
Akana, Inc.

Lifecycle Manager 2019.1.20

Concepts and Facilities Guide

Akana, Inc.

Lifecycle Manager

Concepts and Facilities Guide

Version 2019.1.20
August 2020

Copyright

Copyright © 2011-2020 Perforce, Inc. All rights reserved.

Trademarks

All product and company names herein may be trademarks of their registered owners.

Akana, SOA Software, Community Manager, API Gateway, Lifecycle Manager, Envision, OAuth Server, Policy

Manager, and Cloud Integration Gateway are trademarks of Akana, Inc.

Perforce Software

Perforce Software
400 First Avenue North #200

Minneapolis, MN 55401
 612.517.2100
www.perforce.com

info@perforce.com

Disclaimer

The information provided in this document is provided “AS IS” WITHOUT ANY WARRANTIES OF ANY KIND

INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT

OF INTELLECTUAL PROPERTY. Akana may make changes to this document at any time without notice. All

comparisons, functionalities and measures as related to similar products and services offered by other vendors are

based on Akana’s internal assessment and/or publicly available information of Akana and other vendor product

features, unless otherwise specifically stated. Reliance by you on these assessments / comparative assessments is

to be made solely on your own discretion and at your own risk. The content of this document may be out of date,

and Akana makes no commitment to update this content. This document may refer to products, programs or

services that are not available in your country. Consult your local Akana business contact for information regarding

the products, programs and services that may be available to you. Applicable law may not allow the exclusion of

implied warranties, so the above exclusion may not apply to you.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 3

Contents

1 Using this Guide .. 6

1.1 This document and other resources ... 6

2 Introduction to the Lifecycle Manager Asset Library .. 7

2.1 Why deploy a development-time asset repository? ... 7

2.2 What is a Software Development Asset (SDA)? .. 7

2.3 What is Lifecycle Manager? .. 8

2.3.1 The SDA Production/Distribution/Consumption Lifecycle ... 9

2.4 What assets are important?.. 10

2.5 What is an asset template? ... 11

2.6 Governing asset production and consumption .. 12

2.7 How can a user find Library assets? .. 13

2.8 What is a Reference Model? ... 13

2.9 Who uses Lifecycle Manager? ... 14

2.10 How can Lifecycle Manager fit my organizational and project team structure? 15

2.11 How do I get started? .. 16

3 Assessing a Situation ... 17

3.1 Setting the Strategy and Approach ... 17

3.1.1 Assessing the Need ... 17

3.1.2 Determining the Roll Out .. 17

3.2 Ideal Pilot Projects .. 18

3.3 Setting Realistic Goals ... 18

4 Building the Library: Integrating Into an Existing Development Environment 19

4.1 Development Tool Integration .. 20

4.2 What Data Is In the Library for a Given Asset Type? Using Asset Templates 20

4.2.1 Template Types ... 20

4.3 Reference Model Definition .. 21

4.3.1 Tools to Help Build a Lifecycle Manager Reference Model .. 22

4.3.2 Two Reference Model Approaches ... 22

4.3.2.1 Tightly Coupled Models and Assets .. 22

4.3.2.2 Loosely Coupled Models and Assets ... 22

4.4 Creating and Working With Assets ... 23

4.4.1 Asset Capture .. 23

4.4.1.1 Capture Wizard and Asset Editor .. 24

4.4.1.2 Library Interface for Asset Creation and Editing ... 25

4.4.1.3 AnySourceTM Asset Adapter Toolkit .. 26

4.4.1.4 File and API-based Asset Creation and Update .. 27

4.4.2 Artifact Management .. 27

4.4.3 Validating, Reviewing, and Publishing an Asset .. 29

4.4.3.1 Edit-time Validation ... 29

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 4

4.4.3.2 Governance Process Automation ... 30

4.4.3.3 Publication Templates ... 33

4.4.3.4 Slack Integration ... 33

4.4.3.5 New Version and “Create Like” Processing ... 34

4.4.3.6 Synchronizing Services with Policy Manager .. 34

4.4.3.7 Synchronizing APIs with Community Manager ... 36

4.4.3.8 Synchronizing Services with SOLA ... 36

4.4.3.9 Devops and Cloud Provisioning Integration .. 37

4.4.4 Asset Submission Automation Capabilities ... 37

4.4.4.1 XML Validation .. 37

4.4.4.2 Regular Expression Based Asset Validation .. 38

4.4.4.3 Policy Manager Based Policy Validation ... 38

4.4.4.4 XML Parsing ... 38

4.4.4.5 Service Registry Publication .. 38

4.4.4.6 Target System of Record Publication .. 38

4.4.4.7 Metadata, Template and Process Flow Manipulation .. 38

4.4.5 Lifecycle Manager Configuration Designer Eclipse Plug-in ... 39

4.5 Users and Their Roles .. 39

4.6 Organizational Groups and Project-level Customization Considerations 40

4.6.1 Groups Visualization ... 41

4.7 Federated Libraries ... 42

4.8 Key Library Configuration Points... 42

4.9 The Quickest Way to Get Started ... 43

5 Locating and Using Assets ... 44

5.1 Modes of Locating Assets ... 44

5.1.1 Browsing for Assets ... 44

5.1.2 Searching For Assets ... 45

5.2 The Asset Tree ... 45

5.3 Preconfigured and Custom Searches .. 46

5.3.1 Saved Searches .. 47

5.3.2 Searching with an Asset Query ... 48

5.3.3 Search Results ... 48

5.4 RAD and Eclipse Plug-ins ... 49

5.5 Visual Studio Add-in ... 49

5.6 Other IDEs ... 50

6 Employing Assets .. 51

6.1 The Total Asset .. 51

6.1.1 Virtual Asset WindowTM .. 52

6.2 Studying and Discussing Software Development Assets .. 52

6.3 Visualizing Assets and their Relationships .. 53

6.4 Acquiring Assets for Use ... 53

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 5

6.4.1.1 Lifecycle Manager Configuration Designer Eclipse Plug-in ... 56

6.4.2 Portal-based API Acquisition ... 57

6.4.3 Active Asset Analysis ... 57

6.4.4 Integrated Asset and Project Usage Metrics .. 57

6.4.5 Envision Integration .. 58

6.5 Subscribing to Assets to Keep Informed ... 58

7 Assessing – An On-going Process .. 59

7.1 Reporting on the Effectiveness of the Library .. 59

7.2 Reporting Views .. 59

7.3 Integrated Reports and the Eclipse BIRT Reporting Engine .. 60

8 Extending Lifecycle Manager to Project Management and Deployment Environments 62

8.1 Project Management, Development and Deployment ... 62

8.2 General-Purpose Integration Interfaces ... 62

8.2.1 Inbound Integration to Lifecycle Manager ... 62

8.2.2 Outbound Integration from Lifecycle Manager .. 63

8.3 Prebuilt Lifecycle Manager Integrations ... 64

8.3.1 Service Registry Synchronization Module ... 64

8.3.2 Semantic Web Integration ... 64

8.3.3 Asset Import Center ... 65

9 How it Works: The Lifecycle Manager Architecture .. 66

9.1 Lifecycle Manager Asset Library ... 66

9.1.1 Presentation/Client Layers .. 66

9.1.2 Application Layer .. 66

9.1.3 Integration Layer ... 67

9.1.4 Persistence Layer .. 67

9.2 Lifecycle Manager Java IDE Plug-ins/Add-ins .. 67

9.3 Lifecycle Manager Add-in for Visual Studio .. 67

10 Conclusion ... 69

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 6

1 Using this Guide

The goal of this document is to introduce the basic concepts of Lifecycle Manager and provide enough

background information to use Lifecycle Manager effectively. The document’s primary audience is the

team responsible for the implementation and support of the Lifecycle Manager Asset Library.

Additionally, asset users, asset publishers and owners, and the personnel controlling the use of the

Library on an on-going basis may also find it useful.

1.1 This document and other resources

This guide is designed to facilitate understanding of how the system might apply to a particular

environment. It is not intended to provide the information required to determine or initiate a specific

implementation. For implementation and usage assistance, Akana provides:

• Governance API documentation. Lifecycle Manager provides a fully configurable process

automation capability accessible via a set of REST APIs. These APIs are designed to easily

integrate with Alpaca-based clients and are documented at

http://docs.akana.com/lm/assets/Governance_API.pdf

• AnySourceTM Asset Adapter documentation. These documents introduce the Asset Adapter

toolkit and describe how to configure and extend it to integrate Lifecycle Manager with your

own IT development infrastructure. The AnySource Asset Adapter user guide is available at

http://docs.akana.com/lm/assets/AnySource_Asset_Adapter_User_Guide.pdf.

• Library Configuration Guide. This document provides extensive documentation on various

validation and process automation options available to customers. It also provides

configuration examples to help customers get started in applying their architectural and project

management governance processes to automated Lifecycle Manager deployments.

• Integration Guides. Various documents are available at http://docs.akana.com/lm to guide

administrators in the process of establishing integrations with other Akana products.

• Training. For a comprehensive education on Lifecycle Manager, Akana offers training for asset

users and the team responsible for implementing and managing the Library and its assets.

• Online Help. For detailed user guidance and documentation, Lifecycle Manager includes a built-

in comprehensive online help system.

• SI Partner Community. Our trained SI Partner Community can provide an array of services to

meet your needs. Please refer to the partners section on http://www.akana.com.

• Professional services. Our Professional Services staff is expert at working with customers to

understand and help build a plan for the most effective use of Lifecycle Manager that will meet

an organization’s objectives, requirements, and IT environment. Each engagement builds from a

set of tried and true baseline configurations and supporting documents that are continually

being developed and refined by the Akana team.

• Online Support. Visit http://support.akana.com for a comprehensive support site, access to the

latest Lifecycle Manager service packs, and other resources.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 7

2 Introduction to the Lifecycle Manager Asset Library

2.1 Why deploy a development-time asset repository?

Technology innovations such as Service Oriented Architecture (SOA), REST/JSON APIs, microservices,

and the various runtime platforms supporting these capabilities make it possible to build applications

with significantly less effort by leveraging common APIs/services and reusable components. However,

many enterprises deploying these technologies are not seeing the expected benefit because the

knowledge necessary to use these assets is not available and/or easily accessible. If it is difficult to

search for and locate a common API, service or component, then the asset cannot be reused resulting in

redundant development. If it is hard to determine the purpose of an asset and how it relates to

business processes, then duplicating the work may become expedient to ensure that the application

meets requirements. Even when a potentially reusable asset is found, it is often not clear if the asset has

been developed with sufficient scalability, security, or other nonfunctional criteria to support its

potential reuse under specific conditions, or even simply to quickly understand the full functionality of

the asset due to lack of useful documentation.

To address these roadblocks, development teams are deploying asset management systems and

metadata libraries (also referred to as development-time repositories) that store assets and knowledge

about them and provide automated and role-based governance over production and consumption of

those assets. Often these systems are directly associated with new development initiatives

(Component-Based Development (CBD), Service-Oriented Architecture (SOA), API-Based Development,

microservices, Internet of Things (IoT)). Such platforms may also be deployed as part of a broader

initiative such as “enterprise architecture” or “enterprise reuse.” In either case, creating a central

library of Software Development Assets (SDAs) is a critical and necessary step to deliver on the

development promise of such technologies.

2.2 What is a Software Development Asset (SDA)?

SDAs consist of the various elements used or referenced in the creation or integration of software

applications or services. Assets can include components (e.g., JEE, OSGi, .NET), legacy systems, services,

APIs, schemas, business processes and any other executable aspect of an enterprise’s IT infrastructure

as well as intellectual capital and mindshare information like architectures (both business and technical),

patterns and best practices. In general, assets come in many forms, and are valuable elements that

should be made available to development teams. An organization may use many different asset types,

and Lifecycle Manager is designed to hold them all. SDAs can be grouped into two general types:

executable assets and knowledge assets.

Examples of executable assets include:

• Components (JEE, OSGi, .NET, …)

• Frameworks (e.g., Apache Struts, Microsoft .NET Application Blocks)

• APIs and Services (SOAP-based Web services, REST/JSON APIs, message queues, …)

• Applications and their pertinent application programmable interfaces (APIs)

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 8

• Schemas (XML, JSON)

• Representations of functional capabilities and data

Examples of knowledge assets include:

• Patterns

• Best practices

• Architectures

• Reference implementations

• Business domain knowledge

• Project and development process templates

2.3 What is Lifecycle Manager?

Lifecycle Manager is a development-time Software Development Asset (SDA) repository and governance

platform (i.e., library) that allows enterprises to easily represent and search for key development assets

(both industry-standard and in-house developed) within an application development environment in a

graphical, intuitive way. Lifecycle Manager provides an intelligent inventory of assets; their relationships

to each other, to the technical infrastructure, and to the company’s business architecture. Through the

use of Lifecycle Manager, organizations can accelerate reuse and SOA initiatives, as well as improve the

governance over production and consumption of services and other reusable assets. Application

developers, business analysts and technical and business architects can search the repository for the

company’s SDAs, and identify those that best match business and technical requirements for application

development and integration.

Lifecycle Manager can hold internally created assets, externally purchased assets, and assets that are

shared with partners or consortiums.

Lifecycle Manager provides a multi-faceted index to its SDAs. Usually, some of an SDA’s work products

(i.e., artifacts) are sourced elsewhere with Lifecycle Manager referencing the source location(s) of these

elements. These are referred to as by-reference artifacts. For example, assets may include elements

kept in one or more “systems of record” outside of Lifecycle Manager, such as a document management

system, a version control or source change management repository, a defect tracking system, etc.

Lifecycle Manager can also directly hold artifacts such as test plans or requirements in its repository.

Such artifacts are referred to as by-value artifacts. In either case these artifacts are both indexed into

Lifecycle Manager’s text- and XML-based search engine and made available for user review and use.

The information and references Lifecycle Manager holds for each SDA includes identifying information

(Asset Name and Version) and an Asset Description and Overview. In addition, Lifecycle Manager holds

various other elements which are configured to describe the specific Asset Types in the Library,

including:

• Classifiers: such as asset type, supported platforms, functional domain & sub-domain, support

level, etc.

• Artifacts: files or reference elements like interface definitions (e.g., WSDL or REST

documentation), executable components, user documentation, test scripts, models, etc.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 9

• Asset Relationships: references to other assets that represent previous versions, prerequisites,

co-requisites, dependencies, etc.

2.3.1 The SDA Production/Distribution/Consumption Lifecycle

Just because you can make something into an SDA doesn’t mean that you should. What makes a

component, a Web service, an API or a design pattern a good SDA candidate – in other words, what

makes an SDA reusable? For example, does a JEE component become an asset simply by providing its

jar file? Unless the component’s functionality is so dead-simple as to be totally obvious, the answer is

“probably not.” While the deployable jar is a very important work product (i.e., artifact) of the software

development process, it in and of itself does not make the component an asset. In order for something

to be considered an asset to the IT organization, it must be maintainable, discoverable, and consumable.

Maintainability introduces such concepts as version control, models and other design documentation,

and requirements traceability (why was the asset implemented in this way from a technical and business

perspective). Discoverability forces us to consider how we help potential consumers of this asset find

the asset in a timely fashion – via keywords, domain taxonomies, and mapping to models, for example.

Consumability involves looking at the asset from the point of view of the downstream project planning

to use the asset: is there a user guide, a well-documented API, sample client code, and other artifacts

available to help the user rapidly understand how to apply this asset to the project at hand? Are

dependencies to other assets (and to prior versions of this asset) specified and easily navigated?

How can you achieve these “ilities” in an SDA? By applying appropriate development processes to asset

production. To a large extent, these SDA production processes are simply applying a set of good SDLC

processes to asset development; however, keep in mind that since you are producing an SDA for

eventual library distribution and external consumption and thus your standard SDLC’s artifacts may not

be sufficient. For example, you may need to insist upon more complete and/or formalized

documentation, and you may also want to mandate that the asset has a set of full source sample code

provided alongside the executable to show examples of how the asset can be properly used. Such

additional “full product” documentation and supporting work products are particularly important when

you are sharing APIs with business partners both inside and outside of your enterprise (Akana provides a

wide-ranging set of API-related documentation at http://docs.akana.com/cm/index.html). These types

of asset production governance rules should be supported and enforced by your asset library, and

Lifecycle Manager provides a wide range of capabilities to do just that. Lifecycle Manager’s asset

template structure allows you to establish validation rules such as specifying mandatory artifacts,

providing controlled (enumerated) lists of valid classifier values, and the like. Lifecycle Manager’s

configurable process engine allows organizations to automate their own asset production review

processes, including automatic asset validation upon submission (e.g., schema validation, policy

conformance, automatic invocation of testcases) and multi-stage review steps based on the

organization’s own defined roles.

Ultimately, the process of building an asset results in the asset being represented by its metadata – that

is, data that describes the asset from various points of view. This metadata presents a composite view

of the asset across its entire development and deployment lifecycle, with indexes (i.e., references) into

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 10

the various point tools such as document management systems, requirements management systems,

version control repositories, defect tracking systems, test automation tools, etc. that hold the work

products or artifacts of the asset. It is this metadata that Lifecycle Manager distributes to various

candidate consuming organizations (typically application development project teams) for their potential

use. This distribution might be through Lifecycle Manager’s native IDE integrations, or perhaps through

its integration with Akana’s Community Manager portal. Appropriate governance rules over consuming

SDAs also comes into play – for example, a health care organization may have HIPAA-specific controls

placed around access to a Web service that exposes patient information, or perhaps only specific project

teams should be allowed access to a payroll management component. Lifecycle Manager enables and

automates these types of consumption governance processes, allowing organizations to more

effectively manage SDA usage within their development projects.

Any successful SDA reuse initiative will eventually have to deal with the issue of asset versioning.

Sooner or later, your organization will reach the point where the next set of business process

requirements affects one or more of your existing SDAs. How are you going to provide the necessary

support for this new process while preserving a stable operating environment for existing service

consumers? Because reusable SDAs are meant to be used in more than one application, organizations

need to plan for the incremental enhancement of their services over a long deployment lifetime. In

effect, organizations planning to build a robust, stable and extensible SOA or suite of APIs need to treat

their services/APIs as “products”. This includes concepts such as maintaining a well-defined and regular

release cycle for reusable SDAs, maintaining backwards compatibility between SDA versions wherever

possible, and providing appropriate mechanisms for new asset version requirements gathering and

management. Lifecycle Manager can assist in such ongoing SDA management, allowing organizations to

describe assets in any state of development (including agile/iterative development methodologies),

from planned and deployed, to retired. Updates or new versions of assets are managed by the system

and can be communicated to Library users.

Since Lifecycle Manager can hold such a broad range of SDAs, it is a key enabling technology for

enterprise SOA transformation, integration or consolidation efforts. Having a central place to search,

access and deploy assets accelerates the success of both pilot and enterprise-wide SOA initiatives.

2.4 What assets are important?

While all types of assets can be stored in Lifecycle Manager, it is not necessarily intended to hold every

possible asset. The types of assets and Reference Models that are appropriate for a repository will

depend on organizational objectives, available assets, asset users, and the approach implemented to

locate assets. The assets recorded in Lifecycle Manager will also vary depending on the production

environment and objectives.

As a development environment is integrated with Lifecycle Manager, assets are usually loaded into the

system in stages, starting with those that will be most useful immediately, such as assets specifically

designed for re-use. Good candidates might be:

• Services or interfaces into central applications, such as ERP and CRM systems

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 11

• Shared frameworks

• Common services

• APIs designed for external consumption

• Common technical components (e.g., logging, exception handling)

• Enterprise or Line of Business data schemas or views

Knowledge assets such as architectures, best practices, patterns, and project templates are also good

candidates for initial loading into Lifecycle Manager. Such knowledge assets often represent core

information that is crucial to the enterprise going forward, and Lifecycle Manager can dramatically

improve the enterprise’s ability to disseminate and manage such information.

When considering asset selection and staging, determine which Reference Models should be captured

to show the overall architecture. Sample applications or source code snippets using the assets are also

helpful.

2.5 What is an asset template?

The template capabilities of Lifecycle Manager allow users and administrators to create a

comprehensive Asset Classification methodology (i.e., defining types of assets and the information held

about them). Templates are used to:

• Define the information kept for each asset type in the library.

• Set valid values and information for each asset type.

• Protect the integrity of asset data through enforcing the use of valid values.

To accelerate library implementation, Lifecycle Manager ships with a default Global Asset Definition

template and multiple predefined asset constraint templates. These templates are XML documents

used to define and extend the Lifecycle Manager asset schema. They can be used as-is or easily

configured to meet specific installation requirements. The predefined templates serve as examples to

draw from, and a means to explore the Library before configuring new templates. Lifecycle Manager

preloaded content also uses these predefined templates.

• The Global Definition template (GDT) defines the superset of element types that are available

when defining constraint templates for each asset type. In other words, the GDT establishes the

library’s content model that is in turn further refined for each asset type to be represented in

the Library.

• Among others, the following default Asset Constraint templates are provided with Lifecycle

Manager:

o API: a template suitable for provisioning and documenting APIs to the Community

Manager portal. In simple terms, an API is a “productized” service providing supporting

materials and capabilities such as extended user guides, legal agreements for external

consumers, licensing modes exposing service operations to consumers under the scope

of varying Service Level Agreements (SLAs), and so on.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 12

o Service: a template suitable for SOAP- or REST-based service assets fully described by a

single WSDL. RAML, Swagger or WADL document combining both interface and

implementation aspects. In Lifecycle Manager terms, the Service represents the

functional capability to be exposes to potential consumers.

o Software Component: a template suitable for component-based executable assets

o Knowledge: a template suitable for documenting patterns, best practices, architectures

and other related knowledge asset types

o Application: a template suitable for applications of various types. Application assets are

typically used to represent consumers of services, components and other reusable SDAs,

although they can also be managed as SDAs in their own right.

o Schema: a template suitable for XML schema documents

o Technical Policies and Runtime Configurations: templates used to represent provider-

side enforceable Service/API policy concepts such as security, privacy, monitoring and

QoS, and collections of these policies assembled to establish supported consumer usage

patterns for Services/APIs

o Community Manager Tenant: a template used to represent a specific Community

Manager portal tenant instance. Lifecycle Manager is capable of automatically

provisioning a single Service instances as multiple APIs across multiple portal tenants in

a federated environment.

o Legal Agreement: a template designed to support publication of sharable legal

agreements such as End User License Agreements (EULAs) enforced when APIs are

exposed to business partners

o API Access: a template used to configure extended App to API access onboarding forms

when used in conjunction with Community Manager.

o SOA Reference Model: a template used when publishing Lifecycle Manager Reference

Models

In most cases, multiple asset constraint templates representing various stages of the software

development lifecycle (SDLC) will be configured into Lifecycle Manager. Such templates establish

incrementally increasing content mandates as an SDA advances through the SDLC.

2.6 Governing asset production and consumption

The Lifecycle Manager configurable process engine gives customers the ability to control the way their

assets are produced, deployed and consumed within Lifecycle Manager. Customers can define their

own asset management validations, processes and roles, which Lifecycle Manager then automates. For

most deployments, this automation can occur entirely within Lifecycle Manager. Other customers may

choose to use Lifecycle Manager automation to interact with their own external tools, workflows (both

manual and automated) and other mechanisms. See Chapters 4 and 5 for more information about

Lifecycle Manager capabilities to support creating and acquiring assets.

Lifecycle Manager is typically deployed in conjunction with Akana’s runtime service and API

management products including Policy Manager and Community Manager. In such deployments,

Lifecycle Manager serves as a provisioning platform to automatically populate services and API

definitions along with supporting constructs such as declarative provider-side policy assertions used to

configure runtime enforcement platforms such as Akana’s Network Director and DataPower, API

productization content to be populated into Akana’s Community Manager API portal, and even

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 13

deployment of executable images to appropriate runtime platforms via its integrations with devops and

cloud provisioning platforms.

2.7 How can a user find Library assets?

Lifecycle Manager assets are owned by and made visible to users within a Library. One or more Libraries

may be hosted on a single Lifecycle Manager installation, with each Library logically separated from

other Libraries. Developers, business analysts, architects and other Lifecycle Manager users can search a

Library to identify the business and technical requirements for application development and integration

projects. Each Library may support different types of users. Each type of user may search the Library

differently, using a mechanism based on the context of their work, what they know about the asset, or

the Reference Model for the domain in focus. In addition, the search method can be selected based on

the characteristics of the asset(s) being sought. Lifecycle Manager provides a number of search

mechanisms:

• The Asset Tree organizes and presents assets based on their metadata into a dynamically

generated multi-level folder view according to the user’s preferences.

• Queries can be built using SDA metadata to quickly identify software assets of interest for a

particular project. Queries can be stored and can incorporate many search criteria, including

precise classifier-specific matching as well as text matching (including Boolean operators

combining multiple text search strings) across any or all metadata elements of the asset.

Advanced XPath-based mechanisms are built into Lifecycle Manager’s query engine, giving

customers a great deal of flexibility in defining precise query types without exposing the

complexity of XPath or other query assertion languages to the end user. Query types are

configurable, with a set of predefined types shipped as part of the product’s default

configuration. These types leverage the underlying XML and text-indexed search infrastructure

and can present to the end user both single- and multi-field query forms.

• Model-based searches navigate through graphical Reference Models to select desired

capabilities (e.g., functional aspects of the organization’s business architecture) for direct search

against Library content. Model-based searches can also be stored for future reference.

• Search Alerts allow users to mark any stored (persistent) search as “alertable,” so that those

users are notified of any new or re-published asset that meets its search parameters. This

powerful alert mechanism helps users to automatically stay on top of new information (such as

architectural patterns and best practices), improving communication within the development

organization. Users can choose from email or RSS-style notifications for their search alerts.

See Chapter 5 for more information about Lifecycle Manager capabilities to support locating assets.

2.8 What is a Reference Model?

A Reference Model is a visual representation that illustrates how a particular system or business process

(or a portion of the system or process) works.

Reference models can represent:

• Technical architectures

• Application architectures

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 14

• Business architectures and process models

Models can be built using different forms:

• UML (Universal Modeling Language)

• Microsoft Visio

• Business processes and use cases

• Free-format models rendered in HTML

These models can be imported into Lifecycle Manager to connect SDAs with elements of the model; as

assets are captured or edited, their functions or features are mapped to the model. With this linkage,

users can easily learn and understand which SDAs support or execute which model elements. Models

are also useful as a form of architectural “heat map” that can be used by architects and business

analysts to understand what aspects of the enterprise are well represented by reusable services and

other shared capabilities and what aspects require additional investment.

2.9 Who uses Lifecycle Manager?

Many people within an organization use Lifecycle Manager: asset owners, asset consumers and people

who provide Reference Models as a means to learn about and find assets. In addition, other people

support Library activities such as project managers and other governance authorities who authorize

asset publication and usage requests, usage controllers and Library administrators who configure the

Library work environment and manage the Library itself are also active library users.

Lifecycle Manager provides tools to enable full and flexible access based on roles. The system

automatically adjusts the user interface and functionality available for a particular user depending on

their role. Role-based access is assigned at the user level and may apply Library-wide or may be scoped

to the Organizational Group (Org Group) level to enable the user to complete tasks only for a particular

group and its subordinate groups. See Chapter 4 for further discussion on this topic.

Standard Lifecycle Manager roles include:

• Asset User

• Asset Producer roles, including Asset Capture Engineer (ACE), Asset Publisher, and Asset Owner

• Usage Controller (the primary administrative role)

• Library Administrator

• Installation Administrator

Lifecycle Manager administrators typically also introduce their own organization-specific roles into

Lifecycle Manager for use in governance process automation. These roles can also be configured to

control the ability to create and edit assets on a type-by-type basis and how asset details are presented

in the browser-based thin client.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 15

2.10 How can Lifecycle Manager fit my organizational and
project team structure?

Lifecycle Manager is designed to work with all sizes of organizations – from a single team to a large

organization, with multiple, geographically dispersed teams and cross-team assignments. Teams,

organizational structures and shared work are an inherent part of Lifecycle Manager. In Lifecycle

Manager, teams and organizational structures are called Organizational Groups. Shared work areas are

known as Projects. Together, Organizational Groups and Projects can be used to designate

organizational structures and define groups of users that work together on a common project.

Organizations are also commonly used to establish shared governance scope over multiple teams (e.g.,

assigning an architect to each LOB represented in the Library). As project work groups are defined,

group roles can be assigned to users, for example, indicating which users can create or change asset

information available to the group. As discussed in section 2.9, user access to Lifecycle Manager can be

defined according to a user’s organizational group or their project. (Note: The tree-based inheritance

structure of Organization Groups and Projects is useful when assignments of Profiles, Reference Models

and other capabilities are common across more than one Project.).

The organizational support within Lifecycle Manager is very comprehensive. That said, you can start

with a very simple organizational structure with Lifecycle Manager and grow into a deeper structure as

needed. Akana professional services can also help determine how to best leverage this flexibility to suit

a particular situation. Lifecycle Manager also enables distributed development through its federated

library support, allowing large organizations to manage a consolidated set of SDAs through a physically

distributed and interconnected set of Lifecycle Manager installations. See Chapter 4 for more

information on use of organizational groups and federated libraries.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 16

2.11 How do I get started?

Akana offers a proven methodology to help get started and realize a rapid

return on a Lifecycle Manager investment. This approach is called the

enABLE methodology:

Step 1: Assess

Understand what information the organization has -- what assets, what

Reference Models, what asset artifacts, etc. Identify key initiatives and

develop a roadmap to successfully leverage the valuable SDAs. This is

discussed in Chapter 3.

Step 2: Build

Build the catalog of SDAs in the Lifecycle Manager Library and integrate the Library into the

development environment and processes. This is discussed in Chapter 4.

Step 3: Locate

Roll the Library out to the asset users and educate them on how to effectively find the right SDAs for a

given project. This is discussed in Chapter 5.

Step 4: Employ

Show the asset users how they can quickly understand and use the assets to deliver targeted projects.

This is discussed in Chapter 6.

After completing the process, return to the Assess step to focus on assessing usage effectiveness of the

Asset Library. Continue to define additional groups of assets to include in the Library and the next set of

users for the Library.

An organization can conduct these steps on its own or work with Akana professional services.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 17

3 Assessing a Situation

3.1 Setting the Strategy and Approach

Lifecycle Manager is typically implemented to improve enterprise visibility, use and traceability of key

assets across an organization, be they APIs for external use, services in an SOA, reusable components, or

knowledge assets such as architectures, design patterns and best

practices. Lifecycle Manager can also be implemented to support a

specific initiative that involves creating shared assets and rolling them

out to intended asset users. Clearly understanding the initiative driving

Lifecycle Manager’s use is essential for planning an effective Library

implementation strategy.

3.1.1 Assessing the Need

Regardless of how Lifecycle Manager is to be used, basic upfront

assessment and planning is critical. Before the Lifecycle Manager Library

is deployed:

• Document existing development processes so that the Lifecycle Manager asset search, asset

capture and asset governance functions can be aligned with these processes.

• List candidate SDAs.

• Define the information required for each asset type.

• For each asset type, note the source of the information associated with it, what roles need to

review it and when it needs to be reviewed.

• Determine what models describe the SDAs. (This may include using existing models or creating

new models as appropriate).

• Designate the organizations or projects that will use the Library.

3.1.2 Determining the Roll Out

After completing these steps, initiate a staged roll out plan. For each stage, address the following:

• Business objectives and value/business owner.

• Specific asset and model identification (including ownership and contacts).

• Asset users/organizations and project requirements.

• Asset configuration (including where the Library will be hosted and how it will be administered).

o Organizational and project structure set up

o User role definitions

o User id creation (typically including LDAP server / SSO integration)

• Governance process configuration.

• Asset Library integration with various asset sources (where asset information will come from).

• Development process and tool integration (including integration into chosen IDEs, intra-

enterprise, or inter-enterprise development portals).

The Assessment

• The Right Pilot Project

• Getting Ready

o What Assets?

o What Models?

o What Metadata?

o What Users?

o Development

Process Changes

• Appropriate Staging

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 18

• Training plans and roll out (Akana Professional Services can provide training for end users or

trainers).

• Communications launch.

• On-going communications and management relative to business objectives.

3.2 Ideal Pilot Projects

Projects with defined assets that have been built for reuse (e.g., API and SOA initiatives, component-

based development teams) are prime candidates for initial Library projects. If assets have been

architected to be used by others (executable or knowledge assets), they are likely to have models and

other documentation that is ready to use, clear asset owners, and defined asset users.

Over time, other assets and user groups can be added to the Library. Lifecycle Manager supports an

asset governance approach that allows asset owners to submit assets for inclusion in the Library.

Submitted assets can then be directed to other roles responsible for reviewing and publishing the

Library content, or simply directly provisioned to the Library and associated runtime platforms as part of

a devops automation initiative. The submission mechanism also serves as a way to incorporate user

feedback into the process of defining and creating new assets.

As part of Lifecycle Manager delivery, Akana will provide you with a series of SDA reuse best practices

that include both organizational and asset production and consumption process guidelines. These best

practices include asset reuse ROI calculations based on work by Dr. Jeffery Poulin, a leading industry

expert on SDA reuse.

3.3 Setting Realistic Goals

The “start small, grow fast” approach is very appropriate for Library roll out. Starting small enables

understanding of what the Library can do and how it will work best in an organization on a broader

scale. Before finalizing an enterprise-wide implementation plan, focus on gaining experience in several

areas, including:

• Defining the Asset metadata (schema) needed for each asset type.

• Configuring and integrating Asset sources (i.e., where the asset information will come from).

• Selecting and using Reference Models.

• Handling asset requests (i.e., asset consumption) and asset submissions (i.e., asset production).

• Reporting metrics and ongoing assessments.

• Establishing and refining development processes, including approvals, asset acquisition, reviews,

etc., and defining and configuring associated asset governance automation processes for asset

submission and asset acquisition

Much will be learned by using the Library in an organization and actively listening to user needs. Akana

professional services can also help with start-up, pilot projects, results assessments, and tuning for

follow-on implementation.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 19

4 Building the Library: Integrating Into an Existing
Development Environment

Building the Library to fit the needs of an organization is the most important step in deploying Lifecycle

Manager. Lifecycle Manager was designed with the flexibility to integrate with any development

process regardless of whether it is RUP (Rational

Unified Process), Agile, or any other process in use

within the software community today.

Key integration points for the Library are:

• Capturing reference and architectural models.

• Capturing/updating asset information.

• Finding assets for use during development.

Building a Library and integrating it into a development

process and environment is likely to be an on-going

and staged effort. First, determine what information

will help the development teams understand and use

the assets. Also, determine how the users want to

search the Library. Finally, plan the most efficient way to load assets and models, and keep them

current.

The following sections look at some of the major concepts that must be understood to define how the

Library will fit into an environment.

Note that even though Lifecycle Manager is highly flexible, it ships with many default settings to speed

installation and initial operation. The end of this chapter summarizes the quickest way to get started.

Building a Library

• Development Tool Integration

• Asset Template Definition

• Reference Model Selection

• Asset Production Processes

o Linking to Asset Sources

o Asset production governance

o Provisioning Operational

platforms

• Defining Users, Organizations and

Projects

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 20

4.1 Development Tool Integration

Akana provides various integration points to popular development tools. This integration helps users

find assets, capture and edit them, and import Reference Models. In the future, Akana will integrate

Lifecycle Manager with other popular IDEs and related development tools based on industry demand.

Integration Type Product Description

FINDING ASSETS: Launch

Lifecycle Manager for Asset

Searching

Microsoft Visual Studio, IBM

Rational Application Developer,

Eclipse, other Eclipse-based

commercial IDEs

Add-in / Plug-in

IMPORTING REFERENCE

MODELS: Reference Model

Creation

Microsoft Visio Plug-in

CAPTURING/EDITING ASSETS:

Project/Solution/Asset Capture

and Mapping to Reference

Models

Microsoft Visual Studio, IBM

Rational Application Developer,

Eclipse, other Eclipse-based

commercial IDEs

Add-in / Plug-in

PROMOTING ASSETS: Devops

Integration

Jenkins, TeamCity Governance automation tasks

4.2 What Data Is In the Library for a Given Asset Type?
Using Asset Templates

Templates are used in the Library and the capture wizard within the Lifecycle Manager IDE Plug-in for

validation during asset creation, updating, and publication. Templates are created in the form of XML

documents, and must meet the requirements of underlying asset and template schemas to which they

apply. Once created, templates are made available to the Library by uploading them via Lifecycle

Manager’s Configuration Designer. Configuration Designer is discussed further in a later section of this

chapter.

4.2.1 Template Types

Lifecycle Manager specifies two types of asset templates. Each template type has a specific use.

1) Global Definition Template. The Library has a Global Definition Template used to define the

superset of asset metadata elements (i.e. classifiers, asset relationships, and artifacts) available for

assets published to the Library. The Global Definition Template serves as the basis for all other

templates.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 21

2) Constraint Templates. Constraint templates define the specific elements used for each type of

Asset. The Library can have any number of Constraint Templates that extend the Global Definition

Template, but it must have at least one Constraint Template. Once these are uploaded to the

Library, they are used to validate Assets during the capture, edit, and publishing process. In addition

to specifying the metadata elements used for an Asset Type, a Constraint Template can designate

additional constraints on cardinality, value lists, and default or override value settings during asset

creation and subsequent editing. Constraint Templates can also introduce conditional content rules

based on the value of specific classifiers in an asset instance. If defined correctly, Constraint

Templates can greatly ease the process of asset capture by ensuring the right asset information is

gathered, and by predefining certain pieces of information that are likely to be well-known or

constant for a particular type of asset. Constraint templates can also enforce incremental

information gathering across an asset’s SDLC (e.g., requiring that a test plan be defined at design-

complete phase and that test results be provided before exiting the development-complete phase).

Constraint templates can be configured to put control over template change fully under automation

(i.e., governance processes automatically switch templates for an asset only when the asset exits a

governance phase), under user control with guidance (i.e., each template specifies the allowed

downstream templates that can be selected for asset transition) or fully under user control.

4.3 Reference Model Definition

The objective of a Reference Model

is to aid in the understanding of

assets and how they work

together. Reference Models can

include application architectures,

technical architectures, business

process definitions, and other

types of models that provide a

representation of the domain.

While models can link to assets in

many ways, one common approach

is to create a “visual domain

taxonomy” through graphical

images that can be navigated to

initiate Library searches. The traditional layered architecture block diagram is well suited to this

approach. One advantage to this taxonomic approach to Reference Model development is that assets

can be automatically mapped to model elements simply by populating the necessary taxonomy

information into the asset metadata. As discussed below, Lifecycle Manager provides integrated tooling

combining Microsoft Visio and Eclipse to aid its customers in quickly and efficiently developing such

models. Other tools and techniques can also be used to develop and deploy Reference Models into

Lifecycle Manager.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 22

4.3.1 Tools to Help Build a Lifecycle Manager Reference Model

The HTML used in a model can come from many sources. Two popular sources are Visio diagrams of

business process or architecture models, or UML models created with modeling tools. Visio-based

model definition is natively supported by Akana tooling (discussed below). In any event, the HTML pages

for the Lifecycle Manager model must be created with the links between the pages defined. Any HTML-

editing tool can be used to create model pages to import into Lifecycle Manager.

When a Reference Model is defined, it will consist of a set of HTML pages and an associated XML file

that defines the structure of the model. This pair of artifacts is then published into the Library. Once

published, the model can be accessed to allow asset capture engineers to map assets being captured or

updated to the models. Ultimately, the model can be accessed when doing a model-based search to

allow the asset user to specify the requirements they are working to fulfill. Note that Lifecycle Manager

has tools to help with the creation of the model artifacts and publication into the Library. In particular,

Lifecycle Manager provides an Eclipse-based reference model development plug-in integrated with

Visio.

4.3.2 Two Reference Model Approaches

There are two approaches to consider when defining a Reference Model: loosely coupled or tightly

coupled. Coupling refers to how well Library assets are likely to match the model. Both approaches are

described further below with examples of when to use them.

4.3.2.1 Tightly Coupled Models and Assets

A tightly coupled model is typically a model that was used to define the assets in the Library. It is

“bottom-up” in the sense that it was built based on assets already in the Library, or created to define

specific assets needed for the Library. As such, assets in the Library will have a very high affinity to the

model, almost always yielding a 100% match between functional requirements and asset functionality.

The benefit of a tightly coupled model is that it provides a valuable navigation and search mechanism for

users. They can peruse the model to understand the domain and then quickly search to see the assets

that fulfill the architecture. Such models can also be used as “progress indicators” against a strategic

architectural initiative: the greater the progress, the more portions of the model will result in successful

asset searches.

4.3.2.2 Loosely Coupled Models and Assets

In contrast with a tightly coupled model, a loosely coupled model is created from the “top-down” --

independent of assets in the Library – to define goals or roadmaps that may have not yet been

implemented. Consequently, Library assets will have varying affinity to a loosely coupled model.

Examples of this approach would include models that define industry-standard processes and assets,

such as third-party components, that provide function for the same domain, but may or may not

conform to the standards depicted in the model.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 23

4.4 Creating and Working With Assets

There are two important steps for adding asset information to the Library. The first step is to capture

the asset metadata and the second is to publish it into the Library.

4.4.1 Asset Capture

Capturing assets is the process of entering and creating references to the information that defines an

asset. Once this process is complete, the asset is released for publication into the Library.

Assets can be created or updated in four ways, via the:

• Lifecycle Manager IBM Rational Application Developer or Eclipse Plug-in / Microsoft Visual

Studio Add-in Capture Wizard and Asset Editor.

• Lifecycle Manager Library (browser-based) user interface (including inline asset creation during

asset edit via the Add Relationship action, Import Center support for XPDL, BPEL, WSDL, XSD and

XMI-based assets, configurable search results processing actions resulting in asset creation).

• Lifecycle Manager AnySourceTM Asset Adapter Toolkit to link to asset sources and drive

programmatic collection of asset information.

• Tool-based or file-driven bulk creation/updating techniques.

Each approach uses the Asset Template to define and validate the information captured. See section 4.2

for more explanation of Asset Templates. Each approach also generates an XML document which holds

the asset metadata and resides in the Library’s asset catalog This document is automatically indexed and

made available to the Library’s XPath-based query engine, and can also be directly retrieved and viewed

from the thin-client UI by users with the Usage Controller role). When an asset is published, the Library

reads the corresponding metadata and uses it to create the asset information in the Library.

The Asset Capture Engineer is the Lifecycle Manager role which is authorized to capture assets. For

each asset, the Asset Capture Engineer will capture the following information (asset metadata):

• Overview Information: name, version, overview, description, aliases

• Classifiers: asset type, supported platforms, functional domain & sub- domain, support level, …

(note that both simple and compound (i.e., multi-level) classifiers are supported by Lifecycle

Manager)

• Artifacts: asset models, source code, binaries, user documentation, test scripts, models, …

• Asset Relationships: previous versions, prerequisites, co-requisites, suggested usage, …

Assets are always created and edited within the context of an owning organizational group. An Asset

Capture Engineer selects the asset’s owning group from the list of groups for which he or she has been

granted the Asset Capture Engineer role. Asset Capture Engineers can easily determine the group

currently in force by viewing the Active Group field within Production section of the left-nav bar of the

thin-client UI or by viewing the equivalent field under the Production node within the plug-in’s Library

Explorer view.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 24

Other roles can be combined with the Asset Capture Engineer role to establish role-specific asset editing

capabilities, including both the ability to create and edit assets of any particular type and constraints

over the asset metadata available for editing. For example, an organization may desire that a Business

Analyst be allowed to edit only business-related metadata for Business Process type assets only,

whereas an Architect may be allowed to edit all metadata defined for any type of asset. Metadata

elements can also be configured as read-only for any or all roles (e.g., a classifier value that is

automatically calculated by Lifecycle Manager automation and should not be changed by any user,

technical metadata that should not be edited by a user with the Business Analyst role).

Unpublished (pending) changes to an asset can be easily reverted to the last published values as needed

in the event of an error in updating the asset, a change in development plans, or other reasons.

4.4.1.1 Capture Wizard and Asset Editor

The Lifecycle Manager IBM

Rational Application Developer

and Eclipse plug-in Capture

Wizard and Asset Editor is an

integrated facility that supports

rapid capture of Projects as

Lifecycle Manager assets, as well

as easy asset editing. Likewise,

the Lifecycle Manager Visual

Studio Add-in provides similar

support for Visual Studio projects

and solutions implemented

within that Integrated

Development Environments

(IDEs). These Add-in / Plug-ins

use asset templates to access the

asset catalog, and provide two

capture modes:

1) Capture Wizard. The Capture Wizard allows IDE users to quickly capture a Project or Visual Studio

Solution as a Lifecycle Manager asset. The wizard extracts asset metadata from the selected project

or solution and (for Visual Studio) associated assembly metadata, combining that metadata with

user-specific properties managed by the Lifecycle Manager Add-in / Plug-in. Asset capture using the

wizard can be as simple as a “one-click” process, or the user can fine-tune the automatically

gathered metadata with additional asset information through a series of wizard panels. Upon

completion of the wizard, the asset can be submitted to the Library for publication or can be

immediately transferred to the Plug-in / Add-in Asset Editor for further refinement. Open-ended

(i.e., non Project- or Solution-based) assets can also be captured through the Capture Wizard.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 25

2) Asset Editor. The Asset Editor allows IDE users to edit any Lifecycle Manager-managed asset.

Advanced features of the Asset Editor include drag-and-drop support for adding asset artifacts and

establishing asset-to-asset relationships. Users can also edit other aspects of asset metadata using

standard IDE user interactions including drop-down lists, editable text boxes, dialogs, and wizards.

4.4.1.2 Library Interface for Asset Creation and Editing

Assets can be created or edited

using the Library interface. This

approach is most useful when

creating or editing individual assets

(or a small set of assets).

The Library interface also supports

direct importation of XPDL, BPEL,

WSDL, XSD and XMI files for

purposes of creating Business

Process, Service and Schema assets

(as well as assets derived from UML

model parsing rules) via the Import

Center feature. This feature is

described further in Chapter 8 of this guide. Users may also be able to select assets from the Search

Results page for processing which results in asset creation (e.g., grouping a collection of selected

executable assets into a release by creating a Release asset which references the selected assets).

Retrieval of metadata values from external sources

Organizations often desire to source certain metadata values from external systems. Lifecycle Manager

supports such sourcing via its extensible Value Source framework. Simple Value Source

implementations provided by Lifecycle Manager include OWL Lite-based taxonomies, WSDL elements

(such as declared operations) and previously entered values (often referred to as “folksonomies”). In

addition, Lifecycle Manager provides prebuilt interactive Value Sources for LDAP (commonly used to

select contact information) and SQL (suitable for any externally-sourced enumeration). Users interact

with these Value Sources via imbedded and configurable wizards by entering query criteria and in turn

are presented with a list of valid values conforming to that criteria returned from the Value Source.

Custom Value Sources can also be implemented and deployed into the Value Source framework.

Viewing pending changes to an asset

Asset editors using the thin-client Library interface may compare an asset being edited against the

currently published values for that asset. Selection of this action presents asset additions, deletions and

modifications in digest form. Asset editors can also compare modified WSDL and other XML document-

type artifacts within such assets using Lifecycle Manager’s built-in artifact comparators. Customers can

implement and deploy their own custom comparators within Lifecycle Manager for these and other

artifact types as desired.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 26

4.4.1.3 AnySourceTM Asset Adapter Toolkit

Using the AnySourceTM Asset Adapter Toolkit (AnySource) to create assets is most useful when capturing

large quantities of assets and when automating asset updates based on changes to asset information

and artifacts held by other tools outside Lifecycle Manager. These external tools/repositories are

referred to as Asset Sources, and may include source code control systems, document control systems,

defect tracking systems, etc.

AnySource provides an XML-driven framework based on Apache Ant that is used to define and automate

the asset capture process. In addition, AnySource capabilities can be directly accessed through

programmatic (Java or .NET) and command line means if desired. Underlying these capabilities is a

series of SOAP-based Web services that connect Lifecycle Manager’s Automation Extensions client to

the Lifecycle Manager Asset Library.

The AnySource framework uses AnySource parsers to extract and interpret information from the various

files that make up the asset. Parsers are typically used to analyze and gather asset metadata for

eventual inclusion into the asset being assembled, and are invoked by XML-driven tasks that define the

asset capture process. AnySource then directly publishes the asset information to the Asset Library

where it can be automatically made available to asset users or, optionally, it can be reviewed, corrected

and augmented by ACEs as appropriate prior to submission for role-based governance approval. Akana

provides out-of-the-box parsers for open-ended text-based and XML-based processing, as well as

specialized Java sources and WSDL parsers. Custom AnySource parsers can also be written in Java,

optionally taking advantage of Java’s ability to call out to other languages of choice, including scripting

languages such as PERL, Python, etc.

In addition to the core AnySource toolkit, Akana provides prebuilt AnySource adapters for leading

Source Change Management (SCM) systems such as GitHub, CVS, Subversion, Serena Professional

(PVCS) and Dimensions, Rational ClearCase (including ClearCase/ClearQuest deployed in UCM mode),

Rational Team Concert (RTC), Perforce, and Microsoft Visual Source Safe and Team Foundation Server

(TFS) version control. A general purpose WebDAV-based adapter is also available. These adapters allow

assets and artifacts to be loaded into and retrieved from the Library. Additional prebuilt adapters will be

provided in future releases of Lifecycle Manager based on industry demand.

Documentation provided with AnySource includes:

• A User Guide which describes how to install and use the AnySource Toolkit

• A Developer Guide which describes how to write AnySource extensions

• Best Practices documents that provide Source Change Management (SCM)-specific guidance for

usage and deployment of the Toolkit

 AnySource Artifact Adapter

Because many organizations have widely varying asset sources (e.g., multiple SCM systems, defect

tracking systems, etc.) and because often these systems of record are not integrated from an

authentication perspective and/or do not support modern web-based access methods, Lifecycle

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 27

Manager provides the AnySource Artifact Adapter. Even when integrated authentication is in place,

organizations often establish project-specific access rules in keeping with SCM best practices, thereby

preventing potential asset consumers from directly accessing SCM-hosted files. When configured

properly, the AnySource Artifact Adapter provides seamless access to artifacts throughout the

enterprise, eliminating the need for the Lifecycle Manager user to sign on to each system separately and

serving as an SCM proxy for asset consumers. Lifecycle Manager manages the authentication

credentials required to connect to and retrieve artifacts from the various systems of record integrated

with a Lifecycle Manager installation, either through out-of-the-box adapters provided as part of the

Lifecycle Manager installation or custom adapters that can be written to support essentially any form of

access APIs provided by those systems. Prebuilt adapters include ClearCase, TFS, RTC and HTTP basic

auth. In conjunction with Lifecycle Manager’s IDE plugins, ClearCase, RTC and TFS adapters support

importation of SCM controlled file references into SCM controlled projects, thereby ensuring that the

project has access to the most current source or executable content. Lifecycle Manager also provides a

SOAP-based adapter framework for use by customers to encapsulate other systems of record.

4.4.1.4 File and API-based Asset Creation and Update

Lifecycle Manager provides numerous file-based importers that can be used to create and update

assets. These importers are implemented as extensions to a general purpose importer framework that

can be extended as needed by specific customers. Out-of-the-box importers include:

• Service/API descriptor documents in WSDL, Swagger, RAML or WADL format

• Schemas in XSD format

• Business process definitions in BPEL or XPDL format

• UML models in XMI format

• Multi-asset import via tab-delimited file format

Of the above list, Lifecycle Manager also provides REST API-based support for tab-delimited files to

enable automated scripting of bulk content creation or update. Lifecycle Manager also provides a

special-purpose REST API that enables automated creation of an API described in any of the above listed

descriptor document formats.

4.4.2 Artifact Management

Asset artifacts are often simply managed by Lifecycle Manager as independent work products resulting

from asset development. In other words, such artifacts are accessible through the Library but have no

effect on Library behavior. However, some artifacts may require or be able to take advantage of special

handling by Lifecycle Manager, perhaps because of the sensitive nature of the asset, because their

content and format enables additional capabilities within Lifecycle Manager and the tools with which

Lifecycle Manager integrates, or simply because of their importance to the user. Lifecycle Manager

supports the following specialized artifact-handling capabilities:

• Service/API Definition Language Artifacts

In addition to traditional WSDL documents used to specify SOAP-based services, Lifecycle

Manager provides native support for modern API definition languages such as Swagger, RAML

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 28

and WADL. Services and APIs specified via such artifacts can be validated against organizational

compliance policies such as naming conventions, proper use of imported/included schemas, etc.

and can also be automatically provisioned to Akana’s Policy Manager runtime registry and

Community Manager API portal.

• Queryable Artifacts

A queryable artifact is one whose content is included in the Lifecycle Manager search index. For

example, consider a requirements document filled with domain terminology. By specifying

artifacts of type “requirements” as queryable in the Lifecycle Manager Global Definition

Template, Lifecycle Manager will automatically index the contents of all artifacts of that type at

the time of asset publication. Users can then selectively include these indexed artifacts in their

adhoc searches and asset queries (see Section 5 for additional details). XML-based artifacts are

particularly well-suited for Lifecycle Manager’s queryable artifact capabilities, as their content is

automatically indexed to support both standard text-based queries as well as XPath assertions

configured into Lifecycle Manager’s query infrastructure.

• Private Artifacts

Asset templates can specify one or more asset artifact types as “private”. While the presence of

private artifacts is made known to asset users, such artifacts cannot be retrieved by a user until

their associated asset has been acquired and fully registered by the user’s project. This feature

can be used, for example, to allow organizations to prevent access to sensitive artifacts until the

appropriate reviews have occurred. Other organizations may wish to restrict access to run-time

components until the approval process has been completed, while still granting access to asset

documentation.

• Unpackable Artifacts

Browser-based HTML content such as Javadoc is often delivered in complex forms, with

imbedded graphical elements and multiple linked pages assembled into a composite module.

Lifecycle Manager allows users to store such complex HTML content within Lifecycle Manager in

zipped form, with Lifecycle Manager handling all the presentation details to the user.

• Email-Based Dynamic Artifacts

Informal design reviews and other development discussions often occur via extended email

threads spanning multiple team members. Such email threads can be initiated from an asset via

use of Lifecycle Manager’s email-based artifact type. As the email is sent and responded to by

the community of interest, Lifecycle Manager automatically updates the asset with the latest

email in the discussion chain. The resulting artifact serves as a historical record of informal

discussion and decisions that are otherwise commonly lost to development teams.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 29

4.4.3 Validating, Reviewing, and Publishing an Asset

As was mentioned above, all of the

capture approaches yield an XML

document which holds the asset

metadata and which resides in the

asset catalog. When an asset is

published, the Library takes the

information in the catalog and uses it

to create asset Library entries. These

entries are held in both XML and

relational form in the Library’s

database for rapid search and

retrieval. However, before the asset

can be published into the Lifecycle

Manager Library, it must complete

the asset submission governance process appropriate for its contents and organizational ownership. At

one extreme, the submission governance process can be instantaneous (i.e., minimal content is required

by Constraint Templates, and when an asset is submitted into the Library, it is automatically passed

along to the Library’s asset publication mechanisms). At the other extreme, an organization might use

Lifecycle Manager’s Constraint Templates and governance automation processes to configure a

combination of incremental content mandates aligned with a multi-stage review and signoff process for

an asset, with this process consisting of a mix of automated validation actions and manual review steps.

4.4.3.1 Edit-time Validation

As discussed in section 4.2

above, Constraint

Templates are used within

Lifecycle Manager to

establish basic content

validation rules for assets,

including:

• Cardinality

(mandatory/option

al, single or multi-

valued)

• Valid value lists

• Default values

• Override values (as

an asset progresses

through its SDLC

phases)

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 30

In many cases, such validation rules are sufficient to guide Asset Capture Engineers in correctly and

completely populating assets. However, other situations may require more complex validation rules. To

support these situations, Lifecycle Manager provides a synchronous (edit-time) validation framework.

This framework supports both declarative and algorithmic validation rules and can raise detected

conditions to the user in the form of severe, warning or informational messages. Declarative rules are

expressed via a specialized XML document, while algorithmic validation rules have access to the full

power of Lifecycle Manager’s local Java-based APIs via Beanshell or Jython scripts or native Java

extension classes. Examples of declarative validation rules that can be easily configured into Lifecycle

Manager include:

• Content format validation through Perl-style regex expressions (e.g., asset version number must

be of the format V<positive integer>.<non-negative integer>)

• Conditional content enforcement (e.g., if a Service asset is designated as SOAP, a WSDL is

mandated; if designated as REST, the REST operation dialog is presented and mandated)

• Conditional relationship validation (e.g., if asset-type is set to “Service” then consumes-schema

relationship must be established and linked to a valid asset of type Schema)

• Cross-classifier validation (e.g., if classifier service-source is set to “packaged application” then

classifier provider must be set to a valid packaged application ISV)

Algorithmic validation rules often retrieve other assets and/or information from external sources to

determine asset validity. They may also execute calculations to derive and populate asset metadata

values. Examples of prebuilt algorithmic validation rules provided as part of Lifecycle Manager include:

• Parsing and validating of imports and includes specified by WSDL and XSD artifacts to generate

acquisition-type consumption relationships between Service and Schema assets (including

support for enforcing use of governed schemas only)

• Service and schema namespace uniqueness validation

• Service port type and binding uniqueness validation

• Automated establishment of asset relationships based on classifier values (e.g., if a service is of

type Data Service automatically associate a specific Technical Policy Set asset with the service to

drive automated operational policy assignment as discussed in section 4.4.3.5 below)

Validation rules can be configured to run during asset creation, asset new version or copy creation, asset

update (i.e., at time of asset submission or via invocation of an explicit Validate action by the end user),

application of a new template to the asset (e.g., when automated template change occurs as the result

of governance process automation) or asset deletion.

4.4.3.2 Governance Process Automation

Lifecycle Manager’s governance process automation capabilities enable administrators to:

• Define custom roles

• Assign roles to users within organizational structure

• Define custom asset production governance/review processes, including:

o Automated asset validation (including asset metadata and properties), parsing and post-

processing activities using both prebuilt and custom scripted automation tasks

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 31

o Role-based and user-specific review flows, including both comment-only and approval

request types and notification and signoff of asset changes by existing consumers of

that asset if desired

o Checklist-style request fields made available for review and audit activities, including

advanced capabilities such as:

� Nested field support with subfields controlled by parent field values (e.g., if an

asset is approved conditionally, a customer may wish to gather additional

information on the conditional restriction being established)

� Visibility and cardinality control based on request approval or rejection (e.g.,

require a reason code if a request is rejected, require an approval level if a

request is approved)

o Automatic or manual final asset publication with:

� Configurable automatic discussion forum topic creation, including optional

configuration of an inline “comments” section exposed directly on the thin-

client Asset Details page

� Automated contact list population based on org structure

� Designation of selected artifacts as “private” (not retrievable/downloadable

until project approval granted)

For example, consider the following asset production governance scenario: an enterprise has defined

their Web services production SDLC to include reviews at these points in the lifecycle:

• Requirements complete: all business requirements documented and initial service definition

specified, allowing business analyst and architecture reviewers to validate service against

business context

• Design complete: Interface WSDL provided, implementation approach defined with sufficient

documentation (e.g., UML design models completed, relevant legacy APIs identified, test plan

defined) to allow architecture, security and test lead reviewers to validate design against

technical and application/integration contexts

• Implementation complete: Service implemented and deployed in a test environment, with

sufficient supporting documentation (e.g., sample client code, automated test cases, usage

guide) to enable a potential consumer to understand the service; architecture, performance

and operations reviewers complete final review before deployment

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 32

Governance roles and processes can be configured to automate each of these review points. A simple

design complete governance process might look something like this:

Each of the other review points would have their own governance roles and processes defined, with

filters configured to route a submitted SDA to the appropriate process based on asset metadata and

organizational structure.

Users involved in a governance review process are automatically notified of pending requests via an

email which contains an imbedded URL to the request details. Reviewers can also access via the

Lifecycle Manager thin client a list of pending requests as well as requests that they have acted upon in

the past. Upon opening of a pending request, a user can easily view prior governance requests and

differences between governance requests, as well as change history for the asset currently under

governance. They can choose to approve or reject the request at that time or can simply edit the

request and save for later approval or to pass along to another governance user for review and final

action. Depending upon the process configuration, a flagged approval could even trigger a dispensation

reminder at some point in the future (e.g., when the business sponsor requires a non-conformant API to

be published to meet an urgent business need, an architect will likely want to initiate a post-production

review of the API to determine the best way to bring it into compliance). Users with Usage Controller

Asset Submitted

Validate

WSDL

Pass?

Inform

Submitter

of failure

no

End

Notify

Architects

Approve?

Inform

Submitter

of rejection

Proceed

To asset

Publication

(auto/manual)

yes

yes

no

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 33

administrative authority are given access to an additional page which lists all requests in the library. All

of these pages provide appropriate sorting and filtering options to allow the user to quickly find the

desired request based on submitter, status, request type, and other parameters.

Asset submitters can view their active and inactive requests through a similar set of pages in the

Lifecycle Manager thin client. Active requests show submitters the currently pending governance

approval role along with Lifecycle Manager users having that role-based authority to approve or reject

the submission request, thereby making it easy to ping approvers for requests that are not being

expeditiously processed. Submitters needing to resubmit an asset (e.g., because a role-based reviewer

rejected the original submission) can choose to prime their resubmission with request field values from

the immediately prior submission request for that asset.

4.4.3.3 Publication Templates

Once the submitted asset passes through the configured governance review process (if any), it proceeds

to asset publication. Just like the capture process, templates are used for asset publication to help

define and expedite the process. The publication template can come from the group or person(s) that

owns the asset(s) to be published. Group-derived templates can be further selected through metadata

filtering rules (e.g., assign a publication template that restricts executable jar file access until

consumption approval is granted for assets designated as enterprise certified, while allowing users to

directly access such files for noncertified assets). While publication is typically invoked automatically, it

can also be manually based on the library’s configured publication template settings. In the case of

manual publication, assets ready for publication are queued up as publication requests for the Asset

Publisher. For each asset, the publisher provides some additional information when publishing an asset.

For automated publication, this additional detail is included in the publication template.

4.4.3.4 Slack Integration

Slack is a popular team-based communications tool increasingly used by developer communities. As part

of its process automation capabilities, Lifecycle Manager supports the following configurable Slack-

based notifications:

• Notification of role-based approvers via Slack channel – for example, a customer can configure

an “architects” channel to receive signoff requests for service provisioning or an

“apiproductmanagers” channel to receive API provisioning requests.

• Notification to users when their submission request is approved or rejected.

• Notification to users when their submitted asset is published.

• Notification of publication events via Slack channel – for example, a customer can configure a

“services” channel to receive postings whenever a Service asset is published

Each Slack notification imbeds a url to the relevant Lifecycle Manager page or dialog, thereby enabling

Slack users to quickly access dev-time Service and API information of interest.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 34

4.4.3.5 New Version and “Create Like” Processing

An important aspect of an ongoing asset management initiative is new version processing. Lifecycle

Manager provides customers with a great deal of flexibility when creating new asset versions. By

default, Lifecycle Manager automatically makes a deep copy of the asset being versioned (including

copies of any by-value artifacts contained by the asset). When more control over new version content is

required, customers can designate a specialized “new version” constraint template that can be

configured to default, override and clear the asset’s metadata fields and associated artifacts as required.

In addition, specialized synchronous validation rules can be automatically invoked at time of new

version creation (e.g., to automatically format the version number of the newly created asset according

to the organization’s version numbering rules). Lifecycle Manager also offers users a “Create Like” action

which has behavior and

configurability similar to new version

creation. The primary difference

between “Create New Version” and

“Create Like” actions is that “Create

New Version” automatically

establishes a predecessor/successor

relationship between the existing and

new asset (which is used to generate

notifications to subscribers and

consumers of the existing asset)

whereas “Create Like” does not

establish such a link.

4.4.3.6 Synchronizing Services with Policy Manager

In an integrated configuration, Lifecycle Manager automatically synchronizes service definitions (i.e.,

WSDLs) and selected metadata with Akana’s Policy Manager product. Lifecycle Manager can also be

configured to automatically advance the operational governance state of the service in Policy Manager,

thereby signaling to operational administrators when the handoff from development to operations

control for a service has occurred. As a service progresses through operational staging to production,

these transitions can in turn be synchronized back to Lifecycle Manager in the form of service state

updates.

Lifecycle Manager is capable of validating, governing and synchronizing WSDLs developed through top-

down modeling practices (i.e., WSDLs as independent work products referencing independently

governed schemas) and through bottom-up tooling practices (i.e., WSDLs bundled with implementation

schemas generated through development tooling and referenced via relative path). In the latter case,

such services are typically packaged as zip files for association with services under governance; Lifecycle

Manager automatically extracts the WSDL and associated schema documents from such files and builds

the XML dependency graph prior to synchronization with Policy Manager. Customers using Akana’s

Network Director or Policy Manager for DataPower components in concert with Policy Manager to

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 35

create proxy virtual services for consumption purposes can choose to synchronize metadata

representing operational and QoS policies for each virtual service from Lifecycle Manager to Policy

Manager. This metadata in turn is used by Policy Manager to automatically assign designated audit and

security policies to each proxy virtual service as it is generated in Network Director. For instance, an

organization may define three audit levels (e.g., normal, high and diagnostic) and three modes of

consumer authentication (e.g., standard internal consumer, rich-client internal consumer, and B2B) as

part of its operational service governance framework. These levels/modes are expressed as logical

policy taxonomy values in Lifecycle Manager and synchronized to Policy Manager for use in physical

policy assignment. Such an approach both abstracts operational service policy concepts at development

time and greatly reduces the potential for human error in the proxy virtual service generation process.

When appropriate, Lifecycle Manager can also be used to automatically apply operational and QoS

policies directly to specific service operations.

Beyond straightforward provisioning scenarios, Lifecycle Manager can automate specialized service

deployments such as orchestrated services implemented via Policy Manager’s process modeling

environment and double-hop proxying scenarios where a physical service is virtualized both in the DMZ

(to provide first-layer protection against external attacks) and behind the firewall (to provide traditional

monitoring and other provider-side policy control over the underlying service). Lifecycle Manager also

provides control over runtime listener selection when multiple listeners of the same type (e.g., inbound

and outbound HTTP listeners) are defined for a runtime container being managed by Policy Manager.

An integrated Lifecycle Manager / Policy Manager solution can also be configured to reflect rollup

operation metrics per service generated by Policy Manager to Lifecycle Manager. This gives the SOA

organization’s development community full visibility into each service’s operational behavior, providing

developers with an indication of service capacity and stability and architects with information about the

overall health of the organization’s SOA.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 36

4.4.3.7 Synchronizing APIs with Community Manager

Lifecycle Manager also automatically synchronizes

API definitions with Community Manager, Akana’s

external API gateway product. This synchronization

gives enterprises full visibility over the entire API

development and deployment lifecycle, ensuring

that configuration settings such as resource-level

OAuth provisioning and necessary work products

such as documentation, end-user license

agreements, avatar images and the like are properly

governed and, once approved, automatically

provisioned to the external partner community for

discovery and consumption. This end-to-end

capability is unique to Akana’s product suite and provides organizations with an effective way to link

business and IT efforts towards building out a set of valuable APIs.

APIs are typically deployed in both sandbox and production modes for access to external consumers.

Sandbox API endpoints are commonly provisioned as full production API instances but with test data

rather than live data behind the implementation, thereby giving partners (and of course the enterprise

itself) an opportunity to validate their app’s behavior before going live with the app.

Many customers are repurposing existing SOAP-based services as REST APIs. Lifecycle Manager

automation assists in this effort by supporting SOAP-to-REST automated provisioning. When a REST-

based API is specified over a SOAP-based service, the owner of the API can establish operation-by-

operation mappings from the REST operations to the underlying SOAP operations. Once these mappings

are complete, Lifecycle Manager then publishes the API and generates the underlying Policy Manager

REST virtual service with the established mappings automatically primed into each of the API’s operation

process definitions. API developers can then complete the mapping process by specifying content

mappings, transforms and other activities within Policy Manager’s process editor.

For customers with multi-tenant Community Manager deployments (e.g., for purposes of exposing

services as APIs to both internal and external consumers), Lifecycle Manager can be configured with

tenant-specific definitions supporting suitable API policy patterns for each target audience.

In addition, Lifecycle Manager can be integrated with Community Manager’s App to API access

onboarding process to specify configurable onboarding forms and role-based approval processes. The

resulting dependencies are automatically populated into Lifecycle Manager and viewable through the

Lifecycle Manager UI including via Asset Relationship Visualization.

4.4.3.8 Synchronizing Services with SOLA

Lifecycle Manager provides full service SDLC integration with SOLA, Akana’s mainframe service

development platform. Both top-down (i.e., WSDL first) and bottom-up (i.e., copybook-based) service

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 37

development scenarios are supported via this integration. For the top-down case, the WSDL will be

automatically propagated from Lifecycle Manager to SOLA Developer for use during the implementation

process. For the bottom-up case, the WSDL generated by SOLA Developer is automatically propagated

from SOLA Developer to Lifecycle Manager. In either case, SOLA Developer will notify Lifecycle Manager

of development completion, triggering appropriate updates of the SOLA-developed service into Policy

Manager.

4.4.3.9 Devops and Cloud Provisioning Integration

As agile and continuous integration-based approaches to software development increasingly take hold

throughout the industry, organizations need to be able to manage and control which builds are

provisioned to IT operations teams for eventually promotion to production servers. Lifecycle Manager

provides prebuilt integrations with Jenkins and TeamCity to support automated identification and

approval of such builds designated for promotion. For example, a build might be identified by the

development team as a promotion candidate, submitted through a Lifecycle Manager approval process

and then automatically provisioned by Lifecycle Manager to one or more target runtime environments

for operations-level validation.

In addition, Lifecycle Manager provides the ability to extend this devops scenario with automated

provisioning of the target runtime environment via integration with private cloud provisioning

platforms. Such platforms are becoming of increasing interests to enterprise IT organizations as they

work to reduce operational costs and footprints. By replacing physical testing environments with a

virtual server infrastructure combined with cloud provisioning automation tooling, IT organizations can

establish on-demand test server provisioning for short or long-term use by the organization as it

promotes builds through the operational validation process to production.

4.4.4 Asset Submission Automation Capabilities

As discussed above, Lifecycle Manager provides numerous prebuilt automation capabilities suitable for

use during asset submission along with the ability to define custom automation tasks using Beanshell or

Jython scripting languages. The following subsections highlight a few of Lifecycle Manager’s prebuilt

capabilities. For more detail on these and other automation capabilities, refer to the Lifecycle Manager

Process Configuration Guide available from the Lifecycle Manager Support Site.

4.4.4.1 XML Validation

Governance processes can be configured to automatically validate XML documents against their

imported schema references. These schemas can either be retrieved from an external location

referenced by the document being validated, Lifecycle Manager can be configured to provide a local

copy of these schemas for validation purposes, or schemas can be directly represented as assets within

Lifecycle Manager.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 38

4.4.4.2 Regular Expression Based Asset Validation

Asset version and classifier metadata can be automatically validated using Perl 5 regular expressions

(http://search.cpan.org/dist/perl/pod/perlre.pod). Upon detection of a validation failure, an error

notification email will be sent as part of a governance process.

4.4.4.3 Policy Manager Based Policy Validation

Lifecycle Manager can be configured to leverage Akana’s Policy Manager policy engine for artifact

validation. Customers can both use prebuilt policies provided as part of the Policy Manager installation

(e.g., WS-I Basic Profile compliance elements) and create their own policies by defining XQuery

assertions or Javascript/Java rules. These policies can be automatically invoked as part of a governance

process.

4.4.4.4 XML Parsing

If desired, XML documents can be automatically parsed for import dependencies, with discovered

dependencies translated into asset relationships (e.g., a BPEL document imports a series of WSDL

documents, these WSDL documents in turn import a set of XSD documents; an XPDL document

references a series of applications and underlying services). Governance processes can be configured to

automatically create assets representing these dependencies if desired.

4.4.4.5 Service Registry Publication

At the end of a successful governance process for a Web service, Lifecycle Manager can be configured to

automatically publish the Web service and its associated metadata to one or more targeted service

registries. Akana Policy Manager and UDDI-compliant registries such as TIBCO Active Matrix Registry are

supported. See section 8.3.1 for additional information on this topic.

4.4.4.6 Target System of Record Publication

Some organizations may wish to use Lifecycle Manager to validate governed artifacts (i.e., work

products) prior to publication into other development systems of record such as SCMs. Lifecycle

Manager provides prebuilt automation tasks capable of publishing such artifacts into ClearCase and

WebDAV-enabled platforms.

4.4.4.7 Metadata, Template and Process Flow Manipulation

Governance processes can be configured to modify asset metadata and template settings within a

configured governance process. For example, it may be desirable to automatically change both the

status classifier of an asset and its capture template after publication in order to prepare the asset for

the next SDLC stage. Governance processes can be configured to handle special situations such as post-

rejection tasks (including automated resubmission if desired) and automatic rejection based on filtered

conditions.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 39

4.4.5 Lifecycle Manager Configuration Designer Eclipse Plug-in

To simplify the development of

governance automation

processes, Lifecycle Manager

provides an Eclipse-based plug-in

that allows Lifecycle Manager

administrators to graphically

specify these processes. Using

standard palette-based drag-and-

drop techniques, administrators

can define as many processes as

needed to align Lifecycle

Manager’s automation capabilities

with their organization’s

governance requirements. In

addition, Configuration Designer

also enables administrators to

graphically define asset types

(including asset type to capture template mappings), properties, property constraints, metadata and

property groups, user roles (including mappings to editable asset types and editable/viewable metadata

and property groups) and filters used within role-based asset specifications and governance flows.

Administrators can also configure Configuration Designer installations to expose custom-developed

automation tasks (known as “listeners”) as part of the graphical editing palette. Custom listeners are

described further in Chapter 8 of this guide.

Configuration Designer also serves as the primary administrative interface to manage all Lifecycle

Manager configuration files. Template files of all types (including HTML-based email notification

templates and XML-based asset definition and constraint templates), asset type icon files, asset

validation and governance automation XML documents and scripts, and artifact transformation

stylesheets are uploaded to and retrieved from the Lifecycle Manager server via Configuration Designer.

Configuration Designer can be used to produce a portable zip file representation of a Library’s complete

set of configuration files for easy server-to-server migration (e.g., from a test environment to a

production Lifecycle Manager installation), and can directly import such zip files to produce a new

Configuration Designer project within Eclipse or the standalone rich client.

4.5 Users and Their Roles

As discussed earlier, users are assigned roles with the authority to perform certain operations, some of

which are Library-wide, while others may pertain only to an organization or project. These roles include:

• Asset User

• Asset Capture Engineer

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 40

• Asset Publisher

• Asset Owner

• Project Manager

• Usage Controller

• Library Administrator

Lifecycle Manager administrators can also introduce their own customer-defined roles for use within

Lifecycle Manager configurable asset governance processes. These roles can be configured to establish

asset and metadata-level scope over creation, editing and viewing content (including state-based edit

controls) as well as control over access to specific library capabilities (e.g., actions that should be

initiated only by administrators as they result in heavy processing of library content).

4.6 Organizational Groups and Project-level Customization
Considerations

Lifecycle Manager supports a flexible mechanism called Organizational Groups to model organizations

or projects within an IT organization’s structure. In general, organizations and projects are populated

into Lifecycle Manager based on their involvement in asset production, consumption and/or governance

activities and/or the need to establish metrics at various levels of the organizational hierarchy. Group

hierarchies can also be introduced to establish asset search visibility rules within the Library (e.g., all

Enterprise-scope assets are visible to all Library users, but Group-scope assets are visible only to

members of that group and its subgroups). Users can then be assigned on a role-by-role basis to

organizations and projects as needed.

Every Lifecycle Manager Library contains an Enterprise Organizational Group which represents the

entire enterprise (or some other broadly-scoped organization in the event that multiple libraries are

deployed within the enterprise). Subsidiary Organizational Groups and Projects can then be created for

each initiative as needed. A project creates a shared work area for people working on a particular

project. Chosen asset views, reference models and asset queries are some of the information managed

by the project work area. Projects and Organizational Groups are also useful for SDA management and

usage reporting purposes.

Much of the Library behavior is driven by the project definition, which significantly increases

productivity and accuracy.

A project defines the following:

• Who is allowed to work on the project.

• Who is the project manager.

• Who is authorized to capture, edit and publish assets.

• What asset views (groups of assets) are visible to the project.

• What Reference Models are visible to the project.

• What the profile for the project is that includes:

o A default asset tree for the display.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 41

o A starting set of classification criteria (for example, a project may only allow

components where type = Java to be used).

In general, user roles are allocated within the Library’s established organizational hierarchy. For

example, one user may be allocated the Asset Capture Engineer role for Organizational Group A and

another user the same role for Organizational Group B. The first user in this example will be allowed to

create and edit only those assets owned by Projects and Organizational Groups contained with

Organizational Group A’s hierarchy (including of course Organizational Group A itself). Likewise, the

second user will be allowed to work with assets owned within the Organizational Group B hierarchy.

This flexible approach to role-based authorization gives organizations the ability to create a layered

review and governance model over SDA production. Referring back to the governance example in a

prior section of this document, an organization deploying Lifecycle Manager may define the Architect

and Business Analyst roles and allocate user authority to those roles at different levels in the deployed

organizational hierarchy. For example, the organization may have an Enterprise Architecture team

whose members should be involved in review of all candidate assets; thus Lifecycle Manager users with

that responsibility will have the Architect role assigned at the Enterprise Group level. On the other

hand, Business Analysts may have line-of-business responsibility, so Lifecycle Manager users with

Business Analyst review responsibility will have that role assigned to LOB-specific groups within the

organizational hierarchy. With this role authorization model, the correct set of asset reviewers will be

automatically notified by governance automation based on the group originating the submitted asset.

Administrative roles are established library-wide by default. These roles can also be scoped to users with

suborganization-specific (e.g., LOB) responsibilities. Organizations may also choose to automatically

provision groups, users and role assignments into Lifecycle Manager from external sources. Such

automatic provisioning can occur via integration with LDAP instances or other systems of record via

Lifecycle Managers automation APIs. User, project and organization profiles can be extended to include

customer-configured properties augmenting the core information managed by Lifecycle Manager.

4.6.1 Groups Visualization

Lifecycle Manager provides an

Eclipse-based graphical viewer

to visualize your organizational

group structure, including the

users and their roles

distributed throughout the

organizational hierarchy. This

viewer can simplify the

process of maintaining an

enterprise’s organizational

structure within Lifecycle

Manager.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 42

4.7 Federated Libraries

Enterprise development groups often need to deal with complex organizational issues, including

distributed locations, outsourcing, offshoring, and line-of-business-related partitioning of project teams.

Quite often teams need to selectively share SDAs across organizations while maintaining control and

oversight over those SDAs. Lifecycle Manager addresses these needs with its federated library

infrastructure.

The Lifecycle Manager federated library infrastructure is designed to allow organizations to easily

partition their SDA-related activities while supporting selective sharing of SDAs across those partitioned

libraries. This multi-library support is enabled at two levels within the Lifecycle Manager product:

• Within a Lifecycle Manager installation, administrators can create as many libraries as desired.

By default, each library is totally isolated from all other libraries in the installation. Installation

administrators can then selectively connect one library to another, thereby automatically

exposing the SDAs resident in the source library (known as the Visible Asset Source) to the client

library being configured.

• Administrators can also selectively add libraries hosted by a remote Lifecycle Manager

installation to the Visible Asset Source list. These libraries are known as Remote Asset Sources.

Lifecycle Manager connects to a Remote Asset Source using SOAP APIs. Once the administrator

configures a client library to connect to a Remote Asset Source, that library will refresh its view

of the SDAs in the remotely connected library on a periodic basis specified by the administrator.

As assets are published into a local Lifecycle Manager library, their asset metadata is applied against

filtering criteria established for connected libraries. Such filters are configured using the Configuration

Designer discussed earlier in this document, and can combine multiple metadata elements and values as

needed to enable precise control over which assets are to be synchronized over a remote connection

(e.g., only enterprise-certified services are to be shared across libraries). If the asset conforms to filtering

criteria, its metadata will flow to the connected library and become visible within that library. Of course,

this library in turn may be connected to further downstream libraries allowing organizations to

implement and deploy quite sophisticated asset distribution models.

In an integrated Lifecycle Manager / Policy Manager deployment, services federated across libraries can

be acquired by applications or services in any library where they are visible. Lifecycle Manager

automatically maintains service ownership across all libraries in a federated configuration, thereby

allowing it to automatically route consumed asset approvals to the correct remote library (e.g., routing

an application’s request to use a service with a specific service-level agreement to the owner of that

service in its originating library) and to establish operational contracts to the correct service instances

managed by Policy Manager. See section 6.4 for further discussion of integrated service acquisition.

4.8 Key Library Configuration Points

While many aspects of the Lifecycle Manager work environment are defined at the project level, certain

aspects are specified at an “enterprise level” affecting the entire Lifecycle Manager installation.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 43

Lifecycle Manager provides some configuration points to help manage the installation and support of

the Library for multiple groups, including:

• Library description

• “Sender Email Account” for automatically generated messages – to receive replies

• Feedback contact

• What information will be displayed on asset information pages

• Global Template (default) definition (see templates discussion)

• Asset acquisition mode(s) (see chapter 6 for details)

4.9 The Quickest Way to Get Started

Lifecycle Manager is very flexible, but ships with default settings, preconfigured schemas and

governance automation flows, and standard templates to speed start-up. The following tasks will also

make start up faster:

• Work with a small set of assets to start.

• Identify a small set of users to start.

• Import a simple, existing UML or block-diagram based model which covers the domain or part of

the domain of the assets to be loaded (load the model used to create the assets, if it is

available).

• Capture assets using the IDE-based wizard or web submission interface, saving automatic

updating and loading for later.

• Apply appropriate governance process automation to ensure published assets are of good

quality and meet organizational needs and expectations.

• Define a minimal organizational structure sufficient to represent project collaboration and

governance scoping requirements.

• Initially, have the same person be the Library usage controller and administrator.

These and many other recommendations are detailed further within the Lifecycle Manager Best

Practices and Assessment template documents.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 44

5 Locating and Using Assets

The core value of the asset Library is its ability to allow users to locate and

understand assets that fit their specific requirements. A properly

configured Library will result in effective asset understanding and use.

Lifecycle Manager provides several search mechanisms which support all

styles of search interaction, ranging from a quick ad hoc keyword search to

a sophisticated search using Reference Models.

Lifecycle Manager supports both thin-client (browser-based) and IDE-based

user interfaces. Both Internet Explorer and Firefox browsers are

supported. Lifecycle Manager provides IDE integrations for Eclipse-based

IDEs (both open source and commercial variants) and Microsoft Visual

Studio.

5.1 Modes of Locating Assets

5.1.1 Browsing for Assets

A user can browse for assets

using the Lifecycle Manager

Asset Tree, which is always

present on the left hand side of

the Lifecycle Manager user

interface. The Asset Tree is

similar to an explorer tree or a

file tree but is dynamically

generated from project- or user-

selected classifier types. The

tree can be navigated, and when

an asset is chosen, its detail is

displayed.

Locating Assets

• Asset Tree

• Browsing Models

• Ad hoc Search

• Asset Query

• Model Based Search

• IDE Integrations

• Asset Viewer

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 45

5.1.2 Searching For Assets

Searching for assets allows a user

to find assets associated with

specific criteria, such as application

requirements. A search can either

be persistent or ad hoc and can be

either text-based or based on a

graphical reference model

previously populated into Lifecycle

Manager. Search results then

return a list of assets conforming

to the search criteria along with up

to three columns of configured

classification information that can

be used to sort the assets prior to

further investigation.

Lifecycle Manager can aid in the control and collaboration efforts of locating assets. Lifecycle Manager

has the concept of a project. A project can be thought of as a shared work area which ensures that

assets used in the project conform to a given profile. In addition, projects provide an area for searches

to be stored, used, and/or reviewed by others. (See other aspects of projects in Section 4.6, Project

Level Customization Considerations and Section 6.4, Acquiring Assets.)

5.2 The Asset Tree

The asset tree is a very flexible and intuitive mechanism for locating assets. It operates much like a

standard file search and exploring mechanism, yet its structure is dynamic and can change based on

categorization values – such as asset type, asset domain, provider, etc. Users can also modify the

structure of the Asset Tree based on their own preferences, or use the Asset Tree structure provided for

them by the project they are working with. Asset Tree nodes can be used simply to organize assets

within the hierarchical tree view, or can be directly invoked to build a search result list of all assets that

reside under that node. Users can configure their Asset Tree settings to automatically expand to the

desired depth upon login if desired.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 46

5.3 Preconfigured and Custom Searches

In Lifecycle Manager, a standard

search box is always visible in the

left-nav bar of the Library.

Searches can be initiated either

from this left-nav search box or

directly from the asset editing

page while adding asset

relationships. This latter approach

is particularly useful to asset

owners as they progress an asset

through its defined governance

lifecycle. In many cases, specific

relationships must be established

by the asset owner at each

governance stage, and by allowing owners to initiate search within asset edit Lifecycle Manager allows

those users to complete this work while in the broader context of fulfilling the content mandates

established for the current governance stage of the asset under edit.

The user can select any of the following types of preconfigured searches:

• Assets by Content, which searches across all available asset metadata and queryable artifacts. If

no search string is entered, the result will list all assets that are available in the active project.

• Assets by Name, which searches for a given asset by name.

• Assets by Keyword, which searches for assets with a given keyword.

• Services by Operation, which searches for operation names specified within WSDL artifacts

associated with service assets

• Assets by Status, which combines search for asset content with an additional search field based

on asset governance status

• Modified Since, which combines search for asset content with a date field used to filter out

those assets whose last modification date is earlier than the provided date value

In addition to these standard search types, Lifecycle Manager administrators can also configure custom

search types leveraging the product’s XML-based search engine. Every asset managed by Lifecycle

Manager along with its surrounding context (e.g., owning organizational group, last editor, creation

date, last edited date) is stored as an XML document that can be searched via configured XPath

expressions. Lifecycle Manager administrators can declare as many XPath expressions as desired and

expose them to end users as search types alongside Lifecycle Manager’s standard searches. These

XPath expressions can also be extended to incorporate any XML-based artifacts associated with Lifecycle

Manager assets (e.g., BPEL, WSDL, XSD). By configuring specialized search types, administrators provide

Lifecycle Manager users the benefit of precise user-centric searches without requiring those users to

understand the complexities of XPath.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 47

As is evidenced by the Assets by Status and Modified Since default search types, Lifecycle Manager

supports multi-field searches. Configured search expressions can be combined as desired to create

compound search forms of any desired type, giving Library administrators the flexibility to define

sophisticated search types that meet the needs of various Library audiences in a simple, easy-to-

understand manner.

Once an asset search is executed, a list of assets meeting the criteria is displayed along with a

configurable and sortable set of metadata for these assets. These assets can then be investigated and

deployed. Adhoc searches can also be saved as persistent searches for further refinement.

5.3.1 Saved Searches

Saved searches are persistent

records of search criteria. These

records hold the definition of an

asset query. Saved searches are

owned by and stored in a project

and can be accessed by any

authorized project user. Any search

initiated from the search box can be

saved by selecting the Edit Search

Properties action on the Search

Results page. This takes the user to

the Search Details page where

search criteria can be modified and

the search named and saved for future use.

Users can mark any saved search as “alertable”, thereby enabling those users to be notified of any new

or republished asset that conforms to the search. This powerful alert mechanism helps users to

automatically stay on top of new information (such as architectural patterns and best practices),

improving communication within the development organization.

Saved searches offer the ability to:

• Rerun the same search at any time to update the resulting asset list.

• Modify the search criteria and rerun the search.

• Make the search criteria available to others

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 48

5.3.2 Searching with an Asset Query

Searches can also be created

directly from the Lifecycle

Manager’s home page by selecting

the Create Asset Query action.

Searches created in this manner

are identical to those created

through the search box; however,

this approach also allows the user

to immediately enter classifier

filtering criteria to narrow the

search.

5.3.3 Search Results

Regardless of the method used to invoke the search, Lifecycle Manager returns the set of assets

confirming to the search in a configurable and flexible Search Results grid. This grid lists each asset’s

name and version along with up to three designated classifiers in a sortable and paginated format.

Designated classifiers are specified by organizational profile and can be overridden by individual user

settings as desired. Depending upon how the search was initiated, this grid may be presented to the

user as a new Library page or may be presented as an asset edit dialog.

When initiating a search from the left-nav search box, users can choose to export all or some of the

assets returned from a search. When export is selected, Lifecycle Manager produces a zip file containing

a spreadsheet listing all metadata for the selected assets and a series of asset-specific folders containing

any by-value artifacts associated with the exported assets. This export result set can in turn be modified

and used to update assets via Lifecycle Manager’s Import Center (section 8.3.2), or simply manipulated

by the user to produce ad-hoc reports using spreadsheet or other external tool capabilities. Depending

upon Library configuration, other search results processing actions may be available from the Search

Results page; for example, a user responsible for creating project proposal assets within the Library may

initiate an asset search, investigate the assets returned by the search and finally select one or more of

those assets to be automatically associated with a newly generated Project asset initiated from the

Search Results page.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 49

5.4 RAD and Eclipse Plug-ins

In addition to the thin-client user

interface shown in the previous

sections, Lifecycle Manager

provides a powerful, tightly-

integrated plug-in to IBM Rational

Application Developer and other

Eclipse-based IDEs. These plug-ins

give developers all the capabilities

of the Lifecycle Manager thin-

client but directly accessible right

from their IDE, eliminating the

need to move from one tool to

another during development.

Because the Lifecycle Manager

plug-ins are tightly integrated,

users can easily configure them to support their own usage patterns and activities. All of the actions

supported by the plug-ins use standard RAD/Eclipse widgets and wizard structures. In addition,

ClearCase users can import ClearCase controlled artifacts by reference directly into their ClearCase

controlled Eclipse projects via the Lifecycle Manager plug-in, thereby eliminating the copying and

duplication of executable artifacts such as jar files and ensuring ongoing synchronization with the

correct file version. Supported ClearCase options include both UCM mode and non-UCM mode and

Composite Component references.

5.5 Visual Studio Add-in

Lifecycle Manager also provides a

powerful, tightly-integrated add-in

to Microsoft’s Visual Studio IDE.

This add-in gives developers all the

capabilities of the Lifecycle

Manager thin-client but directly

accessible right from their IDE,

eliminating the need to move from

one tool to another during

development.

Because the Lifecycle Manager

add-in is tightly integrated, users

can easily configure it to support

their own usage patterns and activities. All of the actions supported by the add-in use standard Visual

Studio widgets and wizard structures.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 50

5.6 Other IDEs

Lifecycle Manager’s Eclipse Plug-in is compatible with many other commercial Eclipse-based IDEs.

Contact Akana support for questions about specific IDE products.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 51

6 Employing Assets

6.1 The Total Asset

Lifecycle Manager holds the overview,

metadata (classifiers), properties, artifacts, and

related assets – all of which make up the “total

view” of an asset.

Examples of the information and references

Lifecycle Manager holds for each SDA include:

• Overview Information: name, version,

overview, description, contacts and

supporting project information.

• Attributes: classification information

such as asset type, supported

platforms, functional domain & sub-

domain, support level, and other

metadata elements configured into the Library for the asset type, along with artifacts (i.e., work

products) such as

• XML documents, binaries, user documentation, test scripts, models, and others.

• Asset Relationships: previous versions, prerequisites, co-requisites, suggested/actual usage and

other strongly-typed dependencies between assets.

• Context Information: what group owns the asset, when was it created, when was it last

modified, etc.

• Lifecycle State: a visual representation of the asset’s current SDLC state

• Governance Request History: access to all past submission requests for the asset as it

progresses through its production SDLC.

Each asset type is associated with a unique icon providing a useful visual cue to Library users. Asset type

icons are shown in the Asset Tree, Asset Details (for both the asset being viewed and its related assets)

and Asset Relationship Visualization (ARV) views. Default icons are provided for each asset type

provided with the Library’s default configuration. These icons can be replaced as desired by customers,

and additional icons can be provided for customer-specified asset types.

Lifecycle Manager can be configured via XML templates to define the exact information to be stored for

each given SDA type (see Chapter 4: Building the Library and Integrating a Development Environment).

Hints are also provided to the user to indicate if the asset currently in view has a change in process.

Knowledge of such a planned change may cause the user to contact the asset owner to understand if

the change will affect the planned use of the asset.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 52

6.1.1 Virtual Asset WindowTM

Different roles in an enterprise require different information concerning

an asset to facilitate understanding, governance and consumption of that

asset. For example:

• Business analysts need information about how the asset supports

business requirements

• Architects need to see how the asset fits with the preferred

architectural approach

• Project managers need to understand schedule, effort, and

potential ROI of the asset

To drive improved understanding of assets/services, Lifecycle Manager’s Virtual Asset Window extends

role definition capabilities to the asset presentation level. For each defined role within Lifecycle

Manager, an asset can be configured to present the asset in a role-specific fashion with respect to the

information exposed and how that information is ordered on the user interface. In addition, users with

multiple roles can easily switch from one role to another as they view an asset. With the addition of the

Virtual Asset Window, users can quickly and easily see only the information they need concerning an

asset, thereby broadening the types of users accessing, using and promoting assets throughout the

enterprise.

6.2 Studying and Discussing Software Development Assets

The user can review the information available for any asset that is visible to them, and even launch or

download asset workproducts as desired. For service assets, Lifecycle Manager is configured by default

to automatically populate a WSDL viewer artifact that presents WSDL contents in an easy-to-read

human-friendly format. Discussion threads (including an optional inline Comments section presented

directly on the thin-client Asset Detail page) are also available for each asset that can be reached from

any of the asset information pages. Users can review these discussions or join them. Users can also

choose to email asset information to others directly from the thin-client Asset Detail page.

If an older or newer version of the asset being reviewed exists in the Library, users can view changes

between versions in digest form through the Lifecycle Manager thin client UI. In addition, WSDL and

other XML document-type artifacts within such versioned assets can be compared using Lifecycle

Manager’s built-in artifact comparators. Lifecycle Manager also allows customers to implement and

deploy their own custom comparators for these and other artifact types as desired.

Employing Assets

• Investigate

• Discuss

• Visualize

• Acquire

• Subscribe

• Cross-tool IDE

integrations

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 53

6.3 Visualizing Assets and their Relationships

Lifecycle Manager users can choose

to view a selected asset in

relationship to other assets using

Lifecycle Manager’s Asset

Relationship Visualization (ARV)

capabilities. ARV provides a

Relationship Visualization view that

presents a graphical overview of

multi-level dependencies centered

on a selected asset. Both radial and

layered views are supported. ARV

users can view asset and

relationship content digests via

hoverhelp, and they can choose to

launch any asset within the ARV view into the main Library window as desired. Likewise, ARV views are

fully supported within Lifecycle Manager’s Eclipse and Visual Studio plug-ins.

User-configurable viewing options for ARV include filtering on one or more relationship types, asset

metadata and selectable recursion depth. Users can also select specific metadata elements to expose in

asset hoverhelp, and can individually hide specific assets to produce the desired graph layout that meets

user objectives. ARV settings can be named and saved for reuse.

6.4 Acquiring Assets for Use

Once an asset editor has

determined to consume an asset,

he or she clicks the acquire

icon/link in the IDE plug-

in/browser to initiate asset

acquisition. Alternatively,

selection of an asset via the Add

Relationship wizard when editing

an asset in the browser

automatically initiates the asset

acquisition process. Asset users

can easily determine the project

and consuming asset currently in

force by viewing the Active Project

and Active Asset fields within Consumption section of the left-nav bar of the thin-client UI or by viewing

the equivalent entries within the Connection node within the plug-in’s Library Explorer view. Upon

initiation of an acquisition, an asset user may be asked to provide justification for or more details about

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 54

the acquisition (e.g., the quality of service required by an application’s use of a service). This

justification may be as simple as a free-form text comment, or may involve specifying expected service-

level demands to be placed on the asset, agreement to corporate usage criteria, or other information

needed to evaluate or audit asset usage. When Lifecycle Manager is integrated with Akana’s Policy

Manager, the decisions made during asset-based acquisitions of services result in enforceable runtime

contracts being automatically generated by Lifecycle Manager into Policy Manager. These contracts can

be established at the service operation level if desired, giving service consumers full control over quality

of service requirements on an operation-by-operation basis.

Just as for asset production, governance processes can be configured to control and automate the asset

acquisition process. For many organizations, asset acquisitions will require approval, perhaps by a

Project Manager or by a representative of the organization that produced the asset being acquired (e.g.,

the owner of a service must approve all requested service usage to ensure that the service’s production

infrastructure is not overwhelmed by consumer demand). Lifecycle Manager governance automation

provides a fully flexible acquisition governance model, supporting customer-defined roles, automation

and manual review stages with configurable checklist-style fields and metadata-driven process filtering.

Out of the box, Lifecycle Manager is configured to enable a two-stage acquisition governance process

involving the Project Manager and Asset Owner native Lifecycle Manager roles. If the project has been

configured to require a Project Manager’s approval, this request is put into the Project Manager’s

acquisitions queue and all managers for that project are notified via email. Because asset acquisition

may result in cross-charging, license purchases or usage certification, or other aspects of project

governance, this approval process ensures that the project manager agrees with the use of the asset.

Likewise, if Lifecycle Manager has been configured to require that the Asset Owner approve all asset

acquisitions, then the request is put in the owner’s acquisitions queue allowing the owner to approve or

deny the request. As noted in the Federated Libraries section above, Asset Owner approval extends to

remotely-owned assets in a federated library configuration, thus ensuring that proper authority is

granted to cross-enterprise consumers while preserving library-scoped security.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 55

The default acquisition governance process is graphically portrayed as follows:

Lifecycle Manager’s prebuilt

integration with Akana Policy

Manager provides a powerful

mechanism to coordinate the

development-time and runtime

views of service consumption

contracts. Valid Service Level

Policies (SLPs) defined within Policy

Manager for the service being

acquired are directly exposed to

the developer initiating the

acquisition, thereby allowing the

developer to document the

intended usage characteristics for

the service client (e.g., application, orchestration) currently under development. In addition, if Network

Director or IBM DataPower is being used to establish proxy virtual services for consumption purposes,

Lifecycle Manager can present the full set of these proxy services with their varying non-functional

characteristics to the developer initiating the consumption request. If desired, integrated consumption

governance processes can also be configured to allow operation-level agreements to be established

between the consumer and the consumed service. When the consumer is also a service, each operation

Asset Acquired by Asset User

Approve?

Inform

Acquirer

of Rejection

no

End

Notify Asset Owners

Approve?

Inform

Acquirer

of rejection

Asset is

Registered,

Relationship

established

yes

yes

no

Notify Project Managers

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 56

of the consuming service can establish its own independent consumption agreement with one or more

operations of the consumed service, thereby enabling fine-grained impact analysis visibility and control

over service access. Upon approval, this information is used to automatically create a Policy Manager

contract (or contracts in the case of operation-level acquisition) in draft state that serves as the basis for

operational governance. These contracts typically include reference to the consumer’s unique identity –

a UDDI tModel key in the case of a consuming service, or an authentication identity such as LDAP userid

in the case of a non-service consumer. Contracts can also be scoped to the consuming project if desired.

Lifecycle Manager acquisition processes can also be configured to automatically acquire related assets

upon approval of a root asset. For example, an IT organization may have established a two-tier service

architecture layer composed of composite and elemental services, where composite services

incorporate one or more elemental services within their implementations. It may be beneficial in this

environment to track acquisitions of not only composite services by applications but also the underlying

elemental services implicitly consumed by those applications through composite service use. Related

asset acquisition can be configured to acquire only directly related assets or to recursively acquire assets

of specified relationship types.

Users involved in the asset acquisition approval process are automatically notified of pending requests

via an email which contains an imbedded URL to the request details. Reviewers can also access via the

Lifecycle Manager thin client a list of pending requests as well as those requests that they have acted

upon in the past. Users with Usage Controller authority are given access to an additional page which

lists all requests in the library. All of these pages provide appropriate sorting and filtering options to

allow the user to quickly find the desired request based on submitter, status, request type, and other

parameters.

Asset acquirers can view their active and previously processed requests through a similar set of pages in

the Lifecycle Manager thin client. Active requests show acquirers the currently pending governance

approval role along with Lifecycle Manager users having that role-based authority to approve or reject

the acquisition request, thereby making it easy to ping approvers for requests that are not being

expeditiously processed. Acquirers needing to resubmit an asset (e.g., because a role-based reviewer

rejected the original acquisition request) can choose to prime their updated acquisition request with

request field values from the immediately prior acquisition request for that asset.

Depending upon the sensitivity of the asset being acquired, some asset publishers may choose to

configure certain asset artifacts (such as binary executables, detailed design documentation, etc.) as

private. When an artifact is configured as private, it cannot be accessed through the Lifecycle Manager

Library until all asset acquisition approvals have been successfully completed. This is a useful feature for

organizations that want to maintain tighter control over asset usage and deployment.

6.4.1.1 Lifecycle Manager Configuration Designer Eclipse Plug-in

As discussed in section 4.4.3.1, Lifecycle Manager provides an Eclipse-based plug-in to support graphical

definition of governance automation processes.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 57

6.4.2 Portal-based API Acquisition

When integrated with Community Manager,

Lifecycle Manager supports a fully configurable App

to API access approval process similar to the

capabilities provided by Lifecycle Manager’s native

UI and IDE-based integrations. Lifecycle Manager

provisions not only the core API definition to

Community Manager but also “full product”

configuration elements such as shared legal

agreements, operation-level licenses and extended

API documentation. Using Lifecycle Manager’s REST-

based Lifecycle APIs, Community Manager

administrators can configure specialized onboarding forms and role-based approval processes to

support the technical, business, legal and regulatory needs of the enterprise via a fully automated and

auditable workflow.

6.4.3 Active Asset Analysis

Some organizations may desire a formalized feedback mechanism (beyond the asset-specific discussion

forums automatically created by Lifecycle Manager for each asset discussed in section 6.2 above) for

acquired assets. Once an asset has been acquired by a Lifecycle Manager project, Lifecycle Manager can

be configured to automatically generate a user feedback survey for that asset. This survey is

configurable and can contain both quantitative (e.g., how much effort was saved) and qualitative (e.g.,

how did you use the asset) feedback in both numeric and text form. Upon submission of the completed

survey by the asset user, Lifecycle Manager automatically updates the rated asset and its discussion

topics designated for textual feedback, with the survey response preserved for audit and/or historical

purposes. Such formalized consumption feedback concerning how well an asset has met the needs of

its consumers can be a critical aspect of establishing, maintaining and increasing asset reuse throughout

the enterprise. Also, consumption feedback can guide an organization on identifying areas where the

asset lifecycle, governance and management practices can be expanded and improved.

6.4.4 Integrated Asset and Project Usage Metrics

Lifecycle Manager has integrated Eclipse’s Business Intelligence and Reporting Toolkit (BIRT) runtime

engine as part of its server deployment. As part of this integration, Lifecycle Manager automatically

generates usage metrics-oriented reports for every asset, project, and organizational group in a Lifecycle

Manager library. These reports show the list of all acquisitions (including operation-level usage

dependencies for APIs and services) and subscriptions for each asset, and the list of owned assets and

their acquisitions for each organizational group (the project metrics report also shows the list of assets

acquired by the project), giving Lifecycle Manager users easy access to focused information about library

activity levels at a granular level.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 58

6.4.5 Envision Integration

Lifecycle Manager provides out-of-the-box integration with Envision, Akana’s analytics platform. The

following two Envision connectors feed relevant asset and governance information to Envision for

exposure in Envision’s dashboard:

• Service Lifecycle Velocity: a graph which shows average transition times for the organization’s

services as they progress through the organization’s SDLC gates with group-specific drilldown

• Service Heat Map: a pie chart which displays service counts organized into the organization’s

business domains with drilldown to subdomains and lower levels as specified in Lifecycle

Manager’s configuration

Additional connectors can be implemented by Akana professional services or customers as desired to

provide additional visibility into various aspects of the development process.

6.5 Subscribing to Assets to Keep Informed

If a user is considering an asset for acquisition, or works with an asset on an on-going basis (such as

design standards or core central services), he or she can subscribe to that asset for information about its

changes. Subscribers receive email notification when an asset has changed or a new version is

published.

Users can subscribe by clicking on the subscribe link on the Asset Detail Page or the subscribe icon

within the IDE plug-in. Each user can manage his or her list of subscribed assets via the Library home

page.

Users can also choose to subscribe to asset forums via RSS feed. Since every asset republication results

in a new posting to the Publication Notes topic for the asset, this RSS-based approach provides an

alternative to email-based asset subscriptions for those users that prefer RSS aggregator/reader-style

notifications.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 59

7 Assessing – An On-going Process

7.1 Reporting on the Effectiveness of the
Library

It is important to track metrics associated with goals set for the Library in

the initial assessment and planning phase. Metrics might include:

• Number of Assets Reused (acquired)

• Cost saved via Reuse

• Number of Assets in the Library

• Top Asset Authors (as indicated by most used assets)

• Library Users

• Discussion forum activity

Akana’s professional services can help determine the appropriate metrics for a company’s needs.

Professional services can also help design reports and custom templates for gathering and analyzing

data about Lifecycle Manager.

7.2 Reporting Views

Lifecycle Manager collects the information needed to support reporting and analysis requirements. The

information is available through read-only views into the production database, which supports the use

of standard report writers and information warehouse/mining tools. The views are designed for easy

access and understanding.

Data Views include:

• Assets in Lifecycle Manager Catalog (RPT_CATALOG_ASSET)

• Published Assets (RPT_ASSET)

• Asset Artifact Information (RPT_ASSET_ARTIFACT_INFO)

• Asset Classifier (RPT_CLASSIFIERS)

• Asset Forum Information (RPT_ASSET_FORUM)

• Asset Forum Topics (RPT_ASSET_FORUM_TOPIC)

• Asset Forum Messages (RPT_ASSET_FORUM_MESSAGES)

• Asset Acquisition Request (RPT_ASSET_ACQ_REQ)

• Asset Registrations (RPT_ASSET_REGISTRATION)

• Asset Changes (RPT_ASSET_CHANGE)

• Asset Classifier (RPT_ASSET_CLASSIFIER)

• Asset Relationship (RPT_ASSET_RELATIONSHIP)

• Asset Function (RPT_ASSET_FUNCTION)

• Manual Publish Requests for New Assets (RPT_ASSET_PUB_REQ)

• Asset Requests (RPT_ASSET_REQUEST)

• Asset Request Actions (RPT_ASSET_REQUEST_ACTION)

• Asset Request Approvals (RPT_ASSET_REQUEST_APPROVAL)

• Asset Subscriptions (RPT_ASSET_SUBSCRIPTION)

Ongoing Assessments

• Attainable,

Measurable Goals

• Regular Analysis and

Reporting

• Ongoing Planning and

Roll Out

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 60

• User Query Alert Subscriptions (RPT_QUERY_SUBSCRIPTION)

• Asset Search Specifications (RPT_SEARCH_SPECIFICATION)

• Asset Sources (RPT_ASSET_SOURCE)

• Domain Reference Models (RPT_DRM)

• Assets Mapped to Reference Model (RPT_FUNCTION_MAPPING_INFO)

• Reference Model Idealized Components (RPT_IC)

• Reference Model Idealized Component Functions (RPT_IC_FUNCTION)

• Reference Model Idealized Component Interfaces (RPT_IC_INTERFACE)

• Asset Global Definition Template (RPT_GLOBAL_DEF_TEMPLATE)

• Asset Capture Templates (RPT_CAPTURE_TEMPLATE)

• Library (for use in including Library name in report) (RPT_LIBRARY)

• General Forum Information (RPT_GENERAL_FORUM)

• General Forum Messages (RPT_GENERAL_FORUM_MESSAGES)

• General Forum Topics (RPT_GENERAL_FORUM_TOPIC)

• Organizational Groups (RPT_ORG_GROUP)

• Organizational Group Hierarchy (RPT_ORG_GROUP_HIERARCHY)

• User Role (RPT_ORG_GROUP_USER_ROLE)

• Projects (RPT_PROJECT)

• Project Users (RPT_PROJECT_PARTICIPANT)

• User (RPT_USER)

• Contacts (RPT_CONTACT)

• Audit Trail Events (RPT_AUDITTRAIL)

• Audit Trail Event Properties (RPT_AUDITTRAIL_PROPERTIES)

• Audit Trail Events and Event Properties (RPT_AUDITTRAIL_COMBINED)

• Lifecycle Manager Entity Properties (RPT_PROPERTY)

• Asset Request Properties (RPT_ASSET_REQUEST_PROPERTY)

7.3 Integrated Reports and the Eclipse BIRT Reporting
Engine

Lifecycle Manager ships with integrated Eclipse Business Intelligence and Reporting Toolkit (BIRT)

support. BIRT is an open source, Eclipse-based reporting system that integrates with applications to

produce compelling reports for both web and PDF. BIRT provides an Eclipse-based design time toolkit

along with a server-side runtime engine. BIRT’s capabilities are a natural complement to Lifecycle

Manager, allowing Lifecycle Manager users to rapidly develop new reports in a graphical rich client

environment and easily deploy those reports to the integrated BIRT server engine within Lifecycle

Manager.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 61

Lifecycle Manager also automatically generates the following BIRT-based library-wide reports for every

library created within a Lifecycle Manager installation:

• Business Domain Heatmap Report

• Success Metrics Report

• Repository Savings Report

• What’s Hot Report

• What’s New Report

• Search Analysis Report

• Governance Monitoring Report

• Stale Assets Report

• User Assignments Report

Additional details about these reports are available by downloading the Lifecycle Manager Reports

Toolkit from the Lifecycle Manager Service Center.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 62

8 Extending Lifecycle Manager to Project
Management and Deployment Environments

8.1 Project Management, Development and Deployment

As enterprises move forward with component-based and service-oriented application architectures,

they increasingly recognize the need to better tie the developed components and services with their

deployed instances, both to improve the control and efficiency of application deployment and

maintenance and to provide rapid and meaningful feedback to their developers when things go wrong.

In addition, many enterprises are looking to increase their automation of IT project management, taking

advantage of improved workflow and orchestration tools to both drive their IT projects more efficiently

and to ensure consistency of process from project to project. Lifecycle Manager is designed to support

these enterprise goals, both through general-purpose integration interfaces and through prebuilt

integrations with key deployment tools.

For example, consider a large IT shop with tens if not hundreds of application development and

maintenance projects underway at any one time. By implementing a workflow-based approach to new

project initiation, this organization can help to ensure that project resources are properly allocated and

the approved software development process is followed through deployment, including designated

review points throughout the development lifecycle. Lifecycle Manager can be integrated into such an

environment via:

• Automated Lifecycle Manager organizational group and project creation and maintenance

• Automated notifications to key architects, team leaders, and project management when project

checkpoints have been reached and reviews are required

• Automated publication of Web service metadata to the enterprise runtime SOA registry when a

Web service project goes into production

8.2 General-Purpose Integration Interfaces

Lifecycle Manager is designed to support easy integration with other tools through its SOAP-based

integration APIs. These APIs include both inbound calls into Lifecycle Manager and outbound event

notifications from Lifecycle Manager.

8.2.1 Inbound Integration to Lifecycle Manager

Lifecycle Manager exposes the following roles via its SOAP-based integration APIs:

• Asset User

• Asset Capture Engineer (ACE)

• Usage Controller

• Governance automation actions

Among other capabilities, these APIs allow enterprises to search for assets, retrieve asset details

(including artifacts), initiate asset acquisition, create and edit new and existing assets, and create and

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 63

edit new and existing organizational groups and projects. This gives organizations deploying Lifecycle

Manager wide-ranging flexibility to integrate their Lifecycle Manager deployment with other tools and

processes.

Lifecycle Manager also provides a selected subset of its integration APIs in REST form. These APIs are

focused on asset query, subscription/notification and retrieval mechanisms, and are provided to enable

customers to establish lightweight Lifecycle Manager integrations using any technology capable of

emitting and receiving HTTP-based messages.

8.2.2 Outbound Integration from Lifecycle Manager

By exposing its SOAP-based event engine, Lifecycle Manager makes all “events of interest” available for

customers’ integration and tracking purposes. Supported event types cover the full range of Lifecycle

Manager capabilities, including:

• User login/logout

• Asset Searches

• Asset Usage

• Asset Acquisition

• Asset Creation and Maintenance

• Forums

• Reports

• Governance automation events

• Usage Controller activities, including:

o Organizational Group and Project Creation and Maintenance

o User Creation and Maintenance

o Classification Criteria Set Creation and Maintenance

o Asset View Creation and Maintenance

o Profile Creation and Maintenance

Customers pick and choose from this wide range of events by creating Lifecycle Manager “listeners” to

receive event messages from Lifecycle Manager. These listeners may be implemented as externally

deployed Web services supporting a Lifecycle Manager-specified API (defined in WSDL) or as internal

components deployed within the Lifecycle Manager application. In either case, these listeners can be

implemented to process incoming events in any number of ways – integrating those events with a

workflow engine, generating emails, logging information, or even calling back into Lifecycle Manager.

To help customers more quickly implement their desired listeners, Lifecycle Manager provides sample

listeners of both types with full source code.

In addition, Lifecycle Manager provides a preimplemented Audit Trail based on Lifecycle Manager

events. This Audit Trail is configurable by any Lifecycle Manager Library Administrator, and is exposed

as part of the Lifecycle Manager read-only reporting views. Audit Trail events can be subscribed to via

RSS feed.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 64

8.3 Prebuilt Lifecycle Manager Integrations

In addition to the prebuilt IDE, devops and version control repository integrations discussed in section 4,

Lifecycle Manager also provides support for integrating an enterprise’s development and production

environments as described below. Integrations with additional run-time deployment and monitoring

environments are planned for future releases.

8.3.1 Service Registry Synchronization Module

In addition to its seamless integration with Akana’s Policy Manager product, Lifecycle Manager provides

an integrated Service Registry Web service publication module that, in conjunction with Web service

definition and deployment governance best practices, enables Lifecycle Manager to be used as a

gateway to ensure only approved Web services are published to Akana Policy Manager or a UDDI-

compliant registry such as TIBCO Active Matrix Registry. Such registries are used in these scenarios for

operational purposes, to enable Web service clients to dynamically bind to a currently active service

endpoint rather than statically implementing a fixed endpoint binding within client code, improving Web

service scalability and availability within customer deployments.

The Lifecycle Manager Service Registry Synchronization Module is designed for flexibility. Because every

organization’s software development and deployment is different, the trigger points at which Lifecycle

Manager publishes to a registry are fully configurable based on the Web service asset metadata stored

within Lifecycle Manager. In addition, because of the variability in the way Web services tools produce

WSDL documents, Lifecycle Manager supports two publication scenarios: a single Lifecycle Manager

asset scenario, where the Lifecycle Manager asset represents both the service interface and the

deployed service endpoint; and a dual Lifecycle Manager asset scenario, with one Lifecycle Manager

asset representing the service interface and separate assets representing deployed instances of that

service interface. In the specific case of Akana Policy Manager, Lifecycle Manager also synchronizes

governance state between Lifecycle Manager and the service registry and generates runtime contracts

resulting development-time acquisition requests (as discussed in Chapter 6), thereby enabling runtime

better runtime access control over services, for example.

8.3.2 Semantic Web Integration

Lifecycle Manager supports both import and export of asset contents in RDF format, thereby enabling

further processing and integration with Semantic Web tooling.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 65

8.3.3 Asset Import Center

Lifecycle Manager’s Asset Import

Center allows a Lifecycle Manager

Asset Capture Engineer (ACE) to

easily create new service assets

within Lifecycle Manager from a

list of currently ungoverned

services detected in a service

registry instance that has been

integrated with Lifecycle Manager.

For example, packaged application

services that have been directly

deployed to a run-time

environment and their WSDLs

populated into that run-time

environment’s service registry can be imported into Lifecycle Manager for governed use by application

developers. Lifecycle Manager currently supports service imports from Akana Policy Manager and UDDI-

compliant registries such as TIBCO Active Matrix Registry.

Asset Import Center also provides a quick way to create Lifecycle Manager service and schema assets

from XMI, BPEL, XPDL, WSDL and XSD documents through a simple browse-and-upload interface.

Automated file parsing and validation activities occur as part of the file upload and asset creation

process. The XMI import process supports full configuration to map class structures represented within

the XMI document to asset and relationship types within Lifecycle Manager. Both BPEL and XDPL import

processes generate a root asset (e.g., Business Process) and automatically build relationships to related

services specified within the imported document. These importers can optionally be configured to

generate placeholder service assets for those relationships specified in the document but not yet

present in Lifecycle Manager.

Spreadsheet-based imports for purposes of asset creation and/or update are also supported by Import

Center. Asset import spreadsheets can be created manually or produced for a set of existing assets by

exporting search results as discussed in section 5.3.3.

Finally, Import Center is designed as an extensible part of Lifecycle Manager. Custom importers can be

implemented against the import framework and deployed into customer-specific installations to meet

unique organizational needs.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 66

9 How it Works: The Lifecycle Manager Architecture

9.1 Lifecycle Manager Asset Library

Akana’s Lifecycle Manager Asset Library is a comprehensive index, designed to seamlessly integrate with

the development environment. This library is fully internationalized, with both an English and French

language version available. Other language versions may be produced based on customer demand.

9.1.1 Presentation/Client Layers

Lifecycle Manager supports a thin-client, browser-based application model

to leverage its ubiquity and flexibility. Where appropriate, information is

presented to the user through statically-defined HTML. However, most of

the Lifecycle Manager Asset Library’s sophisticated services require more

dynamic interaction. Servlets and JSPs leveraging AJAX technology work

with Application Components (via RMI-IIOP and XQuery) to generate the

dynamic pages needed to present users with information. Client Web pages

are presented to the user’s browser over HTTP or HTTPS based on

installation configuration settings.

9.1.2 Application Layer

The application layer of the Asset Library handles requests from the

presentation layer to analyze, process, organize, and present information held at the persistence layer.

Application components within this layer are built as Enterprise Java Beans (EJBs) and supporting Java

objects deployed into an application server installation. The Lifecycle Manager architecture defines

three major application component types:

• Library Access: These components manage asset and enterprise data within the Library, and

provide an isolation layer that allows the asset Library to be installed in widely varying

configurations. Configuration can range from a fully centralized to highly distributed with

multiple, physically separate libraries interconnected and presented in a seamless and

transparent manner. This sophisticated architecture also allows flexible customization of the

asset structure to fit different asset types, as well as individual enterprise requirements.

• Scoring Engine: This component is the heart of the sophisticated search capabilities of the Asset

Library. Software assets published into the Asset Library are scored based on rules established

by the enterprise’s Library manager. The Scoring Engine returns assets with the highest affinity,

in ranked order, for presentation to the user.

• Authentication and Authorization: Lifecycle Manager combines LDAP integration for user

authentication along with its imbedded role-based authorization model. Asset Library functions

are allocated to users on a role-by-role basis. In addition, dedicated Library installations can be

integrated with Single Sign On (SSO) userid and password management facilities, allowing

enterprises to define a single point of management for these crucial data elements.

Standard JEE interfaces, such as JDBC and RMI-IIOP, are used to communicate between the Application

Layer and other layers of the architecture.

Lifecycle Manager

Architecture

• JEE

• Thin client

• RAD/Eclipse

• Open SOAP interfaces

• Scalable and Secure

• Relational Database

Persistence

• XML Data interchange,

schema and templates

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 67

9.1.3 Integration Layer

The Lifecycle Manager Asset Library provides a set of SOAP-based APIs for integration into the

customer's environment. These APIs are WS-I Basic Profile 1.0 compliant, and thus enable cross-

platform linkage between Lifecycle Manager installations and with enterprise systems of record, such as

version control repositories and the Lifecycle Manager IBM Rational Application Developer / Eclipse and

Microsoft Visual Studio plug-ins and add-in.

9.1.4 Persistence Layer

Akana defines four major categories of information repositories to be managed by the Asset Library:

• Enterprise information about users, organizational groups, profiles, etc., that define how the

asset and Reference Model information within the Library is to be used.

• Reference models about specific industry and technical domains that allow users to rapidly

identify useful business processes and associated functional capabilities that meet their current

development needs.

• Asset entries which include the information, categorization data, artifact references, and related

assets references captured in a consistent and complete form.

• Asset Search Specifications that describe the important functional, business, and technical

characteristics of desired assets. This information is used by the Asset Library to discover the

assets that best meet search criteria.

All information is managed through standard RDB and XML techniques and is exposed to report engines

through a series of read-only RDB table views. Lifecycle Manager provides a set of prebuilt and

automatically deployed reports against these views in Eclipse BIRT format. Other reporting engines can

be easily integrated into a Lifecycle Manager deployment.

9.2 Lifecycle Manager Java IDE Plug-ins/Add-ins

Lifecycle Manager’s industry-leading plug-ins for Eclipse, RAD and other Eclipse-based commercial IDEs

bring the power of the Lifecycle Manager asset metadata library directly into the developers work

environment. These plug-ins take full advantage of the underlying Eclipse and RAD tool framework

capabilities, presenting Lifecycle Manager functions in a form that is natural and intuitive for IDE users.

Akana has achieved Ready for Rational status with its RAD plug-in, a level of certification achieved by

very few tool vendors.

9.3 Lifecycle Manager Add-in for Visual Studio

Lifecycle Manager’s industry-leading add-in for Visual Studio brings the power of the Lifecycle Manager

asset metadata library directly into the developer’s work environment. This add-in takes full advantage

of the underlying Visual Studio tool framework capabilities, presenting Lifecycle Manager functions in a

form that is natural and intuitive for IDE users. Akana is a Microsoft VSIP Premier partner, ensuring easy

access to both advanced Visual Studio APIs and Microsoft expertise to help in using those APIs

effectively.

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 68

Operating System
(AIX
Red Hat Enterprise Linux
Windows)

Web Server

(IBM HTTP Server,
Apache 2.0+)

Application Server
(WebLogic
WebSphere
JBoss EAP

Business Logic Layer
(Java)

Enterprise Layer
Transactions and Persistence

(stateless Session Bean EJBs)

J
D

B
C

Relational DataBase Server
(Oracle, Microsoft SQL Server)

Web Services API
(Axis)

Thin-client Presentation
(AJAX, JSP, Servlet)

Browser

LDAP (auth)

SMTP (mail)

Lifecycle Manager
2019.1.20 Architecture

Block Diagram

AnySource API
(automation client)

Administrative Client

(Eclipse RCP)

Client

Server

H
T
T

P
/H

T
T

P
S

H
T
T

P
/H

T
T

P
S

Local Java

API (including
Beanshell and
Jython support)

Akana, Inc.

Lifecycle Manager 2019.1.20 Concepts and Facilities Guide 69

10 Conclusion

Lifecycle Manager is an SOA design-time repository and registry that allows enterprises to represent

their software development assets (SDAs) in one or more graphical Reference Models. The Lifecycle

Manager SDA Library is an intelligent inventory of SDAs, their relationships to each other, and to the

company’s business processes and technical infrastructure.

Application developers, business analysts and architects can search this library of the company’s vital

software assets to identify those that best match business and technical requirements for application

development and integration.

Lifecycle Manager is a very flexible asset Library which can utilize default settings for a quick start and

fast return on investment. The system can be customized to fit a variety of organizational structures,

business processes, and technology environments. In addition, Lifecycle Manager provides tightly-

integrated plug-ins / add-in for IBM Rational Application Developer, Eclipse, and Microsoft Visual Studio,

dramatically increasing developer productivity during asset search, investigation, and consumption

activities.

