TAG-
NAME when retrieving elements using getElementByXPath.

Below are two examples of an element search using an allowed XPath

expression.
MOVE +1 TO WS-DOM-SEQ
MOVE ‘list/member’ TO WS-DOM-TAG-NAME

The above expression would retrieve the first element whose name is
“member” and has a parent named “list”.

When specifying an XPath expression the SOLA DOM API will look for the
presence of “/” and “//" as the beginning characters of the search string. A
double forward slash “//” as the leading character indicates that you want
to search for the XPath expression anywhere within the document
hierarchy. A single forward slash “/” as the leading character indicates that
you are specifying an XPath expression that includes the root. If you don't
specify “/" as the starting character in the XPath expression then SOLA
DOM API will assume the specification of “//” as the starting characters.

MOVE ‘/book/chapter[5]/section[2]’ TO WS-DOM-TAG-NAME

The above expression would retrieve the second “section” element (the
sequence is specified within braces []) whose parent is the fifth “chapter”
element and the grand parent is an element named “book” (book is a root
element and therefore “/” is specified).

Only local element names are allowed in the expression. Namespace
aliases cannot be included during XPath searches in the current release.

A non-zero WS-DOM-SEQ value indicates that the specified occurrence of
the XPath expression should be the one located. Alternatively, a bracketed
occurrence inside the XPath will override any WS-DOM-SEQ specification.
If neither a bracketed specification nor a sequence number (null value in
WS-DOM-SEQ) is specified, the first matching element in the tree will be
the one located. A leading slash indicates that a root element is specified.
If the element following the leading slash is not a root element, a +8 error
code will be returned

56

‘r’ SOLA DOM API Parser Reference

The getElementByXPath function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char(80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Occurrence of the tag within the document */
WS-DOM-TAG-NAME, /* XPath search expression */

WS-DOM-VALUE, /* Text node returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* Unique id of the parent node*/
WS-DOM-ELEMENT-ID,/* The ID of the node will be returned here */
WS-DOM-NMS-NODE-ID /* Unique ID for the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT, /* Num of attributes returned here */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the element will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-GET-ELEMENT-XPATH.

WS-DOM-SEQ Input Mandatory
When non-zero, this field instructs the SOLA DOM API to retrieve a
particular instance of an element that matches the XPath expression
specified in the WS-DOM-TAG-NAME parameter. A sequence specified
in the XPath expression using brackets ([and]) takes precedence over
WS-DOM-SEQ.

WS-DOM-TAG-NAME Input Mandatory
The XPath expression describing the search criteria for the element to
be retrieved is specified in the WS-DOM-TAG-NAME input parameter.
The XPath expression must end with a space for delimiting purposes.
Refer to the function’s description for information regarding valid XPath
expressions.

WS-DOM-VALUE Output Mandatory
When an element has a text node attached, this field will have a
normalized text value.

57

‘r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-LENGTH Output Mandatory
When an element has a text node attached, this field will contain the
length of the text node.

WS-DOM-PARENT-NODE-ID Output Optional
After the call, this field will contain the node identifier of the parent.

WS-DOM-ELEMENT-ID Output Optional
The SOLA DOM API populates this variable with the unique node
identifier of the element found. This variable is a redefinition of WS-
DOM-NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional
This is the unique node identifier for a namespace. If thereis a
namespace for the node, the unique node identifier of the namespace
will be returned in this variable.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a ComplextType), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional
If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

WS-DOM-MAX-LENGTH Input Optional
This optional field, when specified, tells SOLA DOM API to truncate data
in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds WS-DOM-
MAX-LENGTH. A return code of +5 is returned if the returned data is
truncated. In such case, WS-DOM-VALUE-LENGTH still contains the full
length but data in WS-DOM-VALUE is truncated to WS-DOM-MAX-
LENGTH.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.

Element Not found - Messages were issued in field WS-
DOM-MSG
Returned data is bigger than allowed. Data truncated to

+4

+5 the specified Length.

Failed.

The following are the possible values for WS-DOM-MSG
+8 field:

e XPath starts with a /" but root element name
doesn’t match

58

SOLA DOM API Parser Reference

e Seq too high (one of the sequence values is
higher than the total number element nodes in
the document)

e Input error

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example an element named “member” is being searched for. The
element’s parent is named “list”. The first occurrence of the element is
requested.

SET WS-DOM-GET-ELEMENT-XPATH TO TRUE
MOVE +1 TO WS-DOM-SEQ
MOVE ‘list/member’ TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this next example an element named "“section” is being searched for.
The element’s parent is named “chapter”. The parent of the element
“chapter” is named “book”. The element “book” is the root element of the
document.

The fifth “chapter” within the root element “book” is sought, and within
that instance the second “section” is required.

SET WS-DOM-GET-ELEMENT-XPATH TO TRUE
MOVE ‘/book/chapter[5]/section[2]’ TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

59

r’ SOLA DOM API Parser Reference

In this next example the same element is being searched for, but this time,
at successful completion of the call the node identifier of the parent node
will be returned in WS-DOM-PARENT-NODE-ID along with the node
identifier of the element’s namespace (if present), the number of child
elements, the unique node identifier of the element’s namespace (if any)
and number of attributes belonging to the element. We are also telling the
SOLA DOM API to truncate the element’s text node value should the length
of the value exceed 255 bytes.

SET WS-DOM-GET-ELEMENT-XPATH TO TRUE
MOVE ‘/book/chapter[5]/section[2]’ TO WS-DOM-TAG-NAME
MOVE +255 TO WS-DOM-MAX-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-ELEMENT-ID,
WS-DOM-NMS-NODE-1ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT,
WS-DOM-MAX-LENGTH

60

‘r’ SOLA DOM API Parser Reference

getNamespace

| cics NBATGH |

The getNamespace function retrieves the value of a namespace associated
with a namespace unique node identifier (WS-DOM-NMS-NODE-ID).

The getNamespace function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-PLACE-HOLDER, /* placeholder */

WS-DOM-NMS-ALIAS, /* Namespace alias returned here */
WS-DOM-NAMESPACE, /* The namespace value returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned value */
WS-DOM-PLACE-HOLDER /* placeholder */
WS-DOM-PLACE-HOLDER /* placeholder */
WS-DOM-NMS-NODE-ID /* Unique ID for the namespace node */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the namespace will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to WS-DOM-GET-NAMESPACE.

WS-DOM-PLACE-HOLDER Place Holder Mandatory

WS-DOM-NMS-ALIAS Output Mandatory
The value of the namespace alias will be returned in this variable.

WS-DOM-NAMESPACE Output Mandatory
This field will contain the value of the namespace associated with the
element node.

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the namespace associated with the
element node.

WS-DOM-PLACE-HOLDER Place Holder Mandatory

61

r’ SOLA DOM API Parser Reference

WS-DOM-PLACE-HOLDER Place Holder Mandatory

WS-DOM-NMS -NODE-ID Input Mandatory
This is the unique node identifier for a namespace. Specify the unique
node identifier of the namespace to be retrieved.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Specified namespace node identifier doesn’t exist

+8 e Input error
Possible input errors could be:
e The function specified is not supported.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example we are retrieving the value of the namespace that had its
unique node identifier saved in SAVED-NMS-NODE-ID.

SET WS-DOM-GET-NAMESPACE TO TRUE
MOVE SAVED-NMS-NODE-ID TO WS-DOM-NMS-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-NMS-ALIAS,
WS-DOM-NAMESPACE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-NMS-NODE-ID

62

‘r’ SOLA DOM API Parser Reference

parse

| cics NBATGH |

The parse function parses, normalizes and creates the tree structure for a
given input XML document. The input XML document needs to be parsed
before it can be processed with the SOLA DOM API.

The parse function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-CONTROL, /* Determines what happens to the input XML */
WS-DOM-PLACE-HOLDER, /* placeholder */

INPUT-XML, /* The XML doc to be parsed */
WS-DOM-VALUE-LENGTH /* Length of the XML doc */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input/Output Mandatory
For internal use. The SOLA DOM API populates this variable with the
unique node identifier for the newly parsed XML DOM tree that will be
used in subsequent calls. The handles can be reused for multiple XML
document parsing.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-PARSE.

WS-DOM-CONTROL Input Mandatory
WS-DOM-CONTROL determines what happens to the original input xml
when the parse function is called. If set to 0 (default behavior), the
original input XML will be destroyed to conserve memory. If setto 1,
the original input XML will be preserved. Only 0 and 1 are valid values
for WS-DOM-CONTROL when used with the parse function. A value of 0
does not add additional xml processing instructions.

WS-DOM-PLACE-HOLDER Place Holder Mandatory

INPUT-XML Input Mandatory
Place your input XML here.

63

‘r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-LENGTH Input Mandatory
This field contains the length of the input XML.

The following return codes are possible:

RC Value Meaning
0 Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Invalid DOM Control Value
e Input error

Possible input errors could be:
+8 e The function specified is not supported.
e Specified Length of input xml is zero
e Parse failed due to XML Syntax error (specific
detail appended).
Detail example: Start/End tag mismatch at 00027, START

TAG:- getPrice.
(The number (00027) is the character position where the SOLA

DOM API believes the start of the bad syntax is located.)

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example we are parsing the XML document contained in INPUT-XML.
INPUT-XML will be destroyed by the PARSE function because we are setting
WS-DOM-CONTROL to zero.

SET WS-DOM-PARSE TO TRUE
MOVE ZERO TO WS-DOM-CONTROL
MOVE LENGTH OF INPUT-XML TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-CONTROL,
WS-DOM-PLACE-HOLDER,
INPUT-XML,
WS-DOM-VALUE-LENGTH

64

‘r' SOLA DOM API Parser Reference

resetSelectAttrNodes

| cics NBATGH |

This resetSelectAttrNodes function is used to reset the internal counters
used by the selectAttrNodes function. The function should only be used in
conjunction with the selectAttrNodes function when it is operating in an
iterative mode. When the internal counter is reset and a parent node is
specified using selectAttrNodes in iterative mode, the first child attribute
node (belonging to the specified parent) will be selected. If a parent node
is not specified, then the first attribute in the XML document will be
selected.

The SOLA DOM API maintains two internal counters, one for selectNodes
(page 83) and one for selectAttrNodes (page 69). This function affects
only the selectAttrNodes counter.

If this function is used when selectAttrNodes is used in non iterative mode,
this function still resets the internal counter, but doing so will have no
effect until the next time selectAttrNodes is used in iterative mode.

The resetSelectAttrNodes function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */
WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION /* Char (25). The name of the API */
Variables:
WS-DOM-RC Output Mandatory

Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the attribute node iterator will be reset.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-RESET-SELECT-ATTR-NODES.

The following return codes are possible:

65

‘r’ SOLA DOM API Parser Reference

RC Value Meaning

o Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

+8 e Input error

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example we are resetting the internal counters used by format 3 of
selectAttrNodes (page 69).

SET WS-DOM-RESET-SELECT-ATTR-NODES TO TRUE

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION

66

‘r' SOLA DOM API Parser Reference

resetSelectNodes

| cics NBATGH |

This resetSelectNodes function is used to reset the internal counters used
by the selectNodes function. The function should only be used in
conjunction with the selectNodes function when it is operating in an
iterative mode. When the internal counter is reset and a parent node is
specified using selectNodes in iterative mode, the first child node
(belonging to the specified parent) will be selected. If a parent node is not
specified, then the root node of the XML document will be selected.

The SOLA DOM API maintains two internal counters, one for selectNodes
(see description of selectNodes on page 83) and one for selectAttrNodes
(see description of selectAttrNodes on page 69). This function affects only
the selectNodes counter.

If this function is used when selectNodes is used in non iterative mode, this
function still resets the internal counter, but doing so will have no effect
until the next time selectNodes is used in iterative mode.

The resetSelectNodes function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */
WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION /* Char (25). The name of the API */
Variables:
WS-DOM-RC Output Mandatory

Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the node iterator will be reset.

WS-DOM-FUNCTION Input Mandatory
Must be set to WS-DOM-RESET-SELECT-NODES.

67

‘r’ SOLA DOM API Parser Reference

The following return codes are possible:

RC Value Meaning
o Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:
+8 e Input error

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example we are resetting the internal counters used by format 3 of
selectNodes (page 83).

SET WS-DOM-RESET-SELECT-NODES TO TRUE

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION

68

‘r' SOLA DOM API Parser Reference

selectAttrNodes

| cics NBATGH |

The SOLA DOM API distinguishes between attribute node identifier and
element node identifier.

The selectAttrNodes function is used to inquire on either the total number
of attribute nodes in an XML document, to get a particular attribute in the
sequence or retrieve attributes iteratively.

The selectAttrNodes function can be used in CICS and batch.

The selectAttrNodes function has three different modes of operation, each
invoked using a different format of the selectAttrNodes function. In the
first, it can be used to return a count of the total number of attribute nodes
in the XML document. In the second, it can be used to return a particular
attribute in the DOM tree by specifying the relative position of the node in
WS-DOM-SEQ. In the third, it can be used to sequentially traverse all of
the attribute nodes in the XML document in a top to bottom, left to right
sequence.

Note that the sequence number of an attribute differs from the unique
node identifier of an attribute. The sequence number is the relative
position of a node in the tree and can change when nodes are inserted or
deleted before it. The unique node identifier of a node (specified with WS-
DOM-NODE ID) is a non-changing identifier that can be used to uniquely
identify a node.

Format 1: This format is used to find how many attributes are in an XML
document. Setting WS-DOM-TAG-NAME to a single asterisk instructs the
SOLA DOM API to return a count of the number of attribute nodes in the
XML document in the field WS-DOM-SEQ.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ /* Number of attributes returned here*/

WS-DOM-TAG-NAME, /* Asterisk character(*) goes here */

The total number of attributes in the input XML document will be returned
in the WS-DOM-SEQ field.

Format 2: Alternatively, you can specify an attribute’s sequence in the
WS-DOM-SEQ field and move spaces to WS-DOM-TAG-NAME. This will
return the attribute’s tag name in the WS-DOM-TAG-NAME field. The field

69

‘r’ SOLA DOM API Parser Reference

WS-DOM-VALUE will contain the attribute’s value and WS-DOM-VALUE-
LENGTH will contain the length of the attribute’s value

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char(80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Specify relative sequence # here */
WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE, /* The text node is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUTE-ID,/* The node id will be returned here */

WS-DOM-PLACE-HOLDER, /* Placeholder. */
WS-DOM-PLACE-HOLDER, /* Placeholder. */
WS-DOM-PLACE-HOLDER, /* Placeholder. */

WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Format 3: Another alternative for selectAttrNodes is to set WS-DOM-SEQ
to zero and keep calling the SOLA DOM API iteratively. In this
circumstance, the SOLA DOM API will internally increment a counter and
will return the next attribute value in sequence for each call. The internal
counter can be reset using the resetSelectAttrNodes function (page 65).
We recommend using the resetSelectAttrNodes function before the first
format 3 operation.

The default selection scope of the selectAttrNodes function is the entire
XML document. If a parent node is specified with a sequence number of
zero, the scope of the selection will be limited to only child attribute nodes
of the specified parent node. In this case, the internal counter determines
which child node is selected. If the specified parent node has no child
attributes or no more child attributes remain to be selected, a return code
of +2 will be returned.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */
WS-DOM-SEQ, /* Set to zero */

WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE, /* The text node is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUE-ID,/* The node ID will be returned here */
WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-MAX-LENGTH /* Can specify max length of data here */

70

‘r' SOLA DOM API Parser Reference

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the nodes will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-SEL-ATTR-NODES.

WS-DOM-SEQ Input/Output Mandatory
In format 1 requests, the total number of attributes in the DOM tree is
returned in this variable. In format 2 requests, this variable is used as
input only. The user specifies the attribute sequence number that will
be used to select an attribute within the scope. In format 3 requests
this variable is input only and must be set to zero by the user; the SOLA
DOM API will maintain an internal counter.

WS-DOM-TAG-NAME Input/Output Mandatory
For format 1 requests, this field must be populated on input with a
single asterisk character. For format 2 requests, this field must be
populated with spaces on input and will return the attribute’s tag name.
For format 3 requests, when a +1 return code is issued, this field
contains the name of the parent element that has ended.

WS-DOM-VALUE Output Mandatory
This field will contain the attribute’s normalized text value.

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the attribute’s normalized text value.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. It can be used to limit the scope of a DOM tree
traversal (format 3) to all children of a specified parent. For format 2
and 3, when specified in the CALL, the SOLA DOM API will return the
unique node identifier of the parent node.

WS-DOM-ATTRIBUTE-ID Output Optional
This field is optional. When specified in the CALL, the SOLA DOM API
populates this variable with the unique node identifier of the attribute
found. This variable is a redefinition of the WS-DOM-NODE-ID.

WS-DOM-PLACE-HOLDER Place Holder Optional
WS-DOM-PLACE-HOLDER Place Holder Optional

7

‘r’ SOLA DOM API Parser Reference

WS-DOM-PLACE-HOLDER Place Holder Optional

WS-DOM-MAX-LENGTH Input Optional
This optional field, when specified, tells SOLA DOM API to truncate data
in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds WS-DOM-
MAX-LENGTH. A return code of +5 is returned if the returned data is
truncated. In such case, WS-DOM-VALUE-LENGTH still contains the full
length but data in WS-DOM-VALUE is truncated to WS-DOM-MAX-
LENGTH.

The following return codes are possible:

RC Value Meaning
0 Successful - No messages issued.
A ComplexType element has ended or a Message Set has
+1 ended. The name of the ComplexType element that has
ended can be found in the WS-DOM-TAG-NAME parameter.
+2 Entire DOM Tree is traversed. SOLA DOM API will reset the
iterator.
Returned data is bigger than allowed. Data truncated to
+5 .
the specified Length.
Failed.
The following are the possible values for WS-DOM-MSG
field:
e Seq too high (the sequence value is higher than
the total number of attribute nodes in the
+8
document)
e Input error
Possible input errors could be:
e The function specified is not supported.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example
Format 1.

In this example, we are retrieving a count of the attributes in the DOM
tree. The number of attribute nodes in the tree is returned in WS-DOM-
SEQ.

72

r’ SOLA DOM API Parser Reference

SET WS-DOM-SEL-ATTR-NODES TO TRUE
MOVE '*x' TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ
WS-DOM-TAG-NAME

Format 2.

In this example, we are retrieving a specific attribute (attribute sequence
number 3) from the DOM tree. In this format, we specify the relative
sequence number of the attribute in the tree that we want to retrieve. The
relative sequence number denotes the position of the attribute in the tree
(relative to the beginning) if the tree were to be expressed as an XML
stream. The first attribute in the XML stream has a relative sequence
number of 1, the second attribute has a relative sequence number of 2,
etc.

SET WS-DOM-SEL-ATTR-NODES TO TRUE
MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this second format 2 example, we are again retrieving a specific
attribute (attribute number 3) from the DOM tree. This time we are
requesting that the unique node identifier of the attribute’s parent be
returned, along with the unique node identifier of the attribute. We are
also telling the SOLA DOM API to truncate the attribute’s text node value
should the length of the value exceed 255 bytes.

SET WS-DOM-SEL-ATTR-NODES TO TRUE

MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ
MOVE +255 TO WS-DOM-MAX-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,

73

SOLA DOM API Parser Reference

WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-MAX-LENGTH

Format 3.

In this example, we are traversing all of the attributes in the DOM tree. In
this format, we set WS-DOM-SEQ to zero and then we iteratively call the
SOLA DOM API until we receive a return code of +1 or +2. In this
example, a +2 will be returned when the end of the document has been
reached and a +1 will be returned when a complexType has ended. The
name of the complexType element that ended will be returned in WS-DOM-
TAG-NAME.

SET WS-DOM-SEL-ATTR-NODES TO TRUE
MOVE ZERO TO WS-DOM-SEQ

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

END-PERFORM

In this second format 3 example, we are again traversing all of the
attributes in the DOM tree. This time we are requesting that the unique
node identifier of the attributes’s parent be returned, along with the unique
node identifier of the attribute. We are also telling the SOLA DOM API to
truncate the attribute’s text node value should the length of the value
exceed 255 bytes.

We set WS-DOM-SEQ to zero and then we iteratively call the SOLA DOM
API until we receive a return code of +1 or +2. In this example, a +2 will
be returned when the end of the document (the last attribute in the scope)
has been reached and a +1 will be returned when a complexType has
ended. The name of the complexType element that ended will be returned
in WS-DOM-TAG-NAME.

SET WS-DOM-SEL-ATTR-NODES TO TRUE
MOVE +255 TO WS-DOM-MAX-LENGTH
MOVE ZERO TO WS-DOM-SEQ

74

‘r’ SOLA DOM API Parser Reference

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-MAX-LENGTH

END-PERFORM

In this third format 3 example, we are limiting the scope of the traversal of
the DOM tree to all of the child attributes of a specified parent. We limit
the scope by specifying the parent’s unique node identifier and setting WS-
DOM-SEQ to zero. We are also are requesting the unique node identifier of
the attribute and telling the SOLA DOM API to truncate the attribute’s text
node value should the length of the value exceed 255 bytes.

We iteratively call the SOLA DOM API until we receive a return code of +1
or +2. In this example, a +2 will be returned when the end of the
document has been reached (the last attribute in the scope) and a +1 will
be returned when a complexType has ended. The name of the
complexType element that ended will be returned in WS-DOM-TAG-NAME.

SET WS-DOM-SEL-ATTR-NODES TO TRUE

MOVE +255 TO WS-DOM-MAX-LENGTH
MOVE ZERO TO WS-DOM-SEQ
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-ATTRIBUTE-ID,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-MAX-LENGTH

END-PERFORM

75

‘r' SOLA DOM API Parser Reference

selectAttrNodesAddress

| cics NBATGH |

The selectAttrNodesAddress function is identical to selectAttrNodes, except
that the address of the attribute is returned instead of the value of the
attribute. This can be useful if you don’t want to provide storage for the
attribute value, or where you want to use the XMLDOMWS copybook
variables and the attribute value is greater than 256 bytes.

The SOLA DOM API distinguishes between attribute node identifier and
element node identifier.

The selectAttrNodesAddress function is used to inquire on either the total
number of attribute nodes in an XML document, to get the address of a
particular attribute in the sequence or retrieve attribute addresses
iteratively.

The selectAttrNodesAddress function can be used in CICS and batch.

The selectAttrNodesAddress function has three different modes of operation,
each of which is invoked using different formats of the
selectAttrNodesAddress function. In the first, it can be used to return a
count of the total number of attribute nodes in the XML document. In the
second, it can be used to return the address of a particular attribute in the
DOM tree by specifying the relative position of the node in WS-DOM-SEQ. In
the third, it can be used to sequentially traverse all of the attribute nodes in
the XML document in a top to bottom, left to right sequence.

Note that the sequence number of an attribute differs from the unique node
identifier of an attribute. The sequence number is the relative position of a
node in the tree and can change when nodes are inserted or deleted before
it. The unique node identifier (specified with WS-DOM-NODE ID) is a non-
changing identifier that can be used to uniquely identify a node.

Format 1: This format is used to find how many attributes are in an XML
document. Setting WS-DOM-TAG-NAME to a single asterisk instructs the
SOLA DOM API to return a count of the number of attribute nodes in the XML
document in the field WS-DOM-SEQ.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Number of attributes returned here*/

WS-DOM-TAG-NAME /* Asterisk character (*) goes here */

76

r’ SOLA DOM API Parser Reference

The total number of attributes in the input XML document will be returned in
the WS-DOM-SEQ field.

Format 2: Alternatively, you can specify an attribute’s sequence in the WS-
DOM-SEQ field and move spaces to WS-DOM-TAG-NAME. This will return
the attribute’s tag name in the WS-DOM-TAG-NAME field. The field WS-DOM-
VALUE-PTR will contain the address of the attribute’s value and WS-DOM-
VALUE-LENGTH will contain the length of the attribute’s value

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char(80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Specify relative sequence # here */
WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE-PTR, /* The address is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUTE-ID /* The node id will be returned here */

Format 3: Another alternative for selectAttrNodesAddress is to set WS-
DOM-SEQ to zero and keep calling the SOLA DOM API iteratively. In this
circumstance, the SOLA DOM API will internally increment a counter and will
return the address of the next attribute value in sequence for each call. The
internal counter can be reset using the resetSelectAttrNodes function (page
76). We recommend using the resetSelectAttrNodes function before the first
format 3 operation.

The default selection scope of the selectAttrNodesAddress function is the
entire XML document. If a parent node is specified with a sequence number
of zero on the selectAttrNodesAddress request, the scope of the selection will
be limited to only child attribute nodes of the specified parent node. In this
case, the internal counter determines which child node is selected. If the
specified parent node has no child attributes or no more child attributes
remain to be selected, a return code of +2 will be returned.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Set to zero */

WS-DOM-TAG-NAME , /* The tag name is returned here */

WS-DOM-VALUE-PTR, /* The address is returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ATTRIBUTE-ID /* The node ID will be returned here */

Variables:

7

r’ SOLA DOM API Parser Reference

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the nodes will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-SEL-ATTR-NODES-ADR.

WS-DOM-SEQ Input/Output Mandatory
In format 1 requests, the total number of attributes in the DOM tree is
returned in this variable. In format 2 requests, this variable is used as
input only. The user specifies the attribute sequence number that will
be used to select an attribute within the scope. In format 3 requests
this variable is input only and must be set to 0 by the user; the SOLA
DOM API will maintain an internal counter.

WS-DOM-TAG-NAME Output Mandatory
For format 1 requests, this field must be populated on input with a
single asterisk character. For format 2 requests, this field must be
populated with all spaces on input and will return the attribute’s tag
name. For format 3 request, when a +1 return code is issued, this field
contains the name of the parent element that has ended.

WS-DOM-VALUE-PTR Output Mandatory
The attribute’s address will be returned here.

WS-DOM-VALUE-LENGTH Output Mandatory
This field will contain the length of the attribute’s normalized text value.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. It can be used to limit the scope of a DOM tree
traversal (format 3) to all children of a specified parent. For format 2 and
3, when specified in the CALL, the SOLA DOM API will return the unique
node identifier of the parent node.

WS-DOM-NODE-ID Output Optional
This field is optional. When specified in the CALL, the SOLA DOM API
populates this variable with the unique node identifier of the attribute
found.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.

78

‘r’ SOLA DOM API Parser Reference

RC Value Meaning
A ComplexType element has ended or a Message Set has
+1 ended. The name of the ComplexType element that has

ended can be found in the WS-DOM-TAG-NAME parameter.
Entire DOM Tree is traversed. SOLA DOM API will reset the
iterator.

Failed.

The following are the possible values for WS-DOM-MSG field

+2

e Seq too high (the sequence value is higher than
the total number of attribute nodes in the

+8 document)

e Input error

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four character

+12 code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example
Format 1.

In this example, we are retrieving a count of the attributes in the DOM tree.
The number of attribute nodes in the tree is returned in WS-DOM-SEQ.

SET WS-DOM-SEL-ATTR-NODES-ADR TO TRUE
MOVE '*! TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME

Format 2.

In this example, we are retrieving the address of a specific attribute
(attribute sequence number 3) from the DOM tree. In this format, we
specify the relative sequence number of the attribute in the tree that we
want to retrieve. The relative sequence number denotes the position of the
attribute in the tree (relative to the beginning) if the tree were to be
expressed as an XML stream. The first attribute in the XML stream has a
relative sequence number of 1, the second attribute has a relative sequence
number of 2, etc.

SET WS-DOM-SEL-ATTR-NODES-ADR TO TRUE
79

‘r’ SOLA DOM API Parser Reference

MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

In this second format 2 example, we are again retrieving the address of a
specific attribute (attribute number 3) from the DOM tree. This time we are
requesting that the unique node identifier of the attribute’s parent be
returned, along with the unique node identifier of the attribute.

SET WS-DOM-SEL-ATTR-NODES-ADR TO TRUE
MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-ATTRIBUTE-ID

Format 3.

In this example, we are traversing all of the attributes in the DOM tree. In
this format, we set WS-DOM-SEQ to zero and initialize the internal counter
using the resetSelectAttrNodes function (see page 65). We then iteratively
call the SOLA DOM API until we receive a return code of +1 or +2. In this
example, a +2 will be returned when the end of the document has been
reached and a +1 will be returned when a complexType has ended. The
name of the complexType element that ended will be returned in WS-DOM-
TAG-NAME..

SET WS-DOM-SEL-ATTR-NODES-ADR TO TRUE
MOVE ZERO TO WS-DOM-SEQ

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,

80

r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH
END-PERFORM

In this second format 3 example, we are again traversing all of the
attributes in the DOM tree. This time we are requesting that the unique
node identifier of the attributes’s parent be returned, along with the unique
node identifier of the attribute.

We set WS-DOM-SEQ to zero and then we iteratively call the SOLA DOM
API until we receive a return code of +1 or +2. In this example, a +2 will
be returned when the end of the document has been reached (the last
attribute in the scope) and a +1 will be returned when a complexType has
ended. The name of the complexType element that ended will be returned
in WS-DOM-TAG-NAME.

SET WS-DOM-SEL-ATTR-NODES-ADR TO TRUE
MOVE ZERO TO WS-DOM-SEQ

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID

END-PERFORM

In this third format 3 example, we are limiting the scope of the traversal of

the DOM tree to all of the child attributes of a specified parent. We limit the
scope by specifying the parent’s unique node identifier and setting the WS-

DOM-SEQ to zero. We are also are requesting the unique node identifier of
the attribute.

Having set WS-DOM-SEQ to zero, we iteratively call the SOLA DOM API until
we receive a return code of +1 or +2. In this example, a +2 will be returned
when the end of the document has been reached (the last attribute in the
scope) and a +1 will be returned when a complexType has ended. The name
of the complexType element that ended will be returned in WS-DOM-TAG-
NAME.

SET WS-DOM-SEL-ATTR-NODES-ADR TO TRUE
MOVE ZERO TO WS-DOM-SEQ
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

81

‘r‘ SOLA DOM API Parser Reference

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-NODE-ID

END-PERFORM

82

‘r' SOLA DOM API Parser Reference

selectNodes

| cics NBATGH |

The selectNodes function is used to inquire on either the total number of
element nodes in an XML document, to get a particular element in the
sequence or retrieve elements iteratively. Attribute nodes and namespace
nodes are not selected using this function.

The selectNodes function can be used in CICS and batch.

The selectNodes function has three different modes of operation, each of
which is invoked using different formats of the selectNodes function. In the
first it can be used to return a count of the total number of element nodes
in the XML document. In the second it can be used to return a particular
element in the DOM tree by specifying the relative position of the element
node in WS-DOM-SEQ. In the third it can be used to sequentially traverse
all of the element nodes in the XML document in a top to bottom, left to
right sequence.

Note that the sequence number of an element differs from the unique node
identifier of an element. The sequence number is the relative position of
an element node in the tree and can change when element nodes are
inserted or deleted before it. The unique node identifier of an element
(specified with WS-DOM-NODE ID) is a non-changing identifier that can be
used to uniquely identify an element node.

Format 1: This format is used to find how many elements are in an XML
document. Setting WS-DOM-TAG-NAME to a single asterisk instructs the
SOLA DOM API to return a count of the number of element nodes in the
XML document in the field WS-DOM-SEQ.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Number of elements returned here*/

WS-DOM-TAG-NAME /* Asterisk character (*) goes here. */

The total number of elements in the input XML document will be returned
in the WS-DOM-SEQ field.

Format 2: Alternatively, you can specify an element sequence in the WS-
DOM-SEQ field and move spaces to WS-DOM-TAG-NAME. This will return
the element tag name in the WS-DOM-TAG-NAME field. The field WS-DOM-
VALUE will contain the element value and WS-DOM-VALUE-LENGTH will
contain the length of the element value.

83

‘r’ SOLA DOM API Parser Reference

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Specify relative sequence # here */
WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE, /* The text node is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ELEMENT-ID, /* The node id will be returned here */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT, /* Num of attributes returned here */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Format 3: Another alternative for selectNodes is to set WS-DOM-SEQ to zero
and keep calling the SOLA DOM API iteratively. In this circumstance, the SOLA
DOM API will internally increment a counter and will return the next element
node in sequence for each call. The internal counter can be reset using the
resetSelectNodes function (page 67). We recommend using the
resetSelectNodes function before the first format 3 operation.

The default selection scope of the selectNodes function is the entire XML
document. If a parent node is specified with a sequence number of zero on
the selectNodes request, the scope of the selection will be limited to only
child nodes of the specified parent node. In this case the first child of the
specified parent node will be the first node selected. In this case, the
internal counter determines which child node is selected. If the specified
parent node has no children or no more children to be selected, a return
code of +2 will be returned.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */
WS-DOM-SEQ, /* Set to zero */

WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE, /* The text node is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ELEMENT-ID, /* The node id will be returned here */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT, /* Num of attributes returned here */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Variables:

84

‘r' SOLA DOM API Parser Reference

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the nodes will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DoOM-SELECT-NODES.

WS-DOM-SEQ Input/Output Mandatory
In format 1 requests, the total number of elements in the DOM tree is
returned in this variable. In format 2 requests, this variable is used as
input only. The user specifies the element sequence number that will
be used to select an element within the scope. In format 3 requests
this variable is input only and must be set to 0 by the user; the SOLA
DOM API will maintain an internal counter.

WS-DOM-TAG-NAME Input/Output Mandatory
For format 1 requests, this field must be populated on input with a
single asterisk character. For format 2 requests, this field must be
populated on input with all spaces and returns the element tag name.
If using format 3 and in a case where a return code of +1 is returned,
the parent element name of the complex type that just ended will be
returned here.

WS-DOM-VALUE Output Mandatory
When an element has a text node attached, this field will contain the
normalized text value.

WS-DOM-VALUE-LENGTH Output Mandatory
When an element has a text node attached, this field will contain the
length of the text value of the attribute.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. It can be used to limit the scope of a DOM tree
traversal (format 3) to all children of a specified parent. For formats 2
and 3, when specified in the CALL, the SOLA DOM API will return the
unique node identifier of the parent node.

WS-DOM-ELEMENT-ID Output Optional
This field is optional. When specified in the CALL, the SOLA DOM API
populates this variable with the unique node identifier of the element
found. This variable is a redefinition of WS-DOM-NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional

85

r’ SOLA DOM API Parser Reference

This is the unique node identifier for a namespace. If there is a
namespace for the node, the unique node identifier of the namespace
will be returned in this variable, else null will be returned.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a Complex Type), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional
If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

WS-DOM-MAX-LENGTH Input Optional
This optional field, when specified, tells SOLA DOM API to truncate data
in WS-DOM-VALUE field if WS-DOM-VALUE-LENGTH exceeds WS-DOM-
MAX-LENGTH. A return code of +5 is returned if the returned data is
truncated. In such case, WS-DOM-VALUE-LENGTH still contains the full
length but data in WS-DOM-VALUE is truncated to WS-DOM-MAX-

LENGTH.
The following return codes are possible:
RC Value Meaning
o Successful - No messages issued.
A ComplexType element has ended or a Message Set has
+1 ended. The name of the ComplexType element that has
ended can be found in the WS-DOM-TAG-NAME parameter.
+2 Entire DOM Tree is traversed. SOLA DOM API will reset the
iterator.
Returned data is bigger than allowed. Data truncated to
+5 .
the specified Length.
Failed.
The following are the possible values for WS-DOM-MSG
field:
e Seq too high (the sequence value is higher than
the total number of element nodes in the
+8
document)
e Input error
Possible input errors could be:
e The function specified is not supported.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.

86

‘r' SOLA DOM API Parser Reference

Example

Format 1.
In this example we are retrieving a count of the elements in the DOM tree.
The number of element nodes in the tree is returned in WS-DOM-SEQ.

SET WS-DOM-SELECT-NODES TO TRUE
MOVE '*! TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME

Format 2.

In this example we are retrieving a specific element (element sequence
number 3) from the DOM tree. In this format, we specify the relative
sequence number of the element in the tree that we want to retrieve. The
relative sequence number denotes the position of the element in the tree
(relative to the beginning) if the tree were to be expressed as an XML
stream. The first element in the XML stream has a relative sequence
number of 1, the second element has a relative sequence number of 2, etc.

SET WS-DOM-SELECT-NODES TO TRUE
MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

In this second format 2 example we are again retrieving a specific element
(element sequence number 3) from the DOM tree. This time we are
requesting that the unique node identifier of the element’s parent be
returned, along with the unique node identifier of the element, the unique
node identifier of the element’s namespace (if any), the number of child
elements and number of attributes belonging to the element. We are also
telling the SOLA DOM API to truncate the element’s text node value should
the length of the value exceed 255 bytes.

SET WS-DOM-SELECT-NODES TO TRUE

MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

MOVE +255 TO WS-DOM-MAX-LENGTH

87

‘r’ SOLA DOM API Parser Reference

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ELEMENT-ID,
WS-DOM-NMS-NODE-ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT,
WS-DOM-MAX-LENGTH

Format 3.

In this example we are traversing all of the elements in the DOM tree. In
this format, we set WS-DOM-SEQ to zero and initialize the internal counter
to start iterating from the beginning using the resetSelectNodes function
(see page 67). We then iteratively call the SOLA DOM API until we receive
a return code of +2.

SET WS-DOM-SELECT-NODES TO TRUE
MOVE ZERO TO WS-DOM-SEQ

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

END-PERFORM

In this second format 3 example we are again traversing all of the
elements in the DOM tree. This time we are requesting that the unique
node identifier of the element’s parent be returned, along with the unique
node identifier of the element, the unique node identifier of the element’s
namespace (if any), the number of child elements and the number of
attributes belonging to the element. We are also telling the SOLA DOM API
to truncate the element’s text node value should the length of the value
exceed 255 bytes.

We set WS-DOM-SEQ to zero and then we iteratively call the SOLA DOM
API until we receive a return code of +1 or +2. In this example, a +2 will

88

r’ SOLA DOM API Parser Reference

be returned when the end of the document has been reached (the last
element in the scope) and a +1 will be returned when a complexType has
ended. The name of the complexType element that ended will be returned
in WS-DOM-TAG-NAME.

SET WS-DOM-SELECT-NODES TO TRUE
MOVE +255 TO WS-DOM-MAX-LENGTH
MOVE ZERO TO WS-DOM-SEQ

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-ELEMENT-ID,
WS-DOM-NMS-NODE-ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT,
WS-DOM-MAX-LENGTH

END-PERFORM

In this third format 3 example we are limiting the scope of the traversal of
the DOM tree to all of the child elements of a specified parent. We limit the
scope by specifying the parent’s unique node identifier and setting the WS-
DOM-SEQ to zero. We are also are requesting the unique node identifier of
the element, the unique node identifier of the element’s namespace (if
any), the number of child elements and number of attributes belonging to
the element. Additionally, telling the SOLA DOM API to truncate the
element’s text node value should the length of the value exceed 255 bytes.

Having set WS-DOM-SEQ to zero, we iteratively call the SOLA DOM API
until we receive a return code of +1 or +2. In this example, a +2 will be
returned when the end of the document has been reached (the last
element in the scope) and a +1 will be returned when a complexType has
ended. The name of the complexType element that ended will be returned
in WS-DOM-TAG-NAME.

SET WS-DOM-SELECT-NODES TO TRUE

MOVE +255 TO WS-DOM-MAX-LENGTH
MOVE ZERO TO WS-DOM-SEQ
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,

89

SOLA DOM API Parser Reference

WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ELEMENT-ID,
WS-DOM-NMS-NODE-ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT,
WS-DOM-MAX-LENGTH
END-PERFORM

90

‘r' SOLA DOM API Parser Reference

selectNodesAddress

| cics NBATGH |

The selectNodesAddress function is identical to selectNodes, except that
the address of the element is returned instead of the value of the element.
This can be useful if you don’t want to provide storage for the element
value, or where you want to use the XMLDOMWS copybook variables and
the element value is greater than 256 bytes. Attribute nodes and
namespace nodes are not selected using this function.

The selectNodesAddress function is used to inquire on either the total
number of element nodes in an XML document, to get the address of a
particular element in the sequence or retrieve element addresses
iteratively.

The selectNodesAddress function can be used in CICS and batch.

The selectNodesAddress function has three different modes of operation,
each of which is invoked using a different format of the selectNodesAddress
function. In the first mode it can be used to return a count of the total
number of element nodes in the XML document. In the second it can be
used to return the address of a particular element in the DOM tree by
specifying the relative position of the element node in WS-DOM-SEQ. In
the third it can be used to sequentially traverse all of the element nodes in
the XML document in a top to bottom, left to right sequence.

Note that the sequence number of an element differs from the unique node
identifier of an element. The sequence number is the relative position of
an element node in the tree and can change when element nodes are
inserted or deleted before it. The unique node identifier of an element
(specified with WS-DOM-NODE ID) is a non-changing identifier that can be
used to uniquely identify an element node.

Format 1: This format is used to find how many elements are in an XML
document. Setting WS-DOM-TAG-NAME to a single asterisk instructs the
SOLA DOM API to return a count of the number of element nodes in the
XML document in the field WS-DOM-SEQ.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Number of elements returned here*/

WS-DOM-TAG-NAME /* Asterisk character (*) goes here. */

91

‘r' SOLA DOM API Parser Reference

The total number of elements in the input XML document will be returned
in the WS-DOM-SEQ field.

Format 2: Alternatively, you can specify an element sequence in the WS-
DOM-SEQ field and move spaces to WS-DOM-TAG-NAME. This will return
the element tag name in the WS-DOM-TAG-NAME field. The field WS-DOM-
VALUE-PTR will contain the address of the element value and WS-DOM-
VALUE-LENGTH will contain the length of the element value.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char(80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Specify relative sequence # here */
WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE-PTR, /* The address is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */
WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ELEMENT-ID, /* The node id will be returned here */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */
WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT /* Num of attributes returned here */

Format 3: Another alternative for selectNodes is to set WS-DOM-SEQ to zero
and keep calling the SOLA DOM API iteratively. In this circumstance, the SOLA
DOM API will internally increment a counter and will return the address of the
next element node in sequence for each call. The internal counter can be
reset using the resetSelectNodes function (page 67). We recommend using
the resetSelectNodes function before the first format 3 operation.

The default selection scope of the selectNodes function is the entire XML
document. If a parent node is specified with a sequence number of zero on
the selectNodes request, the scope of the selection will be limited to only
child nodes of the specified parent node. In this case the first child of the
specified parent node will be the first node selected. In this case, the
internal counter determines which child node is selected. If the specified
parent node has no children or no more children to be selected, a return
code of +2 will be returned.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-SEQ, /* Set to zero */

WS-DOM-TAG-NAME , /* The tag name is returned here */
WS-DOM-VALUE-PTR, /* The address is returned here */

WS-DOM-VALUE-LENGTH, /* Length of the returned text node */

92

SOLA DOM API Parser Reference

WS-DOM-PARENT-NODE-ID, /* The ID of the parent of the node */
WS-DOM-ELEMENT-ID, /* The node id will be returned here */
WS-DOM-NMS-NODE-ID, /* Unique id of the namespace node */

WS-DOM-CHILD-ELEM-COUNT, /* Num of children returned here */
WS-DOM-ATTR-NODE-COUNT /* Num of attributes returned here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the nodes will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set t0 ws-DOM-SEL-NODE-ADR.

WS-DOM-SEQ Input/Output Mandatory
In format 1 requests, the total number of elements in the DOM tree is
returned in this variable. In format 2 requests, this variable is used as
input only. The user specifies the element sequence number that will
be used to select an element within the scope. In format 3 requests
this variable is input only and must be set to 0 by the user; the SOLA
DOM API will maintain an internal counter.

WS-DOM-TAG-NAME Input/Output Mandatory
For format 1 requests, this field must be populated on input with a
single asterisk. For format 2 requests, this field must be populated on
input with spaces and returns the element tag name. If using format 3
and in a case where a return code of +1 is returned, the parent element
name of the complex type that just ended will be returned here.

WS-DOM-VALUE-PTR Output Mandatory
The element’s address will be returned here.

WS-DOM-VALUE-LENGTH Output Mandatory
When an element has a text node attached, this field will contain the
length of the text value of the attribute.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. It can be used to limit the scope of a DOM tree
traversal (format 3) to all children of a specified parent. For formats 2
and 3, when specified in the CALL, the SOLA DOM API will return the
unique node identifier of the parent node.

WS-DOM-ELEMENT-ID Output Optional

93

‘r’ SOLA DOM API Parser Reference

This field is optional. When specified in the CALL, the SOLA DOM API
populates this variable with the unique node identifier of the element
found. This variable is a redefinition of WS-DOM-NODE-ID.

WS-DOM-NMS-NODE-ID Output Optional
This is the unique node identifier for a namespace. If there is a
namespace for the node, the unique node identifier of the namespace
will be returned in this variable, else a null value will be returned.

WS-DOM-CHILD-ELEM-COUNT Output Optional
If the element node has child elements (a Complex Type), the SOLA
DOM API populates this field with the child element node count.

WS-DOM-ATTR-NODE-COUNT Output Optional
If the element node has attribute nodes, the SOLA DOM API populates
this field with the attribute node count.

The following return codes are possible:

RC Value Meaning
o Successful - No messages issued.
A ComplexType element has ended or a Message Set has
+1 ended. The name of the ComplexType element that has
ended can be found in the WS-DOM-TAG-NAME parameter.
+2 Entire DOM Tree is traversed. SOLA DOM API will reset the
iterator.
Failed.
The following are the possible values for WS-DOM-MSG
field:
e Seq too high (the sequence value is higher than
the total number of element nodes in the
+8
document)
e Input error
Possible input errors could be:
e The function specified is not supported.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example
Format 1.

94

r’ SOLA DOM API Parser Reference

In this example we are retrieving a count of the elements in the DOM tree.
The number of element nodes in the tree is returned in WS-DOM-SEQ.

SET WS-DOM-SEL-NODE-ADR TO TRUE
MOVE '*x' TO WS-DOM-TAG-NAME

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME

Format 2.

In this example we are retrieving the address of a specific element
(element sequence number 3) from the DOM tree. In this format, we
specify the relative sequence number of the element in the tree. The
relative sequence number denotes the position of the element in the tree
(relative to the beginning) if the tree were to be expressed as an XML
stream. The first element in the XML stream has a relative sequence
number of 1, the second element has a relative sequence number of 2, etc.

SET WS-DOM-SEL-NODE-ADR TO TRUE
MOVE SPACES TO WS-DOM-TAG-NAME
MOVE +3 TO WS-DOM-SEQ

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

Format 3.

In this example we are traversing all of the elements in the DOM tree. In
this format, we set WS-DOM-SEQ to zero and initialize the internal counter
using the resetSelectNodes function (see page 67). We then iteratively call
the SOLA DOM API until we receive a return code of +1 or +2. In this
example, a +2 will be returned when the end of the document has been
reached (the last element in the scope) and a +1 will be returned when a
complexType has ended. The name of the complexType element that

ended will be returned in WS-DOM-TAG-NAME.
SET WS-DOM-SEL-NODE-ADR TO TRUE
MOVE ZERO TO WS-DOM-SEQ

95

‘r’ SOLA DOM API Parser Reference

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

END-PERFORM

In this second format 3 example we are limiting the scope of the traversal
of the DOM tree to all of the child elements of a specified parent. We limit
the scope by specifying the parent’s unique node identifier and setting the
WS-DOM-SEQ to zero. We are also requesting the unique node identifier of
the element, the unique node identifier of the element’s namespace (if
any), the number of child elements and number of attributes belonging to
the element.

Having set WS-DOM-SEQ to zero, we iteratively call the SOLA DOM API
until we receive a return code of +1 or +2. In this example, a +2 will be
returned when the end of the document has been reached (the last
element in the scope) and a +1 will be returned when a complexType has
ended. The name of the complexType element that ended will be returned
in WS-DOM-TAG-NAME.

SET WS-DOM-SELECT-NODES TO TRUE
MOVE ZERO TO WS-DOM-SEQ
MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID

PERFORM UNTIL WS-DOM-RC > +1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-SEQ,
WS-DOM-TAG-NAME,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-1ID,
WS-DOM-ELEMENT-ID,
WS-DOM-NMS-NODE-1ID,
WS-DOM-CHILD-ELEM-COUNT,
WS-DOM-ATTR-NODE-COUNT

END-PERFORM

96

‘r' SOLA DOM API Parser Reference

API| DESCRIPTIONS — XML CREATION AND MODIFICATION
FUNCTIONS

appendChild

| cics NBATEH |

The appendChild function appends a new child element to a specified
parent element. Optionally, a text node value can be attached to the
element by specifying a value in WS-DOM-VALUE and a value length in
WS-DOM-VALUE LENGTH.

The appendChild function is used when you are building a new XML
document or updating an existing XML document. If you are building a
new XML document, then you must have created the document using the
createDocument API. If you are updating an existing XML document, then
that document must already exist in the DOM tree. The variable WS-DOM-
HANDLE must be a valid handle that references the internal control blocks
and tree maintained by the SOLA DOM API.

The owning parent element node where the child element will be appended
can be specified in one of two ways. First, the parent element node can be
specified by populating the WS-DOM-PARENT field with the name of the
parent element. If multiple instances of the parent name exist within the
XML document, the child element will be appended to the first occurrence
of the parent element. The selected parent’s unique node identifier will be
returned in the WS-DOM-PARENT-NODE-ID field. Second, the parent node
identifier can be specified by populating the WS-DOM-PARENT-NODE-ID
field with the unique node identifier that uniquely identifies a node within
the XML DOM. Since the parent’s node identifier is more specific than the
parent name, the specification of a parent node identifier in the
appendChild request will take precedence over a parent nhame. The SOLA
DOM API will consider any value other than null value in the WS-DOM-
PARENT-NODE-ID field to be an input that will take precedence over WS-
DOM-PARENT.

After the appendChild function call is executed is executed successfully, if
the parent is a complexType element, then the child will added as the last
child of the element. If the element is not a complexType element, it will
become a complex type (with one child).

97

‘r’ SOLA DOM API Parser Reference

The appendChild function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char(80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PARENT, /* Name of the parent element */
WS-DOM-TAG-NAME, /* Space delimited. Names the child element */
WS-DOM-VALUE, /* The child text value (if any) */
WS-DOM-VALUE-LENGTH, /* The child text value length */
WS-DOM-PARENT-NODE-ID, /* Unique ID of the parent node */
WS-DOM-ELEMENT-ID /* The child ID will be returned here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the child element will be appended.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DoM-APPEND-CHILD.

WS-DOM-PARENT Input Mandatory
This field contains the parent element name. The value in this field is
mutually exclusive with WS-DOM-PARENT-NODE-ID. When the parent
name is duplicate, the SOLA DOM API picks the first element in the
document that has the matching parent name. The selected parent’s
unique node identifier will be returned in the field WS-DOM-PARENT-
NODE-ID after a successful call.

WS-DOM-TAG-NAME Input Mandatory
Populate this field with name of the element. The name of element must
end with a space for delimiting purposes.

WS-DOM-VALUE Input Mandatory
This field can be used to set the text node while appending the element
node in the same call. The length of this field is dependent on WS-DOM-
VALUE-LENGTH. This variable can be replaced with any other variable of
greater length.

98

‘r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-LENGTH Input Mandatory
This field controls the length of the text node to be added to the
element. When this value is set to zero, no text node is added.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This is an optional field. This field contains the unique node identifier of
the parent node. When specified (any value other than null) in the CALL
statement, it takes precedence over WS-DOM-PARENT field. On input
(any value other than null is considered input), the SOLA DOM API uses
this field to append a child element to the specified parent node. On
output, this field contains the unique node-id of the parent element to
which the child element is appended.

WS-DOM-ELEMENT-1ID Output Optional
This is an optional field. When specified in the CALL statement the
unique node identifier is returned in this variable. The unique node
identifier is an immutable property that uniquely identifies the node that
was just appended to the XML DOM. This node identifier can be used in
other XML SOLA DOM API functions to uniquely identify the node to be
operated on. This variable is a redefinition of WS-DOM-NODE-ID.

The following return codes are possible:

RC Value Meaning
0 Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Parent not found
e Parent node identifier does not exist

+8 e Input error
Possible input errors could be
e The function specified is not supported
e Element tag name not specified
+12 SOLA DOM API abended. Abend code - XXXX (four

character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

99

7

SOLA DOM API Parser Reference

Example

The following example appends the “Transaction” child element to the first
occurrence of the “"ResponseData” parent element in the XML document.
Since the parent is specified by name the WS-DOM-PARENT-NODE-ID
parameter is not used and is not specified. Additionally, the optional return
value WS-DOM-NODE-ID is not used and is not specified.

SET WS-DOM-APPEND-CHILD TO

TRUE
WS-DOM-TAG-NAME
WS-DOM-PARENT
WS-DOM-VALUE
WS-DOM-VALUE-LENGTH

MOVE 'Transaction' TO
MOVE 'ResponseData' TO
MOVE SPACES TO
MOVE ZERO TO
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

The next example is the same as the previous example in that it appends
the “Transaction” child element to the first occurrence of the
“ResponseData” parent element in the XML document. In this example the
node identifier of the node to be appended to ("ResponseData”, the parent
node) has its unique node identifier saved in SAVED-PARENT-ID. This
value is moved to WS-DOM-PARENT-NODE-ID, which is used to uniquely
identify "“ResponseData” as the parent to be appended to.

WS-DOM-PARENT is not used in this case and is replaced by WS-DOM-

PLACE-HOLDER.

WS-DOM-TAG-NAME
WS-DOM-PARENT-NODE-ID
WS-DOM-VALUE
WS-DOM-VALUE-LENGTH

SET WS-DOM-APPEND-CHILD TO TRUE
MOVE 'Transaction' TO
MOVE SAVED-PARENT-ID TO
MOVE SPACES TO
MOVE ZERO TO
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-ELEMENT-ID

100

‘r’ SOLA DOM API Parser Reference

appendChildBefore

| cics NBATGH |

The appendChildBefore function is used to add an element before a
particular element. The element node to be added will share the same
parent as the element that it is to be appended before. The
appendChildBefore function requires you to specify the unique node
identifier (WS-DOM-NODE-ID) before which an insertion will be made. You
can obtain the unique node identifier with the getElementBy* function calls.

A text node for the child element can be specified in the function call by
populating WS-DOM-VALUE with the value of the text to be added, and
populating WS-DOM-VALUE-LENGTH with the length of the text. A length
of zero specifies that no text is to be added.

The appendChildBefore function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-TAG-NAME, /* Space delimited. Names the child element */
WS-DOM-VALUE, /* The child text value (if any) */
WS-DOM-VALUE-LENGTH, /* The child text value length */
WS-DOM-PARENT-NODE-ID, /* Unique parent node id */
WS-DOM-ELEMENT-ID /*Input- node to add before. Output- node added */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the child element will be appended.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-APPEND-CHILD-BEFORE.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-TAG-NAME Input Mandatory
Populate this field with name of the element. The name of the element
must end with a space for delimiting purposes.

101

l SOLA DOM API Parser Reference

WS-DOM-VALUE Input Mandatory
This field can be used to set the text node while appending the element
node in the same call. The length of this field is dependent on WS-DOM-
VALUE-LENGTH. This variable can be replaced with any other variable of
greater length.

WS-DOM-VALUE-LENGTH Input Mandatory
This field controls the length of the text node to be added to the
element. When this value is set to zero, no text node is added.

WS-DOM-PARENT-NODE-ID Output Optional
This is an optional field. This field contains the unique node identifier of
the parent element node to which the child element is appended. This is
the same parent element that is shared by the newly appended element
and the reference element before which the new node is appended.

WS-DOM-ELEMENT-ID Input/Output Mandatory
On input, this field must be populated with the element node identifier
that uniquely identifies the element node before which the new element
will be added. After the call, the output value contains the node
identifier of the newly added element node. This variable is a
redefinition of WS-DOM-NODE-ID.

The following return codes are possible:
RC Value Meaning

0 Successful - No messages issued.
Failed
The following are the possible values for WS-DOM-MSG
field:

e Reference node identifier doesn’t exist
+8 e Input error

Possible input errors could be:
e The function specified is not supported.
e Element tag name not specified.

SOLA DOM API abended. Abend code - XXXX (four
character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

+12

Example

102

r’ SOLA DOM API Parser Reference

Use WS-DOM-NODE-ID to indicate which node the new element will be
inserted before. In the example below, a new element ‘Terminal’ will be
inserted before ‘Transaction’, which had its node identifier saved in SAVED-
NODE-ID. After the successful completion of the call, the node identifier of
the new node will be returned in WS-DOM-ELEMENT-ID.

SET WS-DOM-APPEND-CHILD-BEFORE TO TRUE

MOVE ‘Terminal’ TO WS-DOM-TAG-NAME
MOVE SAVED-NODE-ID TO WS-DOM-ELEMENT-ID
MOVE SPACES TO WS-DOM-VALUE

MOVE ZERO TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PLACE-HOLDER,
WS-DOM-ELEMENT-ID

103

‘r' SOLA DOM API Parser Reference

appendChildNL

]

The appendChildNL function is identical to appendChild, except that it will
also insert a newline character into the document before appending the
child element node. This feature is useful when you will be writing the XML
document to a file and you want to break the document up into lines.

The appendChildNL function appends a new child element to a specified
parent element (and inserts a newline character before doing so).
Optionally, a text node value can be attached to the element by specifying
a value in WS-DOM-VALUE and a value length in WS-DOM-VALUE LENGTH.

The appendChildNL function is used when you are building a new XML
document or updating an existing XML document. If you are building a
new XML document, then you must have created the document using the
createDocument API. If you are updating an existing XML document, then
that document must already exist in the DOM tree (your program must be
running in batch). The variable WS-DOM-HANDLE must be a valid handle
that references the internal control blocks and tree maintained by the SOLA
DOM API.

The owning parent element node where the child element will be appended
can be specified in one of two ways. First, the parent element node can be
specified by populating the WS-DOM-PARENT field with the name of the
parent element. If multiple instances of the parent name exist within the
XML document, the child element will be appended to the first occurrence
of the parent element. The selected parent’s unique node identifier will be
returned in the WS-DOM-PARENT-NODE-ID field. Second, the parent node
identifier can be specified by populating the WS-DOM-PARENT-NODE-ID
field with the unique node identifier that uniquely identifies a node within
the XML DOM. Since the parent’s node identifier is more specific than the
parent name, the specification of a node identifier in the appendChildNL
request will take precedence over a parent name. The SOLA DOM API will
consider any value other than null value in the WS-DOM-PARENT-NODE-ID
field to be an input that will take precedence over WS-DOM-PARENT.

After the appendChild function call is executed is executed successfully, if
the parent is a complexType element, then the child will added as the last
child of the element. If the element is not a complexType element, it will
become a complex type (with one child).

104

‘r’ SOLA DOM API Parser Reference

The appendChildNL function is a batch only function.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char(80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PARENT, /* Name of the parent element */
WS-DOM-TAG-NAME, /* Space delimited. Names the child element */
WS-DOM-VALUE, /* The child text value (if any) */
WS-DOM-VALUE-LENGTH, /* The child text value length */
WS-DOM-PARENT-NODE-ID, /* Unique ID of the parent node */
WS-DOM-ELEMENT-ID /* The child ID will be returned here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the child element will be appended.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DoM-APPEND-CHILDNL.

WS-DOM-PARENT Input Mandatory
This field contains the parent element name. The value in this field is
mutually exclusive with WS-DOM-PARENT-NODE-ID. When the parent
name is duplicate, the SOLA DOM API picks the first element in the
document that has the duplicate parent name. The selected parent’s
unique node identifier will be returned in the field WS-DOM-PARENT-
NODE-ID after a successful call.

WS-DOM-TAG-NAME Input Mandatory
Populate this field with name of the element. The name of element must
end with a space for delimiting purposes.

WS-DOM-VALUE Input Mandatory
This field can be used to set the text node while appending the element
node in the same call. The length of this field is dependent on WS-DOM-
VALUE-LENGTH. This variable can be replaced with any other variable of
greater length.

105

‘r’ SOLA DOM API Parser Reference

WS-DOM-VALUE-LENGTH Input Mandatory
This field controls the length of the text node to be added to the
element. When this value is set to zero, no text node is added.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This is an optional field. When specified (any value other than null) in
the CALL statement, it takes precedence over WS-DOM-PARENT field.
On input (any value other than null is considered input), the SOLA DOM
API uses this field to append a child element to the specified parent
node. On output, this field contains the unique node-id of the parent
element to which the child element is appended.

WS-DOM-ELEMENT-1ID Output Optional

This is an optional field. When specified in the CALL statement the
unique node identifier of the node is returned in this variable. The
unique node identifier is an immutable property that uniquely identifies
the node that was just appended to the XML DOM. This node identifier
can be used in other XML SOLA DOM API functions to uniquely identify
the node to be operated on. This variable is a redefinition of WS-DOM-
NODE-ID.

The following return codes are possible:

RC Value Meaning
0 Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Parent not found
e Parent node identifier does not exist

+8 e Input error
Possible input errors could be
e The function specified is not supported
e Element tag name not specified
+12 SOLA DOM API abended. Abend code - XXXX (four

character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.

106

7

SOLA DOM API Parser Reference

Example

The following example appends the “Transaction” child element to the first
occurrence of the “"ResponseData” parent element in the XML document.
Since the parent is specified by name the WS-DOM-PARENT-NODE-ID
parameter is not used and is not specified. Additionally, the optional return
value WS-DOM-NODE-ID is not used and is not specified.

SET WS-DOM-APPEND-CHILDNL TO TRUE

MOVE 'Transaction' TO WS-DOM-TAG-NAME
MOVE 'ResponseData' TO WS-DOM-PARENT

MOVE SPACES TO WS-DOM-VALUE

MOVE ZERO TO WS-DOM-VALUE-LENGTH
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

The next example is the same as the previous example in that it appends
the “Transaction” child element to the first occurrence of the
“ResponseData” parent element in the XML document. In this example the
node identifier of the node to be appended to ("ResponseData”, the parent
node) has its unique node identifier saved in SAVED-PARENT-ID. This
value is moved to WS-DOM-PARENT-NODE-ID, which is used to uniquely
identify "“ResponseData” as the parent to be appended to.

WS-DOM-PARENT is not used in this case and is replaced by WS-DOM-

PLACE-HOLDER.

TRUE

WS-DOM-TAG-NAME
WS-DOM-PARENT-NODE-ID
WS-DOM-VALUE
WS-DOM-VALUE-LENGTH

SET WS-DOM-APPEND-CHILDNL TO
MOVE 'Transaction' TO
MOVE SAVED-PARENT-ID TO
MOVE SPACES TO
MOVE ZERO TO
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-NODE-ID

107

‘r' SOLA DOM API Parser Reference

appendTextNode

| cics NBATGH |

The appendTextNode function is used to add a child text node to an
element node. Please note that appendTextNode is used only to add a text
node to an element node. In order to add text to an attribute node use the
setAttribute function.

If an element is a complexType and does not have a text node and a text
node is added to it, the XML will become a mixed type XML. The text node
will be added after the last child.

If a text node already exists for the element, a return code of +3 will be
returned and no action will be taken.

The specification of a parent node identifier as search criteria for the
appendTextNode request overrides any parent name specified as search
criteria. The SOLA DOM API will consider any value other than a null value
in the WS-DOM-PARENT-NODE-ID field to be an input value and will ignore
WS-DOM-PARENT.

In the XML fragment below, the element “School” has two attributes,

“Location” and “Type”. It has no text node.
<School Location="NJ" Type="Public”></School>

The appendTextNode function can be used to attach a text node to an
element. As can be seen in the XML fragment below, the “"School” element

has a text node value of “Rutgers”.
<School Location="NJ" Type="Public”>Rutgers</School>

The appendTextNode function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-PARENT, /* The tag name of the parent node */
WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-VALUE, /* The text value of the node to be added */

WS-DOM-VALUE-LENGTH, /* Length of the text value */
WS-DOM-PARENT-NODE-ID /* Unique id of the parent node */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory

108

‘r’ SOLA DOM API Parser Reference

When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the text node will be appended.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-APPEND-TEXT-NODE.

WS-DOM-PARENT Input Mandatory
The SOLA DOM API will use this variable to search for a parent element
with a matching name. If there are duplicates, the first parent with a
matching name will be selected. The selected parent’s unique node
identifier will be returned in the field WS-DOM-PARENT-NODE-ID after a
successful call.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-VALUE Input Mandatory
Populate this variable with a text string and the SOLA DOM API will use
this value to append the text node to an element node.

WS-DOM-VALUE-LENGTH Input Mandatory
Specify the length of text string to be appended.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. When specified (any value other than null) in the
CALL statement, it takes precedence over WS-DOM-PARENT field. On
input (any value other than null is considered input), the SOLA DOM API
uses this field to append a text node to the specified parent node. On
output, this field contains the unique node-id of the parent element to
which the child text node is appended.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.

+3 Text node already exists. No action taken.

109

‘r’ SOLA DOM API Parser Reference

RC Value Meaning

Failed.

The following are the possible values for WS-DOM-MSG
field:

e Parent not found
e Specified parent node doesn’t exist

+8 e Input error
Possible input errors could be:
e The function specified is not supported.
¢ Neither parent tag name nor parent node
identifier are specified.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In the example below a text node value is being appended. The element to
have a text node appended to it is identified by the unique node identifier
of the parent node (in this case “Transaction”) that was stored in SAVED-
PARENT-NODE. The value of the text node is "TR01” which has a length of

4 bytes.

SET WS-DOM-APPEND-TEXT-NODE TO TRUE

MOVE SAVED-PARENT-NODE TO WS-DOM-PARENT-NODE-ID
MOVE ‘TRO1’ TO WS-DOM-VALUE

MOVE +4 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID

In this next example the same text node value is being appended. This
time the element node to have a text node appended to it is identified by
specifying the tag name of the parent node (in this case “Transaction”). If
there is more than one element that matches this criterion then the text
node will be appended to the first element. The value of the text node is
“TRO1” which has a length of 4 bytes.

110

r‘ SOLA DOM API Parser Reference

SET WS-DOM-UPDATE-TEXT-NODE TO TRUE

MOVE 'Transaction' TO WS-DOM-PARENT
MOVE “‘TROL1’ TO WS-DOM-VALUE
MOVE +4 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-PLACE-HOLDER,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

111

‘r' SOLA DOM API Parser Reference

createDocument

| cics NBATGH |

The createDocument function creates the root element of a document.
Whenever you need to create a new XML document, use this function.
When creating a new XML document, before you can add elements or
attributes to the document you must first create the internal XML tree and
control blocks using the createDocument function.

The name of the root element of the document is specified in the WS-DOM-
TAG-NAME variable. This value will be used as the parent value in
subsequent appendChild functions.

The WS-DOM-CONTROL variable is used to specify special document
processing instructions.

Pay special attention to the pointer variable, WS-DOM-HANDLE. This is a
pointer variable that the SOLA DOM API uses to manage the storage (XML
tree and control blocks) associated with an XML document. On the first call
to the SOLA DOM API, you should set WS-DOM-HANDLE to null. This will
force the SOLA DOM API to acquire storage and return you a valid handle
in WS-DOM-HANDLE. To continue working on a given document the same
handle must be passed to the SOLA DOM API on subsequent calls. If you
are creating multiple documents in sequence (as you might do in a batch
job) then you can reuse the handle on subsequent createDocument calls to
force the SOLA DOM API to reuse the acquired storage. If you no longer
need the storage acquired (or the tree itself), you can use the freeStorage
function call. If you need to manipulate multiple XML documents
simultaneously, you can do this by maintaining multiple handles.

The createDocument function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-CONTROL, /* Specifies special processing */
WS-DOM-TAG-NAME, /* Space delimited. Names the root element */
WS-DOM-PLACE-HOLDER, /* Placehoder. */

WS-DOM-PLACE-HOLDER, /* Placehoder. */

WS-DOM-PLACE-HOLDER, /* Placehoder. */

WS-DOM-ELEMENT-ID /* The node id of the root will be returned */

When coding the parameters for this API call please refer to the Invocation
of Services section on page 17.

112

‘r' SOLA DOM API Parser Reference

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input/Output Mandatory
For internal use. Must be set to null in the very first call. The SOLA DOM
API populates this variable, when null, to be used in subsequent calls.
The handle can be reused for multiple XML document creation. If you
wish to manipulate multiple documents concurrently you can do this by
maintaining multiple DOM handles. The DOM handle returned by the
createDocument function uniquely defines the XML DOM tree that
subsequent functions operate on.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-CREATE-DOC.

WS-DOM-CONTROL Input Mandatory
WS-DOM-CONTROL is used with the createDocument function to add
comments in the beginning of the XML document. WS-DOM-CONTROL
will honor the following values:

0 No special processing is performed.

2 Passing this value will add the following at the
beginning of the XML.:

<?xml version="1.0" encoding="UTF-8" ?>

3 Passing this value will add the following at the
beginning of the XML:

<?xml version="1.0" encoding="cp037" ?>

6 Passing this value will add the following at the
beginning of the XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

7 Passing this value will add the following at the
beginning of the XML:

<?xml version="1.0" encoding="cp037" standalone="yes" ?>

113

r’ SOLA DOM API Parser Reference

WS-DOM-TAG-NAME Input Mandatory
Contains the name of the root element.

WS-DOM-PLACE-HOLDER Place holder Optional
WS-DOM-PLACE-HOLDER Place holder Optional
WS-DOM-PLACE-HOLDER Place holder Optional
WS-DOM-ELEMENT-ID Output Optional

After the call, the output value will contain the unique node identifier of
the newly added root element node. This variable is a redefinition of
WS-DOM-NODE-ID.

The following return codes are possible:
RC Value Meaning

0 Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

e Not enough memory to create the tree
e Invalid DOM Control Value

+8 e Input error
Possible input errors could be:
e The function specified is not supported.
e Root element tag name not specified.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In the following example we are creating a new XML document. The root
element of the document is called "ResponseData”.

We are setting WS-DOM-HANDLE to null (we are telling the SOLA DOM API
to acquire storage for the XML tree and control blocks). If we had wanted
to reuse the storage from an already existing DOM tree we could have used
an already valid WS-DOM-HANDLE.

Because we don’t want special processing WS-DOM-CONTROL is set to
zero.

114

r’ SOLA DOM API Parser Reference

SET WS-DOM-CREATE-DOC TO TRUE

MOVE 'ResponseData' TO WS-DOM-TAG-NAME
SET WS-DOM-HANDLE TO NULL
MOVE ZERO TO WS-DOM-CONTROL

CALL WS-DOM-API USING
WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-CONTROL,
WS-DOM-TAG-NAME

In the following example we are creating a new XML document. The root
element of the document is called “"Widget”.

We want to reuse the storage from an already existing DOM tree, therefore
we are supplying a used and already valid WS-DOM-HANDLE that was
saved in WS-SAVED-DOM-HANDLE.

Because we don’t want special processing WS-DOM-CONTROL is set to
zero.

After the call, we will receive the unique node identifier of the newly
created root element.

SET WS-DOM-CREATE-DOC TO TRUE

MOVE 'Widget' TO WS-DOM-TAG-NAME
SET WS-DOM-HANDLE TO WS-SAVED-DOM-HANDLE
MOVE ZERO TO WS-DOM-CONTROL

CALL WS-DOM-API USING
WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-CONTROL,
WS-DOM-TAG-NAME,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-ELEMENT-ID

115

‘r' SOLA DOM API Parser Reference

finalize

| cics NBATGH |

The finalize function is used to finalize and optionally retrieve a newly
created XML document. Finalize will convert the DOM tree into an XML
stream, as it does so all open tags will be closed and the document will be
made ready to be externalized. The finalize function returns a pointer to
the XML document. The SOLA DOM API will acquire storage for the XML
document and will then convert the DOM tree into an XML stream, storing
it in the acquired storage. WS-DOM-VALUE-LENGTH will contain the length
of the XML document. The finalize function does not release the storage
used for the document, the tree and its own control block structure. One
way to release the storage acquired is by using the freeStorage (see
miscellaneous functions on page - 141) function call.

Once finalized, the document can be accessed with the address pointer.
Alternatively, the document can be accessed using the retrieve function.

If you experience a S878-10 abend in batch then a likely cause could be
failing to use the freeStorage function to release storage while finalizing
multiple documents.

The finalize function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-VALUE-PTR, /* Output pointer to the XML document */
WS-DOM-VALUE-LENGTH /* Output length of the XML document */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree that will be finalized.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DoM-FINALIZE.

116

v

SOLA DOM API Parser Reference

WS-DOM-PLACE-HOLDER

WS-DOM-PLACE-HOLDER

WS-DOM-VALUE-PTR

Place holder
Place Holder

Output

Mandatory
Mandatory

Mandatory

The SOLA DOM API will acquire storage and populate the area with an
XML string (the completed XML document). This variable contains the
pointer to the XML document.

WS-DOM-VALUE-LENGTH Output Mandatory
The SOLA DOM API will populate this variable with the length of the
newly built XML document.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

+8

e Input error

Possible input errors could be:
e The function specified is not supported.
SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example we are using the finalize function to complete the XML
document and return a pointer (WS-DOM-VALUE-PTR) to the newly created
document. Exercise caution when using finalize as it does not release the
the storage acquired by the SOLA DOM API. This storage can be released
with the freeStorage (refer to page 141) function.

SET WS-DOM-FINALIZE TO TRUE

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-VALUE-PTR,
WS-DOM-VALUE-LENGTH

117

‘r’ SOLA DOM API Parser Reference

getXMLLength

fBaTcH

The getXMLLength function retrieves the length of the completed XML
document. The getXMLLength function is useful if you need to determine
the amount of storage you will need to store the XML document.

This function can be executed at any time after the createDocument
function has been executed.

The getXMLLength function only works in batch. It is designed to work
with the appendChildNL, and retrieve APIs in batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-VALUE-LENGTH /* Length of the XML doc */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which the XML length will be retrieved.

WS-DOM-FUNCTION Input Mandatory
Must be set to wsS-DOM-GET-XML-LEN.

WS-DOM-PLACE-HOLDER Place holder Mandatory
WS-DOM-PLACE-HOLDER Place holder Mandatory
WS-DOM-PLACE-HOLDER Place Holder Mandatory
WS-DOM-VALUE-LENGTH Output Mandatory

This field will return the length of the XML at the time of the call.

The following return codes are possible:

118

‘r’ SOLA DOM API Parser Reference

RC Value Meaning

o Successful - No messages issued.
Failed.
The following are the possible values for WS-DOM-MSG
field:

+8 e Input error

e This function is only supported in batch mode

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In this example, we are getting the length of the XML document referenced
by WS-DOM-HANDLE.

SET WS-DOM-GET-XML-LEN TO TRUE

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-VALUE-LENGTH

119

‘r’ SOLA DOM API Parser Reference

removeNode

| cics NBATGH |

The removeNode function removes any type of node (element, attribute or
namespace node) from an XML document. The node to be removed is identified
by the node’s unique identifier, which is referenced in WS-DOM-NODE-ID. The
type of node to be removed is specified in WS-DOM-NODE-TYPE.

If the node to be removed is a complex type element then the node and all
nodes that depend on that node (its children) will be removed from the tree.
If an attribute node is removed, it is removed from its parent, and the parent
no longer has that attribute attached to it. If a namespace node is removed,
all elements that reference the removed namespace will use the default
namespace.

The removeNode function cannot remove text nodes. To remove textNodes,
use the updateTextNode function.

The allowable values for WS-DOM-NODE-TYPE are:

Node Type Value
Element 1
Attribute 2
Namespace 3

The removeNode function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */

WS-DOM-NODE-ID, /* Unique ID of the node to be removed */
WS-DOM-NODE-TYPE /* Type of the node to be removed */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the node will be removed.

120

r’ SOLA DOM API Parser Reference

WS-DOM-FUNCTION Input Mandatory
Must be set t0 Wws-DOM-REMOVE-NODE.

WS-DOM-NODE-ID Input Mandatory
Specify the unique node identifier representing the node identifier of the
element, attribute or namespace to be removed. To remove a text node
of an element node use the updateTextNode function and set the text
length to zero. To remove the text of an attribute node use the
updateAttribute function and set the text length to zero.

WS-DOM-NODE-TYPE Input Mandatory
Set this variable to the appropriate node type; 1 for an element, 2 for
an attribute or 3 for a namespace node.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.
Failed
The following are the possible values for WS-DOM-MSG
field:

e Node identifier doesn’t exist
+8 e Input error

Possible input errors could be:
e The function specified is not supported.
e Node type not recognized.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In the example below, an element node is being removed. An element node
is specified by setting WS-DOM-ELEMENT-NODE. The element node to be
removed is referenced by the node identifier that has been saved in SAVED-
NODE-ID.

SET WS-DOM-REMOVE-NODE TO TRUE
SET WS-DOM-ELEMENT-NODE TO TRUE
MOVE SAVED-NODE-ID TO WS-DOM-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-NODE-ID,
WS-DOM-NODE-TYPE
121

‘r’ SOLA DOM API Parser Reference

retrieve

| cics NBATGH |

The retrieve function retrieves (gets) XML records.

The retrieve function finalizes the document and then gets the complete (if
appendChildNL was not used) document and copies it to a data area that
you provide. On zero return code, the SOLA DOM API will then release any
storage space used for internal usage such as storage for storing the DOM
tree and the control blocks etc. After retrieve has completed, the WS-
DOM-HANDLE will no longer be valid.

If appendChildNL was used then the retrieve function will fetch the
document in pieces, each piece ending in a newline. In this case you will
receive a return code of +1 when the data you are retrieving is delimited
by a newline and you will have to call the retrieve function repeatedly until
you receive a zero return code. The storage occupied by the SOLA DOM
API will be released once the entire document has been retrieved and a
zero return code has been issued.

The retrieve function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */

WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
your-data-area, /* The document will be returned here */
WS-DOM-VALUE-LENGTH, /* Length of the returned document */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-PLACE-HOLDER, /* placeholder */
WS-DOM-MAX-LENGTH /* Can specify max length of data here */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree from which XML will be retrieved.
122

r’ SOLA DOM API Parser Reference

WS-DOM-FUNCTION Input Mandatory
Must be set to WS-DOM-RETRIEVE.

WS-DOM-PLACE-HOLDER Place holder Mandatory
WS-DOM-PLACE-HOLDER Place Holder Mandatory
Your-data-Area Output Mandatory
The SOLA DOM API will populate this variable with the retrieved XML
string.
WS-DOM-VALUE-LENGTH Output Mandatory

The SOLA DOM API will populate this variable with the length of the
newly built XML.

WS-DOM-PLACE-HOLDER Place holder Mandatory
WS-DOM-PLACE-HOLDER Place Holder Mandatory
WS-DOM-PLACE-HOLDER Place holder Mandatory
WS-DOM-PLACE-HOLDER Place Holder Mandatory
WS-DOM-PLACE-HOLDER Place Holder Mandatory
WS-DOM-MAX-LENGTH Input Optional

This optional field, when specified, tells the SOLA DOM API to truncate
data in the WS-DOM-VALUE field (to WS-DOM-MAX-LENGTH) if WS-
DOM-VALUE-LENGTH exceeds WS-DOM-MAX-LENGTH. A return code of
+5 is returned if the returned data is truncated. In this case, WS-DOM-
VALUE-LENGTH contains the full length of the data but the data in your
data area is truncated to WS-DOM-MAX-LENGTH. Subsequent calls to
the retrieve function will retrieve the data that was truncated (data will
not be lost as a result of truncation).

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.

Returned data is truncated at a newline character. More
data is available.

Returned data is bigger than allowed. Data truncated to
the specified Length.

+1

+5

123

‘r’ SOLA DOM API Parser Reference

RC Value Meaning

Failed.
The following are the possible values for WS-DOM-MSG
field:

+8 e Input error

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In the example below, a completed XML document is being retrieved into
WS-DATA-AREA. On successful completion of the retrieve function, the
internal storage will be released and WS-DOM-HANDLE will no longer be
valid. WS-DATA-AREA is 32,000 bytes long so WS-DOM-MAX-LENGTH is
set to 32,000 bytes. If the XML document exceeds 32,000 bytes then the
first 32,000 bytes are retrieved into WS-DATA-AREA and WS-DOM-RC is
set to +5.

SET WS-DOM-RETRIEVE TO TRUE

MOVE 32000 TO WS-DOM-MAX-LENGTH
CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,

WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DATA-AREA,
WS-DOM-VALUE-LENGTH,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-MAX-LENGTH

IF WS-DOM-RC = 5 THEN
END-IF
In this second example below the appendChildNL function was used while

building the XML. The retrieve function honors the newline characters that

124

r’ SOLA DOM API Parser Reference

were inserted by the appendChildNL function and returns the document line
by line. The retrieve function is called repeatedly until the return code is
not equal to +1.

SET WS-DOM-RETRIEVE TO TRUE
PERFORM WHILE WS-DOM-RC = 1
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DATA-AREA

END-PERFORM

125

‘r' SOLA DOM API Parser Reference

setAttribute

| cics NBATGH |

The setAttribute function is used to add and attach attributes (name/value
pairs) to an element. The element to have attributes attached to it can be
identified either by specifying the parent’s name (in WS-DOM-PARENT) or
by using the unique node identifier for the parent in WS-DOM-PARENT-
NODE-ID.

If you have specified the parent node using WS-DOM-PARENT field with the
name of the parent element and multiple instances of the parent name
exist within the XML document, then the attribute will be appended to the
first occurrence of the parent element. The selected parent’s unique node
identifier will be returned in the WS-DOM-PARENT-NODE-ID field.

Alternatively, the parent node identifier can be specified by populating the
WS-DOM-PARENT-NODE-ID field with the unique node identifier of the
parent element node. Since the node identifier is more specific than the
parent name, the specification of a node identifier in the setAttribute
request will take precedence over the parent name. The SOLA DOM API will
consider any value other than null value in the WS-DOM-PARENT-NODE-ID
field to be an input that will take precedence over WS-DOM-PARENT.

The setAttribute function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */
WS-DOM-PARENT, /* The tag name of the parent node */
WS-DOM-TAG-NAME, /* The attribute tag name to be added */
WS-DOM-VALUE, /* The text value of the node to be added */

WS-DOM-VALUE-LENGTH, /* Length of the text value */
WS-DOM-PARENT-NODE-ID, /* Unique id of the parent node */
WS-DOM-ATTRIBUTE-ID /* The node identifier will be returned here
*/

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory

126

‘r' SOLA DOM API Parser Reference

For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the attribute will be set.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-SET-ATTRIBUTE.

WS-DOM-PARENT Input Mandatory
SOLA DOM API will use this variable to search for a parent element with
a matching name. If there are duplicates, then the first parent with a
matching name will be picked. The selected parent’s unique node
identifier will be returned in the field WS-DOM-PARENT-NODE-ID after a
successful call.

WS-DOM-TAG-NAME Input Mandatory
Populate this field with name of the attribute. The name of the attribute
must end with a space for delimiting purposes.

WS-DOM-VALUE Input Mandatory
Populate this variable with a text string and SOLA DOM API will add this
value as the text of the attribute node.

WS-DOM-VALUE-LENGTH Input Mandatory
Specify the length of the text string to be added.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. This field contains the unique node identifier of
the parent node. When specified (any value other than null) in the CALL
statement, it takes precedence over WS-DOM-PARENT field. On input
(any value other than null is considered input), the SOLA DOM API uses
this field to add and attach a child attribute to the specified parent
node. On output, this field contains the unique parent-node-id of the
parent element to which the child attribute is attached.

WS-DOM-ATTRIBUTE-ID Output Optional

This field, when specified in the CALL, will be used as an output field for
the SOLA DOM API. It will be populated with the unique node identifier
of the newly created attribute node. This variable is a redefinition of
WS-DOM-NODE-TYPE.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.

127

‘r’ SOLA DOM API Parser Reference

RC Value Meaning

Failed

The following are the possible values for WS-DOM-MSG
field:

e Parent not found
e Specified parent node doesn’t exist

+8 e Input error
Possible input errors could be:
e The function specified is not supported.
e Attribute tag name not specified.
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In the example below an attribute node is being added to the element node
named “ResponseData”. If more than one “ResponseData” element exists
in the DOM tree then the attribute will be added to the first instance of that
element in the tree. The attribute name is “Program” and the value of the
attribute is “"CICS1234".

SET WS-DOM-SET-ATTRIBUTE TO TRUE

MOVE 'Program' TO WS-DOM-TAG-NAME
MOVE 'ResponseData' TO WS-DOM-PARENT

MOVE 'CICS1234' TO WS-DOM-VALUE

MOVE +8 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-TAG-NAME,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

This second example below is functionally equivalent to the example above
in that an attribute node is being added to the element node named
“ResponseData”. In this example the element node is referenced by its node
id, not by name. Because the SOLA DOM API detects that the parent node
identifier is being specified it will ignore the value in the variable WS-DOM-
PARENT. For reasons of clarity the example below shows that WS-DOM-
PLACE-HOLDER is used in place of WS-DOM-PARENT.

128

SOLA DOM API Parser Reference

SET WS-DOM-SET-ATTRIBUTE TO TRUE

MOVE 'Program' TO WS-DOM-TAG-NAME

MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID
MOVE 'CICS1234" TO WS-DOM-VALUE

MOVE +8 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-TAG-NAME ,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH
WS-DOM-PARENT-NODE-ID,
WS-DOM-ATTRIBUTE-ID

129

‘r' SOLA DOM API Parser Reference

setNamespace

| cics NBATGH |

The setNamespace function is used to add and attach a namespace (when
not present) or just attach a namespace (when present) to an element.
The element that is to have a namespace attached to it can be identified
either by specifying the element’s name (in WS-DOM-PARENT) or by using
its unique node identifier in WS-DOM-PARENT-NODE-ID.

If you have specified the parent node name using WS-DOM-PARENT and
multiple instances of the parent name exist within the XML document, then
the namespace will be appended to the first occurrence of the parent
element. The selected parent’s unique node identifier will be returned in
the WS-DOM-PARENT-NODE-ID field.

Alternatively, the parent node identifier can be specified by populating the
WS-DOM-PARENT-NODE-ID field with the unique node identifier of the
parent element node. Since the node identifier is more specific than the
parent name, the specification of a node identifier in the setNamespace
request will take precedence over the parent name.

The setNamespace function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char(25). The name of the API */
WS-DOM-PARENT, /* The tag name of the parent node */
WS-DOM-NMS-ALIAS, /* The alias name to be added */
WS-DOM-NAMESPACE, /* The value of namespace to be added */

WS-DOM-VALUE-LENGTH, /* Length of the namespace value */
WS-DOM-PARENT-NODE-ID, /* Unique id of the parent node */
WS-DOM-PLACE-HOLDER, /* placeholder */

WS-DOM-NMS-NODE-ID /* The ID of the namespace node */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the namespace will be set.

130

‘r' SOLA DOM API Parser Reference

WS-DOM-FUNCTION Input Mandatory
Must be set to wS-DOM-SET-NAMESPACE.

WS-DOM-PARENT Input Mandatory
SOLA DOM API will use this variable to search for the parent element
with a matching name. If there are duplicates, then the first parent with
a matching name will be picked. The parent’s unique node identifier of
the selected parent will be returned in the field WS-DOM-PARENT-
NODE-ID after successful call.

WS-DOM-NMS-ALIAS Input Mandatory
This field contains the value of the namespace alias that will be added
and attached to an element. This field can contains spaces, when alias
is not needed.

WS-DOM-NAMESPACE Input Mandatory
This field contains the value of the namespace that will be associated
with the element node. This field can contain spaces when WS-DOM-
NMS-NODE-ID is used as input. WS-DOM-PLACE-HOLDER can optionally
be used to indicate absence of WS-DOM-NAMESPACE.

WS-DOM-VALUE-LENGTH Input Mandatory
Specify the length of the namespace text string to be added.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. This field contains the unique node identifier of
the parent node. When specified (any value other than null) in the CALL
statement, it takes precedence over WS-DOM-PARENT field. On input
(any value other than null is considered input), the SOLA DOM API uses
this field to add and attach (or just attach when present) a namespace
node to the specified parent node. On output, this field contains the
unique parent-node-id of the parent element to which the namespace
was attached.

WS-DOM-PLACE-HOLDER Place holder Optional

WS-DOM-NMS-NODE-ID Input Optional
This field is optional. Specify the unique node identifier representing
the node identifier of the namespace node and the SOLA DOM API will
search for a namespace for this given node identifier to attach the
parent element. When specified (value other than null) in the CALL
statement, it takes precedence over WS-DOM-NAMESPACE and WS-
DOM-NMS-ALIAS fields.

The following return codes are possible:

131

‘r’ SOLA DOM API Parser Reference

RC Value Meaning
o Successful - No messages issued.
Failed
The following are the possible values for WS-DOM-MSG
field:
e Parent not found
e Specified parent node doesn’t exist
+8 e Specified namespace node doesn’t exist
e Input error
Possible input errors could be:
e The function specified is not supported.
e The namespace value is not specified
SOLA DOM API abended. Abend code - XXXX (four
+12 ;
character code returned at run time).
+16 WS-DOM-HANDLE doesn’t contain a valid handle.
Example

In the example below, a namespace node is being added to the element node
named “ResponseData”. If more than one “"ResponseData” elements exists
in the DOM tree, then the namespace will be added to the first instance of
that element in the tree. The namespace alias is “sola” and the value of the
namespace is “http://www.sola.com”.

SET WS-DOM-SET-NAMESPACE TO TRUE

MOVE 'sola' TO WS-DOM-NMS-ALIAS
MOVE 'ResponseData' TO WS-DOM-PARENT

MOVE 'http://www.sola.com' TO WS-DOM-NAMESPACE
MOVE +19 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-NMS-ALIAS,
WS-DOM-NAMESPACE,
WS-DOM-VALUE-LENGTH

This second example below is functionally equivalent to the example above
in that a namespace node is being added to the element node named
“ResponseData”. In this example, the element node is referenced by its
node id, not by name. Because the SOLA DOM API detects that the parent
node identifier is being specified it will ignore the value in the variable WS-

132

v

SOLA DOM API Parser Reference

DOM-PARENT. For reasons of clarity, the example below shows that WS-
DOM-PLACE-HOLDER is used in place of WS-DOM-PARENT.

SET WS-DOM-SET-NAMESPACE
MOVE 'sola'

TO
TO

TRUE
WS-DOM-NMS-ALIAS

MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID
MOVE 'http://www.sola.com' TO WS-DOM-NAMESPACE

MOVE +19 TO WS-DOM-VALUE-LENGTH
CALL WS-DOM-API USING WS-DOM-RC,

WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-NMS-ALIAS,
WS-DOM-NAMESPACE,,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID,
WS-DOM-PLACE-HOLDER,
WS-DOM-NMS-NODE-ID

This third example (below) ataches an existing namespace (whose node
identifier is saved in the WS-SAVED-NMS-NODE-ID field) to an element
node that is referenced by its node id, not by name. Because the SOLA
DOM API detects that the parent node identifier is being specified it will
ignore the value in the variable WS-DOM-PARENT. Similarly, the SOLA
DOM API detects that WS-DOM-NMS-NODE-ID is specified and is not null, it
will ignore values in the WS-DOM-NMS-ALIAS and WS-DOM-NAMESPACE
fields. For reasons of clarity, the example below shows that WS-DOM-
PLACE-HOLDER is used in place of WS-DOM-PARENT, WS-DOM-NMS-ALIAS
and WS-DOM-NAMESPACE and WS-DOM-VALUE-LENGTH.

SET WS-DOM-SET-NAMESPACE
MOVE WS-SAVED-NMS-NODE-ID
MOVE SAVED-PARENT-ID

TO TRUE
TO WS-DOM-NMS-NODE-ID
TO WS-DOM-PARENT-NODE-ID

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-PARENT-NODE-ID,
WS-DOM-PLACE-HOLDER,
WS-DOM-NMS-NODE-ID

133

‘r' SOLA DOM API Parser Reference

updateAttribute

| cics NBATGH |

The updateAttribute function is used to update the text of an existing
attribute. Changing an attribute name is not allowed (to change the name
of an attribute you must first remove and then set the attribute).

The attribute to be updated can be identified by its tag name or attribute
node identifier, as well as by its parent tag name or parent node identifier.
The node identifier always takes precedence over tag name (for both
attribute and parent). WS-DOM-PLACE-HOLDER is used to indicate absence
of any search criteria.

The following combinations of criteria are possible. If both node identifier
and tag name are provided for the attribute or parent search criteria, the
node identifier will always override the tag name.

= By specifying attribute node identifier only.

= By specifying attribute node identifier along with parent node
identifier (for verification).

* By specifying attribute node identifier along with parent (tag)
name (for verification).

= By specifying attribute tag name only.

= By specifying attribute tag name along with parent node
identifier.

= By specifying attribute tag name along with parent (tag) name.

If you have specified the parent name using WS-DOM-PARENT field with
the name of the parent element along with attribute tag name and multiple
instances of name combination exist within the XML document, then the
text of the existing attribute associated with the first occurrence of the
parent-attribute name combination will be updated. The selected parent’s
unique node identifier will be returned in the WS-DOM-PARENT-NODE-ID
field.

If the attribute node identifier given belongs to a different parent node than
the one specified, a return code of +4 will be returned and the attribute will
not be updated.

The updateAttribute function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */
WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */

WS-DOM-FUNCTION, /* Char (25). The name of the API */

134

SOLA DOM API Parser Reference

WS-DOM-PARENT, /* The tag name of the parent node */
WS-DOM-TAG-NAME, /* The tag name whose value to be updated */
WS-DOM-VALUE, /* The text value of the node to be updated */

WS-DOM-VALUE-LENGTH, /* Length of the text value */
WS-DOM-PARENT-NODE-ID, /* Unique id of the parent node */
WS-DOM-ATTRIBUTE-ID /* The ID of the attribute node */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the attribute will be updated.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-UPDATE-ATTRIBUTE.

WS-DOM-PARENT Input Mandatory
The SOLA DOM API will use this variable to search for a parent element
(parent of attribute node) with a matching name. If there are
duplicates, then the first matching name combination will be selected.
The selected parent’s unique node identifier will be returned in the field
WS-DOM-PARENT-NODE-ID after a successful call.

WS-DOM-TAG-NAME Input Mandatory
Populate this field with name of the attribute. The name of the attribute
must end with a space for delimiting purposes. Absence of this search
criteria can be specified by using spaces or null values.

WS-DOM-VALUE Input Mandatory
Populate this variable with an updated text string and the SOLA DOM
API will use this value to replace the existing text of the attribute node.

WS-DOM-VALUE-LENGTH Input Mandatory
Specify the length of the text string to be updated

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. This field contains the unique node identifier of
the parent node. When specified (any value other than null) in the
CALL statement, it takes precedence over WS-DOM-PARENT field. On
input (any value other than null is considered input), the SOLA DOM API
uses this field to update text value of an attribute node for the specified

135

‘r’ SOLA DOM API Parser Reference

parent node. On output, this field contains the unique parent-node-id
of the parent element for which the attribute node was updated.

WS-DOM-ATTRIBUTE-ID Input Optional
This field, when specified in the CALL, will be used as input field for the
SOLA DOM API to retrieve the attribute by its unique node identifier.
The text will be updated for this attribute node.
If WS-DOM-PARENT or WS-DOM-PARENT-NODE-ID is specified and does
not have a null value, the SOLA DOM API will verify the parent. If the
specified attribute node identifier has a different parent, a return code
of +4 will be returned and the text value will not be updated. WS-DOM-
ATTRIBUTE-ID takes precedence over WS-DOM-TAG-NAME during the
search of the attribute. This variable is a redefinition of WS-DOM-
NODE-ID.

The following return codes are possible:

RC Value Meaning

0 Successful - No messages issued.

The parent for given node identifier is different than

+4 specified, the text value is not updated.

Failed
The following are the possible values for WS-DOM-MSG
field:

Parent not found

Specified parent node doesn’t exist
Attribute not found

Specified attribute node doesn’t exist
Input error

+8

Possible input errors could be:
e The function specified is not supported.
e Attribute tag name not specified.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

136

7

SOLA DOM API Parser Reference

Example

In the example below an attribute value is being updated. The attribute is
identified by a node identifier that was saved in SAVED-NODE-ID. The new
value of the attribute is "ECD"” which has a length of 3 bytes.

SET WS-DOM-UPDATE-ATTRIBUTE TO TRUE

MOVE SAVED-NODE-ID TO WS-DOM-ATTRIBUTE-ID
MOVE 'ECD' TO WS-DOM-VALUE

MOVE +3 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,

WS-DOM-
WS-DOM-
WS-DOM-
WS-DOM-

HANDLE,
FUNCTION,

PLACE-HOLDER,
PLACE-HOLDER,

WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,

WS-DOM-

PLACE-HOLDER,

WS-DOM-ATTRIBUTE-ID

In this next example the same

attribute value is being updated. This time

the attribute is identified by specifying the attribute tag value (in this case
‘Type’) and the value of the parent tag (in this case “Program’). If there is
more than one attribute that matches this criteria then the first attribute
will be updated. The new value of the attribute is "ECD” which has a

length of 3 bytes.

SET WS-DOM-UPDATE-ATTRIBUTE

MOVE ‘Type’ TO
MOVE ‘Program’ TO
MOVE 'ECD' TO
MOVE +3 TO

CALL WS-DOM-API USING WS-DOM-
WS-DOM-
WS-DOM-
WS-DOM-
WS-DOM-
WS-DOM-
WS-DOM-
WS-DOM-

TO TRUE
WS-DOM-TAG-NAME
WS-DOM-PARENT
WS-DOM-VALUE
WS-DOM-VALUE-LENGTH

RC,

MSG,

HANDLE,
FUNCTION,
PARENT,
TAG-NAME,
VALUE,
VALUE-LENGTH

137

‘r’ SOLA DOM API Parser Reference

updateTextNode

| cics NBATGH |

The updateTextNode function is used to change the value of an existing
text Node under an element node. Please note that updateTextNode is only
applicable to a text node for an element node. In order to update text of an
attribute use the updateAttribute function.

The updateTextNode function can be used on an element node that does
not containt a text node. In such instances, it will add a text node to the
element.

A text node can be removed with the updateTextNode function by setting
WS-DOM-VALUE-LENGTH to zero.

The text node to be updated can be identified by its parent tag nhame or
parent node identifier. The node identifier always takes precedence over
tag name. If multiple instances of the parent tag name exist within the
XML document, then the first occurrence of the parent tag name will be
selected.

In the XML fragment shown below, “Transaction” is an element. “Type” is
an attribute of “"Transaction” with a value of "ECD”. The “Transaction”
element has a value (known as a text node) of “TRO1".

<Transaction Type="ECD"”>TR01</Transaction>

The updateTextNode function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION, /* Char (25). The name of the API */
WS-DOM-PARENT, /* The tag name of the parent node */
WS-DOM-PLACE-HOLDER, /* Placeholder */

WS-DOM-VALUE, /* The text value of the node to be added */

WS-DOM-VALUE-LENGTH, /* Length of the text value */
WS-DOM-PARENT-NODE-ID /* Unique id of the parent node */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory

138

‘r’ SOLA DOM API Parser Reference

For internal use. The DOM handle field uniquely identifies the XML DOM
tree in which the text node will be updated.

WS-DOM-FUNCTION Input Mandatory
Must be set to ws-DOM-UPDATE-TEXT-NODE.

WS-DOM-PARENT Input Mandatory
The SOLA DOM API will use this variable to search for a parent element
with a matching name. If there are duplicates, the first parent with a
matching name will be selected.

WS-DOM-PLACE-HOLDER Place holder Mandatory

WS-DOM-VALUE Input Mandatory
Populate this variable with an updated text string and the SOLA DOM
API will use this value to update an existing text node.

WS-DOM-VALUE-LENGTH Input Mandatory
Specify the length of the updated text string. To remove the text node
set the length to zero.

WS-DOM-PARENT-NODE-ID Input/Output Optional
This field is optional. This field contains the unique node identifier of
the parent node. When specified (any value other than null) in the
CALL statement, it takes precedence over WS-DOM-PARENT field. On
input (any value other than null is considered input), the SOLA DOM API
uses this field to update a text node for the specified parent node. On
output, this field contains the unique parent-node-id of the parent
element for which the text node was updated.

The following return codes are possible:
RC Value Meaning

o Successful - No messages issued.
Failed
The following are the possible values for WS-DOM-MSG
field:

e Parent not found
+8 e Specified parent node doesn’t exist
e Input error

Possible input errors could be:
e The function specified is not supported.

SOLA DOM API abended. Abend code - XXXX (four

+12 character code returned at run time).

139

‘r’ SOLA DOM API Parser Reference

RC Value Meaning
+16 WS-DOM-HANDLE doesn’t contain a valid handle.

Example

In the example below a text node value is being updated. The text node is
identified by the unique node identifier of the parent node (in this case
“Transaction”), which was stored in SAVED-PARENT-NODE. The new value
of the text node is "TR01” which has a length of 4 bytes.

SET WS-DOM-UPDATE-TEXT-NODE TO TRUE

MOVE SAVED-PARENT-ID TO WS-DOM-PARENT-NODE-ID
MOVE ‘TRO1’ TO WS-DOM-VALUE
MOVE +4 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PLACE-HOLDER,
WS-DOM-PLACE-HOLDER,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
WS-DOM-PARENT-NODE-ID

In this next example the same text node value is being updated. This time
the text node is identified by specifying the tag name of the parent element
(in this case “Transaction”). If there is more than one element that
matches these criteria then the text node of the first element will be
updated. The new value of the text node is "TR0O1” which has a length of 4

bytes.

SET WS-DOM-UPDATE-TEXT-NODE TO TRUE

MOVE 'Transaction' TO WS-DOM-PARENT

MOVE “‘TRO1’ TO WS-DOM-VALUE

MOVE +4 TO WS-DOM-VALUE-LENGTH

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION,
WS-DOM-PARENT,
WS-DOM-PLACE-HOLDER,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH

140

‘r’ SOLA DOM API Parser Reference

API| DESCRIPTIONS — MISCELLANEOUS FUNCTIONS

freeStorage

[cics _JIBATeH |

The freeStorage function frees any storage that has been acquired by the
SOLA DOM API. WS-DOM-HANDLE must contain a valid handle for this
function to execute correctly.

The freeStorage function can be used in CICS and batch.

CALL WS-DOM-API USING

WS-DOM-RC, /* Halfword. Return Code */

WS-DOM-MSG, /* Char (80). Output msg if return code <> 0 */
WS-DOM-HANDLE, /* Pointer. For internal use */
WS-DOM-FUNCTION /* Char (25). The name of the API */

Variables:

WS-DOM-RC Output Mandatory
Returns status.

WS-DOM-MSG Output Mandatory
When the return code is not zero, this field will contain messages.

WS-DOM-HANDLE Input Mandatory
For internal use. The DOM handle field uniquely identifies the XML DOM
tree to be freed.

WS-DOM-FUNCTION Input Mandatory
Must be set to WS-DOM-FREE-STORAGE.

The following return codes are possible:

RC Value Meaning
0 Successful - No messages issued.
+8 Unable to free storage.

SOLA DOM API abended. Abend code - XXXX (four
character code returned at run time).

+16 WS-DOM-HANDLE doesn’t contain a valid handle.

+12

141

‘r' SOLA DOM API Parser Reference

Example
In this example we are freeing the storage for the DOM tree that is
referenced by WS-DOM-HANDLE.

SET WS-DOM-FREE-STORAGE TO TRUE

CALL WS-DOM-API USING WS-DOM-RC,
WS-DOM-MSG,
WS-DOM-HANDLE,
WS-DOM-FUNCTION

142

i’

SOLA DOM Parser Reference

Data Conversion Utility XMLPC107

INTRODUCTION

SOLA provides a utility program, XMLPC107, to provide data conversion
between native mainframe formats and XML. The utility is an assembler
program that is implemented with a callable interface.

Don’t use the FromString (FS) function of the utility when the source and
target are both strings. This is because the utility will scan the string for
invalid XML characters and convert them to XML entities. The SOLA DOM API
uses the utility internally for XML encoding, and the effect of entitity encoding
a string twice is unpredictable. For example, XMLPC107 will convert & to
&, < to <, > to >, " to " and ' to &apos, and the result of entity
encoding those values twice is likely to be ususable.

USING XMLPC107

XMLPC107 Copybook

The utility uses a copybook, XMLCONVT, which is shipped with the product and
can be found in the SAMPLIB directory. The copybook is reproduced below:

01 CONV-FIELDS.

05 CONV-METHOD PIC X (02)
05 CONV-COLNAME PIC X (30).
05 CONV-RC PIC S9(04) BINARY.
05 CONV-VALUE PIC X (300).
05 CONV-LEN PIC S9(08) BINARY.
05 CONVERTED-LEN PIC S9(08) BINARY.
05 CONV-PREC PIC S9(08) BINARY.
05 CONV-SCALE PIC S9(08) BINARY.
05 CONV-TYPE PIC S9(08) BINARY.

88 SQL-C-DEFAULT VALUE 99.

88 SQL-CHAR VALUE 1.

88 SQL-NUMERIC VALUE 2.

88 SQL-DECIMAL VALUE 3 13 14.

88 SQL-DECIMAL-SIGN VALUE 13.

88 SQL-DECIMAL-NOSIGN VALUE 14.

88 SQL-INTEGER VALUE 4.

143

SOLA DOM API Parser Reference

88 SQL-SMALLINT VALUE 5.
88 SQL-FLOAT VALUE 6.
88 SQL-REAL VALUE 7

88 SQL-DOUBLE VALUE 8.
88 SQL-DATE VALUE 9.
88 SQL-TIME VALUE 10.
88 SQL-TIMESTAMP VALUE 11.
88 SQL-VARCHAR VALUE 12.
88 SQL-NUMERIC-EDIT VALUE 20.
88 SQL-LONGVARCHAR VALUE -1.
88 SQL-BINARY VALUE -2.
88 SQL-VARBINARY VALUE -3.
88 SQL-LONGVARBINARY VALUE -4.

05 CONV-WORK-AREA PIC X (250).

Calling XMLPC107

The XMLPC107 utility is called as follows:

CALL 'XMLPC107' USING

CONV-RC /* Fullword. Return Code */

CONV-METHOD /* Char(2). TS or FS */

CONV-VALUE /* User Specified. Input Value */

CONV-LEN /* Fullword. Length (Conv-Value) */

CONV-TYPE /* Fullword. Type of source (TS) or target (FS)*/
CONV-PREC /* Fullword. Precision */

CONV-SCALE /* Fullword. Scale */

WS—-CONVERTED-LEN /* Fullword. User Specified. */
WS-CONVERTED-VALUE /* User Specified. */

CONV-WORK-AREA /* Char (256) . Mandatory */

The allowable values for each of the fields is as follows:

Halfword. The return code from the conversion
utility. Return codes are:

CONV-RC 0 OK

<> 0 Error

Supports 2 methods:
CONV-METHOD TS - To String (native mainframe to XML)
FS - From String (XML to native mainframe)

CONV-VALUE The value to be converted

Fullword. Length of the source to be converted

CONV-LEN)
(character conversions only).

144

SOLA DOM API Parser Reference

Fullword. Data type of the source (TS) or target
(FS). Data types are defined as condition names in
the XMLCONVT copybook. The values are as

follows:
CHAR VALUE 1 CHARACTER STRING
NUMERIC VALUE 2. DISPLAY NUMERIC
DECIMAL VALUE 3 13 14. PACKED CATCH
ALL
DECIMAL-SIGN VALUE 13. SIGNED PACKED
DECIMAL-NOSIGN VALUE 14. UNSIGNED PACKED
INTEGER VALUE 4. FULLOWRD
SMALLINT VALUE 5. HALFWORD
CONV-TYPE FLOAT VALUE 6. FOR FUTURE USE
REAL VALUE 7 FOR FUTURE USE
DOUBLE VALUE 8. FOR FUTURE USE
DATE VALUE 9. DB2 FORMAT.
TIME VALUE 10. DB2 FORMAT.
TIMESTAMP VALUE 11. DB2 FORMAT.
VARCHAR VALUE 12. DB2 FORMAT.
NUMERIC-EDIT VALUE 20. EDITED NUMERIC.
C-DEFAULT VALUE 99. NOT SUPPORTED
LONGVARCHAR VALUE -1. DB2 FORMAT.
BINARY VALUE -2. BASEG64.
VARBINARY VALUE -3. BASE64. TS ONLY.

LONGVARBINARY VALUE -4. BASE64. TS ONLY.

Fullword. For numeric TS conversions CONV-PREC
and CONV-SCALE define the precision and scale of
CONV-PREC the source. For numeric FS conversions CONV-
PREC and CONV-SCALE define the precision and
scale of the target.

CONV-SCALE See Fullword. CONV-PREC above.

Fullword. The actual length of the converted value

WS-CONVERTED-LEN returned by the utility.

WS-CONVERTED-VALUE The converted data returned by the utility.

A 250 byte area that the utility uses for storing
CONV-WORK-AREA intermediate results. This area allows the utility to
not depend on CICS Storage control for reentrancy.

145

‘r’ SOLA DOM API Parser Reference

XMLPC107 Usage Examples

The following code fragments are provided to illustrate the use of the
XMLPC107 utility.

1) Convert from packed-decimal to string:
In this example, CURRENT-BALANCE contains the value to be converted. The

converted value will be placed in WS-DOM-VALUE and the converted value
length will be placed in WS-DOM-VALUE-LENGTH.

05 CURRENT-BALANCE PIC S9(13)V9(2) PACKED-DECIMAL.
05 WS-DOM-VALUE-LENGTH PIC S9(08) BINARY.
05 WS-DOM-VALUE PIC X (256).

MOVE 'TS' TO CONV-METHOD

SET SQL-DECIMAL-SIGN TO TRUE

MOVE 15 TO CONV-PREC

MOVE 2 TO CONV-SCALE

CALL 'XMLPC107' USING CONV-RC,
CONV-METHOD,
CURRENT-BALANCE,
CONV-LEN,
CONV-TYPE,
CONV-PREC,
CONV-SCALE,
WS-DOM-VALUE-LENGTH,
WS-DOM-VALUE,
CONV-WORK-AREA

2) Convert from string to packed-decimal:

In this example, WS-DOM-VALUE contains the string to be converted and the
length of the string is in WS-DOM-VALUE-LENGTH. The converted value will
be placed in CURRENT-BALANCE.

MOVE 'FS' TO CONV-METHOD
SET SQL-DECIMAL-SIGN TO TRUE

MOVE 15 TO CONV-PREC
MOVE 2 TO CONV-SCALE

MOVE WS-DOM-VALUE-LENGTH TO CONV-LEN

CALL 'XMLPC107' USING CONV-RC,
CONV-METHOD,
WS-DOM-VALUE,
WS-DOM-VALUE-LENGTH,
CONV-TYPE,
CONV-PREC,
CONV-SCALE,
CONV-LEN,
CURRENT-BALANCE,
CONV-WORK-AREA

146

